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ABSTRACT 

 

Chlorinated solvents have been widely used in different areas of modern society. Usage 

of these chlorinated solvents was not necessarily accompanied with proper handling and 

disposal of these hazardous compounds, which caused a variety of environmental 

problems and continues to affect human health. Remediation of chlorinated ethenes 

contaminated sites has high priority for state regulators and site owners. Among the 

available treatment technologies, bioremediation shows great promise as a cost-effective 

corrective strategy for a variety of environmental pollutants. Prerequisites are that the 

microbiology involved in contaminant degradation and geochemical factors, such as pH, 

are understood, so that bioremediation technologies can be confidently implemented. The 

aims of this dissertation work were 1) to enrich and isolate PCE dechlorinators under low 

pH conditions, 2) to investigate how pH fluctuations affect the microbial community of a 

PCE-to-ethene consortium, 3) to determine the pH tolerance of Dehalococcoides 

mccartyi (Dhc), 4) to identify a non-Dehalococcoides type microorganism responsible for 

reductive dechlorination of vinyl chloride, 5) to identify and characterize a novel vinyl 

chloride reductase gene and 6) to develop an Excel-based tool to guide remedial 

practitioners to select suitable remediation strategies. Only one enrichment culture out of 

total sixteen sites samples showed PCE dechlorination activity at pH 5.5 and 

stoichiometric conversion to cDCE occurred after repeated transfers. The analysis of 16S 

rRNA gene sequencing data revealed the genera Desulfovibrio, Sulfurospirillum, and 

Megasphaera were most abundant in pH 5.5 enrichment. Two PCE-dechlorinating 



viii 

 

isolates (strains PLC-TCE and PLC-DCE) were obtained from a pH 5.5 enrichment, and 

identified as members of the genus Sulfurospirillum. Experiments with a Dhc-containing 

consortium demonstrated that exposure time affected Dhc ability to recover reductive 

dechlorination activity following low pH exposure. Low pH conditions affected Dhc 

strains differently, and Dhc strains carrying the vcrA gene responsible for reductive 

dechlorination of the human carcinogen vinyl chloride (VC) were least tolerant to low 

pH. Enrichment and isolation efforts led to the discovery of a Dehalogenimonas (Dhgm) 

species capable of respiring chlorinated ethenes, including VC. These research findings 

advance understanding of the microbial reductive dechlorination process and will 

improve the implementation of in situ bioremediation. 
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CHAPTER I INTRODUCTION  

 

Chlorinated solvents are a group of aliphatic hydrocarbons with one to three carbons 

where at least one of the hydrogen atoms is substituted by a chlorine atom. Commonly 

used chlorinated solvents include chlorinated methanes, chlorinated ethanes and 

chlorinated ethenes. Chlorinated solvents have been widely used in different areas of 

modern society, such as cleaning of machinery in manufacturing, etc. (1-3). Usage of 

these chlorinated solvents was not necessarily accompanied with proper handling and 

disposal of these hazardous compounds, which caused a variety of environmental 

problems and affected human health. A major issue is the contamination of groundwater 

at thousands of government-owned and private sites in the United States alone. The 

Environmental Protection Agency (EPA) was guided by the National Priorities List 

(NPL) to determine which contaminated sites need further investigation and remediation 

(4, 5). Required by the Comprehensive Environmental Response, Compensation, and 

Liability Act (CERCLA), the Agency for Toxic Substances and Disease Registry 

(ATSDR) and EPA have been working together “to prepare a list, in order of priority, of 

substances that are most commonly found at facilities on the National Priorities List 

(NPL) and which are determined to pose the most significant potential threat to human 

health due to their known or suspected toxicity and potential for human exposure at these 

NPL sites” (http://www.atsdr.cdc.gov/spl/). According to this 2015 Substance Priority 

List (SPL), chlorinated aliphatic hydrocarbons (CAHs), such as tetrachloroethene (PCE), 

trichloroethene (TCE), 1,2-cis-dichloroethene (cDCE), 1,1-dichloroethene (1,1-DCE), 
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1,2-trans-dichloroethene (tDCE), and vinyl chloride (VC) were ranked #33, #16, #267, 

#177, #82, #4, respectively (http://www.atsdr.cdc.gov/spl/). Formulas, nomenclature and 

properties of chlorinated ethenes are compiled in Table 1.1. 

 

Since detoxification and remediation of chlorinated ethenes has high priority for the 

agencies and site managers, different technologies and strategies have been developed 

and tested for in situ remediation of chlorinated solvent-contaminated sites (e.g. in situ 

thermal desorption, in situ chemical oxidation or reduction, and in situ bioremediation). 

Among these available treatment technologies, bioremediation shows great promise as a 

cost-effective removal strategy for a wide variety of environmental pollutants. Major 

advantages of in situ bioremediation include cleanup without transportation of hazardous 

waste and additional cost, innocuous end products (e.g., H2O, CO2, inorganic chloride) of 

biodegradation, minimum land and environmental disturbance; and environmentally 

friendly with public acceptance (7, 8). However, some disadvantages and specific 

requirements limited a more widespread implementation, such as intractable heavy metal 

waste; long and extensive period of performance monitoring; high concentrations of 

contaminants inhibiting microorganisms; detrimental geochemical conditions including 

low pH and accumulation of toxic biodegradation products (6, 7). To succeed in applying 

bioremediation technologies to contaminated sites, many requirements and factors need 

to be taken into consideration, such as energy source, electron donors, pH, and presence 

of microorganisms capable of degrading chlorinated solvents (Figure 1.1). 
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Table 1.1 Properties of chlorinated ethenes* 

*Data obtained from EPA site (http://water.epa.gov/drink/contaminants/basicinformation/), ATSDR(http://www.atsdr.cdc.gov/spl/) and Ward CH, etc. (6).

Chlorinated ethenes Common names 
Abbrevia

tion 
Formula 

Carbon 

oxidation 

state 

Density 

(g/mL) 

Solubility 

(mg/L) 

Henry’s Law 

Constant 

(25°C) 

(Dimensionless) 

National Priorities 

List frequency 

(Total:  1,770 sites) 

MCL 

(mg/L) 

Tetrachloroethene 
Perchloroethene, 

Tetrachloroethylene 
PCE C2Cl4 +2 1.63 150 0.711 1077 0.005 

Trichloroethene 

Trichloroethylene, 

Trethylene, Triclene, 

Acetylene Trichloride 

TCE C2HCl3 +1 1.46 1,100 0.372 1046 0.005 

1,2-cis-dichloroethene cis-dichloroethene cDCE C2H2Cl2 0 1.28 3,500 0.158 541 0.07 

1,2-trans-

dichloroethene 
trans-dichloroethene tDCE C2H2Cl2 0 1.26 6,260 0.384 594 0.1 

1,1-Dichloroethene 
Vinylidene chloride, 

1,1-dichloroethylene 
1,1-DCE C2H2Cl2 0 1.22 3,344 1.08 610 0.007 

Chloroethene Vinyl chloride VC C2H3Cl -1 0.91 2,763 1.07 593 0.002 

http://water.epa.gov/drink/contaminants/basicinformation/
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Figure 1.1 Requirements for bioremediation. (Modified from Cookson A.M. (8)) 

 

Although scientific understanding and in situ remedial technologies have advanced 

greatly, further improvements are necessary for widespread and cost-effective 

remediation. For example, microorganisms capable of degrading chlorinated solvents 

require a circumneutral pH environment (pH 6.8-7.8); low pH conditions inhibit the 

microbial reductive dechlorination process (9). At contaminated sites with low pH 

groundwater, buffers such as sodium carbonate, lime (CaO), and hydroxide can be added 

to raise and/or neutralize the pH (10); however, precipitation of calcite from lime addition 

and subsequent aquifer clogging as well as high cost limit their wide application (11). 

Decades of anaerobic reductive dechlorination research resulted in the isolation of several 
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anaerobic bacterial species responsible for different steps of PCE reductive 

dechlorination. Remarkably, all of the cultures that are able to dechlorinate the 

intermediary daughter compound vinyl chloride (VC) contain strains of the species 

Dehalococcoides mccartyi (Dhc) (12). Although comprehensive diagnostic molecular 

biological tools (MBTs) have been developed and applied for site assessment, more 

research is required to support and conclusively assess dechlorinating capabilities at a 

specific site. For example, a key question is why the ability of VC to ethene reductive 

dechlorination is restricted to Dhc, or do other microorganisms with this capability exist? 

Finally, protocols and guidelines are required to be continually updated to match the 

advancement of bioremediation research, so that achievements are effectively 

implemented at field sites. In 1996, Wiedemeier and Wilson developed a protocol to 

quantify natural attenuation during the remedial investigation process, which relies on 

naturally occurring physical, chemical, and biological processes to clean up or attenuate 

pollution in soil or groundwater 

(http://toxics.usgs.gov/definitions/natural_attenuation.html, http://www.clu-

in.org/techfocus/default.focus/sec/Natural_Attenuation/cat/Overview/).  This protocol has 

been highly used by researchers and site managers (13-15); however, this protocol has 

not been revised since its initial publication. Further, efforts of incorporating latest 

technical and scientific findings into the previous protocol will be conducive for 

characterizing the contaminated sites and selecting the most effective bioremediation 

approach for that particular site. Based on the three problems listed above, we are 

planning to design and conduct a series of experiments to enhance our understanding of 

http://toxics.usgs.gov/definitions/natural_attenuation.html
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how we can apply these three factors: pH, microorganism and modeling, to achieve a 

successful remediation of chlorinated solvents sites. 

 

Physical Requirement for Bioremediation: pH 

 

Hydronium ion concentration is a very important parameter affecting essentially all 

biochemical reactions. The pH is the negative logarithm of hydronium ion concentration, 

which is a major determinant affecting the microbial diversity of aquifers. The majority 

of soil microorganisms thrive in neutral pH and changes in pH may cause essential 

microbial enzymes to be inactive and/or denature proteins within cells (16). Decreasing 

pH could also increase the solubility of toxic metals and metalloids, and mobile metal 

concentrations may exceed regulatory standards and subsequently affect microbial 

activities (17, 18). Different microbial groups including nitrate reducers, sulfate reducers, 

metal reducers and methanogens are all affected by pH and toxic metal species (19-24).   

Furthermore, dechlorinating bacteria responsible for chlorinated ethene detoxification are 

active at circumneutral pH, but dechlorination activities are severely inhibited when the 

pH drops below 6.0 (10, 25-27). The cleavage of a carbon-chlorine bond releases 

hydrochloric acid (HCl), which deprotonates and releases protons causing acidification 

(Eq. (1)-(5)). 

PCE→TCE reaction: CCl2=CCl2 + H2 → CHCl=CCl2 + H+ + Cl-             (1) 

TCE→DCE reaction: CHCl=CCl2 + H2 → CHCl=CHCl + H+ + Cl-  (2) 

DCE→VC reaction: CHCl=CHCl + H2 → CH2=CHCl + H+ + Cl-             (3) 
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VC→Ethene reaction: CH2=CHCl + H2 → CH2=CH2 + H+ + Cl-             (4) 

Net Reaction: CCl2=CCl2 + 4H2 → CH2=CH2 + 4H+ + 4Cl-  (5) 

 

Large amounts of HCl may be liberated by dechlorinating bacteria when remedial actions 

are applied to the contaminated sites. In aquifers with low buffering capacity, pH 

decreases result in the stalling of the dechlorination process (10, 25, 28). Further, 

biostimulation with fermentation of substrates such as alcohols, organic acids (lactate, 

formate, acetate, etc.), emulsified vegetable oil (EVO) and other organic materials (e.g. 

molasses, corn cobs, newsprint, wood chips, microbial biomass, etc.) causes the release 

of organic acids (Eq. (6)) and acidification (29-32).  

Fermentation of glucose: C6H12O6 + 2H2O → 4H2 + 2CH3COOH + 2CO2 

 

Low pH conditions caused by fermentation or enhanced dechlorination inhibit the 

activity of dechlorinating microorganisms. Most of the conducted research to date 

investigates the addition of buffer systems or alkaline chemicals to maintain the pH at a 

suitable level for dechlorinating bacteria (pH>6.5). Robinson et al. took a modeling 

approach, that included parameters such as amount of chlorinated solvent degraded, site 

water chemistry, electron donor, alternative terminal electron-accepting processes, gas 

release and soil mineralogy, to investigate pH control during enhanced DNAPL source 

zone dechlorination. The results indicated that significant bicarbonate addition may be 

necessary even to soils that are naturally well buffered with calcite and iron oxides (10). 

Delgado et al. suggested that bicarbonate as a pH buffer is an important variable for 
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bioremediation of chlorinated ethenes (33). Lacroix et al. proposed to use silicate 

minerals to buffer subsurface pH as a long-term source of alkalinity and tested several 

silicate minerals for pH control during reductive dechlorination in batch cultures (34-36). 

Philips et al. suggested that the significant impact of acidification on bio-enhanced 

DNAPL dissolution can be overcome by the amendment of a pH buffer or by applying a 

non-acidifying electron donor like formate (30).  

 

Based on the hypothesis that microbial reductive dechlorination can occur at low pH 

conditions, several experiments were conducted with several specific aims listed as 

below: 

1) Screening existing isolates and mixed cultures for dechlorinating activity in the 

lower pH range (e.g., at what pH value does reductive dechlorination cease?). 

2) How does low pH affect the microbial community structure in terms of the 

abundance of key dechlorinators? 

3) Enriching and isolating PCE dechlorinators that perform under lower pH 

conditions and characterizing the isolates. 

4) Determining the pH tolerance of consortium BDI capable of dechlorinating PCE 

to ethene at circumneutral pH. 

 

Microbial Requirement for Bioremediation: Dechlorinators 

 

Frequently, incomplete reductive dechlorination of PCE and TCE results in the formation 

of VC, which is a major risk driver at contaminated sites. A range of microorganisms, 
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such as Desulfitobacterium spp., Sulfurospirillum spp., Dehalobacter sp., 

Desulfuromonas spp., Desulfomonile spp., Geobacter spp., and Dehalococcoides 

mccartyi (Dhc) (37-39) were demonstrated to degrade PCE to TCE or cDCE 

anaerobically by the process of reductive dechlorination.  

 

Reductive dechlorination can be classified into metabolic reductive dechlorination (i.e., 

organohalide respiration) and co-metabolic reductive dechlorination (e.g., Desulfomonile) 

(12, 38, 40). Only some Dhc strains are capable of further degrading cDCE or VC to 

ethene (41-44). Recently, it was demonstrated that in the consortium WBC-2, containing 

Dhc, Dehalobacter (Dhb), and Dehalogenimonas (Dhgm) strains, a Dehalogenimonas 

population was responsible for the dechlorination of tDCE to VC (45). However, this 

Dhgm strain was unable to dechlorinate VC and a Dhc population was responsible for 

reductive dechlorination of VC to ethene in this consortium.  

 

So far, two species of Dehalogenimonas were isolated, Dhgm alkenigignens and Dhgm 

lykanthroporepellens (46, 47), which are distinct but phylogenetically related to the 

previously cultured Dhc (48). Both Dhgm lykanthroporepellens strains were reported 

only to couple growth with the dechlorination of polychlorinated alkanes, such as 1,2,3-

trichloropropane (1,2,3-TCP), 1,2-dichloropropane (1,2-DCP), 1,2-dichloroethane (1,2-

DCA), 1,1,2-trichloroethane (1,1,2-TCA), and 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA); 

while chlorinated alkenes (PCE, TCE, cDCE, tDCE, and VC) and chlorinated benzenes 

could not be dechlorinated (47-49). For both species of the Dhgm genus, chlorobenzenes, 
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chloroform, 1-chloropropane, 2-chloropropane, 1,2-dichlorobenzene, 1,1-dichloroethane, 

dichloromethane, tetrachloromethane, 1,1,1-trichloroethane, PCE, TCE, cDCE, tDCE, or 

VC did not serve as electron acceptors (46, 50, 51). 

 

All Dhgm and Dhc strains possess different numbers of reductive dehalogenase (RDase) 

genes identified from published genome sequences (52-54). But many of these RDases 

are not characterized in terms of their structure and function. Up to date, RDases 

responsible for VC-to-ethene detoxification were identified and characterized in two Dhc 

strains: VcrA from Dhc strain VS (55) and BvcA from Dhc strain BAV1 (56). bvcA and 

vcrA genes have been proposed as biomarkers to indicate potential in situ VC 

biodegradation. Both of these VC reductive dehalogenase genes are absent in Dhgm 

strains, which served as an explanation for the inability of Dhgm to degrade VC to 

ethene. 

 

While PCE to cDCE transformation can be performed by different microbial species, 

only some Dhc strains are capable of reductively degrading VC to benign ethene under 

anoxic conditions. We hypothesized that VC-to-ethene dechlorination was not restricted 

to Dehalococcoides, and other microorganisms that can perform VC-to-ethene 

detoxification also exist. Then a series of experiments are conducted with the following 

objectives:  

1) Enriching microbes capable of degrading VC to ethene. 
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2) Identifying the microorganisms responsible for VC degradation by utilizing 

molecular tools (e.g., PCR and qPCR) and sequencing techniques (e.g., 16S 

rRNA gene amplicon and metagenome sequencing).  

3) Isolating and characterizing the VC-degrading microorganism(s).  

4) Identifying and characterizing novel VC reductive dehalogenase genes that are 

involved in the dechlorination of VC to ethene. 

 

Summary 

Results from these research topics are intended to support remediation project managers 

to choose more efficient and economical strategies and technologies to remediate 

contaminated sites. Investigation into the pH effects on the microbial dechlorination will 

inform the site managers about the microorganisms that degrade chlorinated solvents 

under low pH conditions. At low pH contaminated sites, the presence of such low pH 

tolerant dechlorinators indicates the feasibility of chlorinated solvents biodegradation, 

which will save the cost of adjusting and buffering low pH contaminated aquifers.  

Moreover, exploring the response of consortium BDI to low pH will demonstrate whether 

dechlorinators can recover from low pH exposure, which will help site managers to 

decide whether bioaugmentation is needed or not. From a scientific point of view, it is of 

interest to investigate how dechlorinators adjust to the pressure of a decreasing pH caused 

by their own metabolic or co-metabolic activities. Biomarkers such as Dhc 16S rRNA 

gene and VC RDase genes (bvcA and vcrA) are considered capable of providing rapid and 

reliable measurements indicating natural attenuation and in situ ethene formation. 
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However, this approach only targets known gene sequences and can therefore not detect 

novel dechlorinating microorganisms. Whether dechlorinating microorganism(s) besides 

Dhc exist that are capable of degrading VC to ethene is still unknown. And this research 

is also trying to provide an answer to this question.  
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A version of this chapter is going to be submitted for publication. Yang, Y., N.L. Cápiro, 

T.F. Marcet, J. Yan, K.D. Pennell, and F.E. Löffler. Reductive dechlorination of 

chlorinated ethenes under low pH conditions. In preparation. 

 

Abstract  

 

Bioremediation treatment (e.g., fermentable substrate additions) often leads to 

groundwater acidification due to enhanced dechlorination (i.e., release of H+ + Cl-) and 

organic acids released from fermentation. The reductive dechlorination process achieves 

robust detoxification of chlorinated ethenes at circumneutral pH, but pH decreases below 

6.0 are generally associated with declining activity. To find dechlorinators that could 

maintain chlorinated ethene dechlorination activity below pH 6.0, available pure cultures 

(Geobacter lovelyi strain SZ, Desulfuromonas michiganensis strain BB1, 

Desulfitobacterium sp. strain Viet1, Desulfitobacterium sp. strain JH1) and a PCE-to-

ethene-dechlorinating consortium were tested at pH values of 5.5, 6.0, and 7.2. All 

cultures dechlorinated tetrachloroethene (PCE) at circumneutral pH but only 

Sulfurospirillum multivorans was able to dechlorinate PCE to cis-1,2-dichloroethene 

(cDCE) at pH 5.5 and maintain this activity upon transfers in pH 5.5 medium. Low pH 

PCE dechlorination was further explored in microcosms using solid materials collected 

from 4 pristine and 12 chlorinated solvent-contaminated sites. In microcosms from six 

locations, ethene formation was observed in pH 7.2 and pH 5.5 microcosms. While PCE-

to-ethene reductive dechlorination activity could be maintained in pH 7.2, PCE and 
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cDCE dechlorination ceased in pH 5.5 transfer cultures.  Only the transfer cultures 

derived from pristine acidic peat bog soil microcosms dechlorinated PCE to 

stoichiometric amounts of cDCE at pH 5.5 and a similar dechlorination pattern was 

observed at pH 7.2. Analysis of 16S rRNA gene sequencing data revealed distinct 

differences in community structure between pH 7.2 and pH 5.5 enrichment cultures. In 

the pH 7.2 microcosms, the genera Dehalococcoides, Acetobacterium, Spirochaetaceae, 

Caldisericum, Desulfuromonadales, and vadinBC27 (a wastewater-sludge group) 

dominated in the pH 7.2 enrichment. By comparison, the major genera in the pH 5.5 

enrichment were Desulfovibrio, Sulfurospirillum, Megasphaera, Propionibacterium and 

Pelosinus. Two PCE dechlorinating isolates were obtained from the pH 5.5 enrichment, 

one of which dechlorinated PCE to TCE (strain PLC-TCE) and the other produced cDCE 

from PCE or TCE (strain PLC-DCE).  16S rRNA gene sequencing identified the isolates 

as member of the species Sulfurospirillum multivorans with 16S rRNA gene similarities 

of 98.6% and 98.5%.  This study suggested Sulfurospirillum may play a significant role 

in in situ bioremediation of chlorinated ethenes under low pH conditions. 

 

Introduction 

 

In situ bioremediation involving anaerobic dechlorinating microorganisms has shown 

success as a cost-effective removal strategy for a variety of chlorinated pollutants.(1) A 

number of anaerobic bacterial isolates responsible for different steps of PCE reductive 

dechlorination have been identified including Desulfitobacterium, Sulfurospirillum, 
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Dehalobacter, Desulfuromonas, Geobacter, Dehalogenimonas and Dehalococcoides 

(Dhc) (2, 3). These dechlorinating bacteria were all enriched and isolated in medium at 

circumneutral pH. Subsequent characterization revealed that maximum reductive 

dechlorination activity occurred at circumneutral pH but activity was severely inhibited 

below pH 6.0 and no dechlorination was reported at pH 5.5 (4-6).  

 

Dechlorination processes release hydrochloric acid, which, under typical in situ 

conditions, rapidly dissociates into chloride anions and protons. Depending on the 

buffering capacity of the aquifer, extensive dechlorination may generate excessive 

hydrochloric acid to affect the groundwater pH. Furthermore, biostimulation with 

fermentable substrates such as alcohols, emulsified vegetable oil (EVO) and other 

organic materials (e.g., molasses, corn cobs, newsprint, wood chips, and microbial 

biomass) causes acidification due to the formation of organic acids (7). In aquifers with 

low buffering capacity, pH decreases can slow down and stall microbial dechlorination 

processes. Acidification can have other undesirable secondary effects such as increased 

solubility of toxic metals and metalloids, which may affect microbial activities and/or 

impair groundwater quality (i.e., exceed regulatory standards) (8).  

 

A common response to groundwater pH reductions following in situ biostimulation is the 

addition of buffer or alkaline chemicals to maintain the pH in a suitable range for 

dechlorinating bacteria (pH > 6.5).  For example, the addition sodium bicarbonate and 

colloidal Mg(OH)2 has been successfully used to manipulate groundwater pH in situ (9, 
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10). Calcite plays an important role in buffering the pH of calcareous soils, but the 

amount of calcite varies for different soil types (11). Despite the buffering capacity from 

calcite, large amounts of bicarbonate may be required to buffer the groundwater pH 

during enhanced DNAPL source zone dechlorination; and increased concentration of 

carbonate  may result in the precipitation of calcite rather than dissolution of calcite 

(CaCO3↓↔Ca2++CO3
2-) (12). A low cost, self-regulating (i.e., pH-dependent dissolution 

rate) approach using silicate minerals was proposed to buffer groundwater, but further 

experiments indicated silicate minerals and their dissolution products may inhibit 

reductive dechlorination of chlorinated ethenes (5). Several studies applied a modeling 

approach to estimate the buffer requirements for stabilizing groundwater pH (10, 12-17). 

Although feasible, in situ pH adjustments are challenging and the current approaches 

have limitations.  

 

An alternate solution would be reductively dechlorinating microorganisms that are active 

under low pH conditions. Some dechlorinating isolates of the genera Desulfuromonas, 

Geobacter, Desulfitobacterium, Sulfurospirillum and Dehalococcoides were tested for 

dechlorinating activity at low pH but all reports indicated that growth and dechlorination 

activity ceased at pH values below 6 (Table 2.1). Apparently, the known dechlorinators 

are neutrophils limited to sustained dechlorination in neutral pH environments, and no 

microbes capable of growth with chlorinated ethenes at pH 5.5 have been described. 

Also, limited information is available how pH shifts affect microbial community 

structure. To fill these knowledge gaps, a series of experiments were conducted to screen 
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the pH range of existing pure and mixed cultures capable of dechlorinating chlorinated 

ethenes, to enrich and isolate PCE dechlorinators capable of PCE dechlorination under 

low pH conditions, and to investigate the response of the bacterial community, including 

Dhc, to low pH conditions. 

 

Table 2.1 pH values for optimal growth of dechlorinating bacteria 

Bacteria 
Optimal pH 

range 
Reference 

Geobacter lovleyi strain SZ 6.5~7.5 (22) 

Desulfitobacterium sp. strain Y51 6.5~7.5 (49) 

Desulfuromonas chloroethenica TT4B 6.5~7.4 (19) 

Desulfuromonas michiganensis BB1 6.8~8 (19) 

Sulfurospirillum multivorans 7~7.5 (23) 

Dehalococcoides mccartyi 6~8 (50) 

 

Materials and Methods 

Chemicals. PCE and TCE were purchased from Acros Organics (Distributed by VWR 

international, West Chester, PA, USA). cDCE, VC and ethene were bought from Sigma-

Aldrich Chemicals (St. Louis, MO, USA). HOMOPIPES (Homopiperazine-1,4-bis(2-

ethanesulfonic acid)) and MES (2-(N-morpholino)ethanesulfonic acid) was purchased 

from Acros Organics. Sodium bicarbonate was purchased from Fisher Scientific 

(Pittsburgh, PA, USA). Di-water was used to prepare solutions and mineral salts medium. 

  

Analytical methods. The pH of bulk liquid phase was measured by transferring 1 mL 

liquid aliquots from a culturing vessel into a 2-ml plastic tube. After centrifuging the tube 
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for 30 seconds at 14,000 rpm, the pH of the supernatant was measured with Fisher 

Scientific Accumet Glass AgCl pH electrode (Pittsburgh, PA, USA). Total chlorinated 

solvent mass or concentrations of chlorinated compounds were measured by analyzing 

100 µL headspace gas samples on a gas chromatograph (GC). The concentrations of 

chlorinated ethenes were calculated by normalizing the peak area values to standard 

curves generated by adding known amounts of chlorinated ethenes into the bottles with 

same gas to liquid ratio. The total moles of polychlorinated ethenes per bottle was 

calculated by the formula: total moles = (volume x density) / molecular weight. Gas 

samples (100 µL) were removed from the headspace of 160 mL serum bottles using a 

gastight 250 µL Hamilton SampleLock syringe and then injected into the GC manually. 

Samples were measured with an Agilent 7890A GC equipped with an Agilent DB624 

column (30 m x 0.53 mm I.D., 3 µm.) with a flame ionization detected (FID). The 

retention times were determined by injecting neat compounds into the GC. The retention 

time was used as the identity for the specific chlorinated compounds.  

 

Medium preparation. Reduced mineral salts medium was prepared following 

established protocols (18). Vitamin stock solution was added by passing through sterile 

0.22 µm membranes filters after the medium had been autoclaved (18). Lactate (5 mM) 

and hydrogen gas (10 mL) were added into 160 mL serum bottles as carbon source and 

electron donor, respectively. The pH 7.2 mineral salts medium was buffered with 30 mM 

bicarbonate. For pH 4.5 mineral salts medium, 30 mM Homopiperazine-1,4-bis(2-

ethanesulfonic acid) (HOMOPIPES; pKa=4.84 at 20 °C) was used instead of bicarbonate. 
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For pH 5.5 or 6 mineral salts medium, 30 mM bicarbonate was replaced with 30 mM 2-

(N-morpholino)ethanesulfonic acid (MES; pKa=6.15 at 20 °C). 

 

Screening existence of dechlorinating isolates and mixed cultures at different pH. 

Several PCE-dechlorinating isolates (Desulfuromonas michiganensis strain BB1 (19), 

Desulfitobacterium sp. strains Viet1 (20), Desulfitobacterium sp. strain JH1 (21), 

Geobacter lovleyi strain SZ (22), Sulfurospirillum multivorans (23)) and a Dhc-

containing consortium BDI (Bio-Dechlor Inoculum) (24) were tested for PCE 

dechlorination at pH 5.5, 6 and 7.2. These dechlorinating isolates and mixed cultures 

have been maintained in the lab fed with PCE (18). Desulfuromonas michiganensis strain 

BB1, Desulfitobacterium sp. strains Viet1 and JH1, Geobacter lovleyi strain SZ, 

Sulfurospirillum multivorans and a Dhc-containing consortium BDI were cultivated in 

160 mL serum bottles containing 100 mL pH 7.2 mineral salts medium amended with 5 

µL neat PCE, 10 mL hydrogen and 5 mM lactate. Triplicate serum bottles containing 100 

mL salts medium were inoculated with 3 mL culture grown at pH 7.2.  

  

Sampling sites, microcosms setup and transfer cultures. Samples from a total of 

sixteen sites were used to set up microcosms for enriching PCE dechlorinators at pH 5.5 

and pH 7.2 (Table S2.1). Groundwater, soil and sediment samples were transferred to the 

lab and stored at 4°C. Before setting up microcosms, the groundwater, soil and sediment 

samples were moved into glove box (filled with nitrogen and 3% hydrogen). Following 

opening 160 mL serum bottles with 100 mL mineral salts medium in the glove box, soil 
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or sediment samples (about 10 g wet weight) were added into the bottles with autoclaved 

spatulas; or 50 mL groundwater was mixed with 50 mL mineral salts medium. The serum 

bottles were closed with autoclaved black rubber stoppers (Geo-Microbial Technologies, 

Inc., Ochelata, Okla.) and crimped with aluminum caps. After removing the serum bottles 

from the glove box, neat liquid PCE (5 µL) were added into serum bottles by 5 µL 

Hamilton micro-syringes (Hamilton Company, Rena, Nevada). All microcosms were 

established in duplicate or triplicate, and incubated at room temperature (21°C). Time 

zero measurements were conducted after a 24-hour equilibration period. After VC and 

ethene were detected in the original microcosms, the microcosms were shaken 

vigorously, and 3 mL inocula were removed with nitrogen-flushed 3-mL syringes. The 

withdrawn culture suspension was immediately injected into a new bottle with fresh 

mineral salts medium (pH 7.2 or 5.5) amended with 5mM lactate as carbon source, 10 

mL hydrogen as electron donor. For enriching microbes under different pH conditions, 

various buffer systems were used: 30 mM HOMOPIPES for pH 4.5, 30 mM MES for pH 

5.5 or 6 mineral salts medium, and 30 mM bicarbonate for pH 7.2 mineral salts medium.  

Aseptic techniques were applied to all steps. 

 

DNA extraction. Microbial biomass was collected from 2-mL liquid culture suspension 

by vacuum filtration through 0.22 µm membrane filters (Millipore GVWP025000). 

Filter-trapped microbial cells were suspended in the PowerSoil® bead tubes (Mo Bio 

Laboratories Inc., Carlsbad, CA) and ruptured with a high efficiency Bead Ruptor 

Homogenizer (Omni International, Kennesaw, GA, USA) at a speed of 3.25 m/s for 5 
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minutes. Genomic DNA was extracted using the PowerSoil® DNA Isolation Kit (Mo Bio 

Laboratories Inc., Carlsbad, CA) following the manufacturer’s recommendations. DNA 

concentrations were quantified with a NanoDrop 1000 (NanoDrop Technologies, 

Wilmington, DE). DNA samples extracted from replicate cultures were pooled and stored 

at -20°C. 

 

16S rRNA gene amplicon sequencing and analysis. MiSeq 16S rRNA gene amplicon 

sequencing was used to analyze the taxonomic compositions of the dechlorinating 

enrichment cultures maintained at pH 5.5 and pH 7.2 by targeting the V4 variable regions 

of the 16S rRNA gene. Amplification was performed in 50 µL assays, consisting of 5 µL 

DNA sample, 1 µL barcoded-primer (10 µM), and 44 µL mixture of 31 µL de-ionized 

water (5 PRIME, Gaithersburg, MD, USA), 5 µL Invitrogen Pfx50™ buffer (Invitrogen, 

Carlsbad, CA, USA), 1 µL CAP 515F primer (10 µM), 1 µL dNTP, 1 µL Invitrogen 

Pfx50™ Polymerase and 5 µL of MgCl2 (25mM) (Invitrogen, Carlsbad, CA, USA). 

Thermo cycling program was set as following: denaturation at 94°C for 3 min followed 

by 35 cycles at 94°C for 45 sec, annealing at 55°C for 60 sec, and extension at 72°C for 

90 sec, and final extension at 72°C for 10 min.  Quality (size) of produced amplicons was 

checked using High Sensitive DNA Kit on a model 2100 Bioanalyzer (Agilent, Santa 

Clara, CA, USA). Relative concentrations of the individual samples were estimated based 

on the peak height at the appropriate size, and pooled to equal amounts. Pooled samples 

were purified with SPRI magnetic beads (Beckman Coulter, Inc., Indianapolis, IN, USA). 

The products from purification step were analyzed again with High Sensitive DNA kit for 
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quality assurance and verification of the removal of primer dimers. Before sequencing, 

concentrations of pooled amplicons were determined using Illumina Library 

Quantification kit (KAPA Biosystems, Boston, MA, USA) following the manufacturer’s 

protocol. Quantification of each sample was determined based on amplicon adaptors. The 

amplicon library was diluted to a starting concentration of 10 nM, followed by 

sequencing on the Illumina MiSeq desktop sequencer (Illumina, Inc., San Diego, CA, 

USA)Sequencing was conducted in the sequencing facility of Center of Environment 

Biotechnology (CEB, University of Tennessee, and Knoxville) following the published 

methods (25). Sequence files were then paired and analyzed using Mothur software 

following the analysis pipeline MiSeq SOP (26). After quality control, 69030 sequences 

(17441054 total base pairs) from pH 5.5 sample and 103503 sequences (26171881 total 

base pairs) from pH 7.2 sample were obtained. Two samples, one is pH 5.5 and the other 

is pH 7.2). These trimmed and paired sequences were uploaded to Silva-NGS server for 

comparison analysis based on high-quality SILVA alignment (27).  

 

Isolation procedures of dechlorinators at low pH. Isolation efforts focused on the 

PCE-dechlorinating cultures that maintained dechlorinating activity for at least 10 

consecutive transfers in pH 5.5 medium. Dilution to extinction series were established 

following the published protocol (18).  Colony formation was monitored weekly. Once 

colonies were visualized, 8 colonies were selected and picked up from 10-4 and 10-5 

dilution agar tubes. These colonies were then transferred to fresh pH 5.5. medium to test 

for PCE dechlorination.  
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Identification of isolates and phylogeny. PCR assays were applied to amplify 16S 

rRNA genes using general bacterial primers set 8F/1541R (8F-AGA GTT TGA TCC 

TGG CTC AG and1541R-AAG GAG GTG ATC CAG CCG CA) using the published 

protocol (18). The PCR products were cleaned using DNA Clean & Concentrator™-

5(Zymo Research Corp., Irvine, CA, U.S.A.). The cleaned PCR products were sequenced 

by Sanger method using general bacterial primers set 8F/1541R. Nearly full-length 16S 

rRNA gene sequences were obtained and analyzed using DNA Baser software to trim 

low quality reads and correct ambiguities in the contigs (Heracle BioSoft SRL, Romania). 

The 16S rRNA gene sequences were then blasted against NCBI NT database 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify phylogenetically related 

microorganisms. Sequences (Table S2.3) were imported into Geneious software 

(Biomatters, Auckland, New Zealand) and aligned by MAFFT (28). Then a 16S rRNA 

gene phylogenetic tree was built using Geneious Tree Builder with the default settings. 

 

Results 

 

Screening existence of dechlorinating isolates and mixed cultures. 

Desulfuromonas michiganensis strain BB1, Desulfitobacterium sp. strain Viet1, 

Desulfitobacterium sp. strain JH1 and the Dhc-containing consortium BDI dechlorinated 

PCE to TCE, cDCE and ethene at pH 7.2, respectively, while no PCE dechlorination 

occurred at pH 5.5 and 6.0. Geobacter lovleyi strain SZ could perform PCE 

dechlorination to cDCE at pH 6 and 7.2, but not at pH 5.5. Sulfurospirillum multivorans 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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was reported to grow between pH 7 and 7.5 (23), but our efforts demonstrated that the 

organism dechlorinated PCE to cDCE at pH 5.5 (Figure S2.1). All screened 

dechlorinating cultures could only perform dechlorination at circumneutral pH except 

Sulfurospirillum multivorans, which could dechlorinate PCE to cDCE at pH 5.5.   

 

Microcosms and enrichment of dechlorinators at pH 5.5. 

PCE-to-ethene reductive dechlorination was observed in both pH 5.5 and pH 7.2 

microcosms established with samples collected from six sampling sites (#5, 6, 7, 11, 13 

and 16 in Table S2.1). Soil samples from Axton Cross site (Holliston, MA) could degrade 

PCE to VC at pH 5.5, and ethene at pH 7.2. Microcosms set up with acidic peat bog soil 

sample from the pristine Nature Conservancy located at Shady Valley (TN) showed PCE 

to cDCE dechlorination at pH 5.5 and pH 7.2. The tidal flat sample degraded PCE to 

TCE at pH 7.2, but not at pH 5.5. No PCE dechlorination activity was detected in the 

other samples listed in the Table S2.1.  Among 16 investigated sites, only the cultures 

derived from the Axton Cross sample material (designated as ACS, #13 in Table S2.1) 

maintained PCE dechlorination activity at pH 5.5 after repeated transfers. At pH 5.5 and 

7.2, VC and ethene were the predominant daughter products of PCE reductive 

dechlorination in the original ACS microcosms (Figure 2.1).  PCE dechlorination activity 

in the original pH 4.5 microcosms was lost when the culture was transferred to a new 

bottle with pH 4.5 medium. The pH 5.5 ACS enrichment maintained its ability to degrade 

PCE to cDCE, but dechlorination of cDCE to VC/ethene was lost after the second 

transfer. By comparison, PCE-to-ethene dechlorination activity was stably maintained in 
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subsequent transfers at pH 7.2. Repeated transfers resulted in a consortium capable of 

degrading PCE to cDCE at pH 5.5, and a consortium capable of degrading PCE-to-ethene 

reductive dechlorination at pH 7.2 (Figure 2.1). Attempts to establish stable enrichment 

cultures following continuous transfers at pH 5.5 were not successful for any of the 

ethene-producing microcosms. PCE dechlorination to cDCE and VC occurred in the first 

transfer cultures at pH 5.5, and PCE dechlorination to cDCE was observed in the second 

transfer cultures, and PCE dechlorination ceased in third transfer cultures at pH 5.5. By 

comparison, transfer cultures derived from the active microcosms maintained their PCE-

to-ethene dechlorination activities when cultivated at pH 7.2. 

 

pH effects on community structure.  

In all tested 16 samples, only ACS sample demonstrated PCE dechlorination at both pH 

5.5 and pH 7.2. To investigate the differences between dechlorinating community 

maintained at pH 5.5 and pH 7.2, and identify the dechlorinators responsible for PCE 

dechlorination, 16S rRNA gene amplicon sequencing was applied to the two enrichment 

cultures (maintained at pH 5.5 and pH 7.2, respectively) derived from continuous 

transfers of the ACS microcosms. A total of 172,409 sequences from two samples (pH 

5.5 and pH 7.2) were classified into 815 operational taxonomic units (OTUs), and only 

41 sequences could not be assigned into any OTUs. Rarefaction analysis of sequences 

showed more OTUs were identified for the pH 7.2 enrichment compared to the pH 5.5 

enrichment (Figure S2.2). Firmicutes, Bacteroidetes and Proteobacteria were the major 

phyla in both pH 5.5 and pH 7.2 enrichments (Figure 2.2). At pH 5.5, the phylum 
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Figure 2.1 PCE dechlorination by microcosms and transfer enrichments of ACS sample 

under different pH conditions (First row-pH 5.5, demonstrating PCE could be degraded 

to VC under microcosm condition, but only PCE-to-cDCE dechlorination could be 

repeatedly transferred; Second row-pH 7.2, demonstrating PCE-to-ethene dechlorination 

could be maintained). All figures show the results from average of triplicate serum 

bottles.  

 

Actinobacteria was relatively enriched, while at pH 7.2, the phyla Caldiserica, 

Chloroflexi and Spirochaetes were more abundant (Figure 2.2). The dominant genera in 

pH 5.5 enrichments were very different from those predominating in the pH 7.2 

enrichment. Dehalococcoides and Acetobacterium dominated in the pH 7.2 enrichment, 

and accounted for 22.6% and 57.6% of the microbial community, respectively. By 

comparison, the major genera in the pH 5.5 enrichment consisted of Desulfovibrio 

(33.0%), Sulfurospirillum (25.2%), and Megasphaera (19.9%) (Table 2.2). 
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Figure 2.2 Taxonomic fingerprints comparison between pH 5.5 and 7.2 enrichments at 

phylum level. The size of the shape represents the number OTUs in the phylum divided 

by the number of path (for phylum level, path equals 2). Different shapes represent the 

number of sequences in the phylum group (Square indicates more than 1000 sequences; 

circle indicates between 100 and 1000 sequences; triangle indicates less than 100 

sequences). Different colors represent the fraction of sequences in the sample. 
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Low pH PCE reductive dechlorination by two Sulfurospirillum isolates 

From the ACS enrichment, which is the only active enrichment at pH 5.5, two isolates 

were obtained.  Isolate PLC-TCE dechlorinated PCE to TCE and isolate PLC-DCE 

dechlorinated PCE to cDCE (Figure 2.3). Both isolates dechlorinated PCE and grew in 

defined mineral salts medium at pH 5.5, and rates of 2.65±0.21 µmol Cl- released per day 

for PLC-TCE and 6.00±0.25 µmol Cl- released per day for PLC-DCE were measured. 

Higher dechlorination rates of 3.74±0.07 µmol Cl- released per day for isolate PLC-TCE 

and 9.26±1.59 µmol Cl- released per day for isolate PLC-DCE at pH 7.2 (Figure 2.3). 

Sanger sequencing, applied to PCR products amplified with general bacterial primers, 

yielded a single sequence for each isolate. Only uniform spirillum-shaped bacteria were 

observed under light microscope using phase contrast and 100X magnification. BLAST 

analysis using the nucleotide sequences of partial 16S rRNA genes of two dechlorinating 

isolates revealed highly similar sequences (99.7% identity) that affiliated with the genus 

Sulfurospirillum within the ε-Proteobacteria. The 16S rRNA gene sequences of 

Sulfurospirillum sp. strains PLC-TCE and PLC-DCE shared 98.6% and 98.5% 

similarities with the 16S rRNA gene sequence of Sulfurospirillum multivorans 

(NR_121740.1). A phylogenetic analysis, based on available Sulfurospirillum 16S rRNA 

gene sequences, demonstrated that Sulfurospirillum sp. strains PLC-TCE and PLC-DCE 

were most closely related to the PCE dechlorinator Sulfurospirillum sp. strain JPD-1 

(AY189928.1) (Figure 2.4). 
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Table 2.2 Comparing the dominant genera between pH 5.5 and pH 7.2 enrichments. 

(Percentages indicate the abundance of representative OTUs by 16S rRNA gene amplicon 

sequencing analysis.)  

Major Genera (%)  pH 7.2  pH 5.5 
Dehalococcoides 22.6 0.0 
Acetobacterium 57.6 0.0 

Spirochaetaceae Uncultured 4.6 0.1 

Caldisericum 4.2 0.1 
Desulfuromonadales BVA18 2.6 0.0 

vadinBC27  1.1 0.0 

Desulfovibrio 0.1 33.0 
Sulfurospirillum 0.2 25.2 

Megasphaera 0.0 19.9 
Propionibacterium 0.0 1.5 

Pelosinus 0.0 1.00 

Others 7.0 19.2 
Total 100.0 100.0 

 

Discussion 

 

Sustained in situ bioremediation of chlorinated solvents under acidic pH conditions (pH < 

6.0) has been challenging (12). Different approaches tackle decreasing pH problem (e.g., 

adjusting pH by adding different sodium bicarbonate (12)) have been explored but 

manipulations of groundwater remain challenging and costly. An obvious alternative 

solution would be the application of organisms that show robust dechlorination activity 

below pH 6.0. Efforts to enrich PCE-to-ethene-dechlorinating cultures at pH 5.5 were not 

successful, but 6 out 16 sites samples showed PCE-to-ethene dechlorination at 

circumneutral pH. Although cDCE, VC and ethene formation by the PCE-to-ethene 

consortium SL2-PCEa was observed at pH 4.8, 5.3 and 5.9 (5), respectively, the optimal 

pH for SL2-PCEa consortium was around 7 and it is not clear whether different steps of 
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Figure 2.3 Sulfurospirillum isolates strain PLC-TCE and PLC-DCE, which dechlorinate 

PCE to TCE (A-pH 5.5; B-pH 7.2) and cDCE at pH 5.5 (C-pH 5.5; D-pH 7.2), 

respectively. The isolates were cultivated with lactate and hydrogen as carbon source and 

electron donor. Error bars represent one standard deviation below or above the average of 

duplicate samples. (Blue Triangle-PCE, Red Square-TCE and Green Diamond-cDCE). 

 

PCE-to-ethene dechlorination activity can be maintained after continuous transfer at low 

pH. Moreover, whether dechlorination activity was coupled with microbial growth was 

not demonstrated.  

 

To achieve successful in situ bioremediation of chlorinated solvents under acidic pH 

condition has been a challenge. Different approaches have been investigated to tackle 

decreasing pH problem (e.g. adjusting pH by adding different sodium bicarbonate). An 

alternative approach is to enrich PCE-to-ethene dechlorinating consortium at acid pH. 
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Figure 2.4 Phylogenetic tree of 16S rRNA genes sequences, showing strain PLC-TCE 

and PLC-DCE clustered with Sulfurospirillum sp. JPD-1. Sequences were aligned by 

MAFFT(23) in Geneious Software. Then the phylogenetic tree was built by RAxML 

7.2.8(24). Sequences accession numbers and other information were listed in Table S2.3. 

 

Efforts to enrich PCE-to-ethene-dechlorinating cultures at low pH were not successful (A 

total of 16 samples from chlorinated solvent-impacted sites and pristine area tested), 

which suggested dechlorinators preferred a neutral environment for PCE-to-ethene 

dechlorination. Although dechlorination of PCE-to-ethene is an acidification process, 

dechlorinators themselves did not develop strategies to function under low pH conditions, 

but relied on the buffer capacity from natural environments. By comparison, 

microorganisms in acid mine drainage, which oxidized pyrite and released sulfate acids, 

could survive under low pH condition (25).  

So far only strains of the species Dhc mccartyi are able to dechlorinate the intermediary 

daughter compound VC to ethene. Since Dhc is susceptible to low pH conditions, 
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dechlorination of cDCE-to-ethene is more affected by low pH (5, 29). By comparison, 

PCE to cDCE steps seem less affected by low pH, since various dechlorinators (e.g. 

Desulfitobacterium, Desulfuromonas, Sulfurospirillum and Geobacter) could degrade 

PCE to TCE or cDCE and, especially, Sulfurospirillum genus was demonstrated to 

dechlorinate PCE to TCE or cDCE at pH 5.5. Community analysis of this consortium 

suggested one of the dominated group was Sulfurospirillum, which matched the screening 

efforts. This result expanded the previous reported pH range for Sulfurospirillum (30). 

Since PCE to cDCE dechlorination could occur at low pH conditions, reductive 

dechlorination of PCE to cDCE combined with aerobic oxidation of cDCE may solve the 

pH problem when remediating source zones of chlorinated solvents (31). 

 

pH influences microbial community structure, which is shown by the 16S rRNA 

amplicon sequencing analysis. Rarefaction curves assessed the OTUs in the pH 5.5 and 

7.2 dechlorinating communities, indicating low pH condition reduced the number of 

OTUs compared with neutral pH condition. Although small amount of methane 

production was observed in the initial pH 5.5 and pH 7.2 microcosms, methanogens were 

diluted out from the dechlorinating communities at pH 5.5 and 7.2. Methanogens were 

also sensitive to acidic conditions (32) and probably out-competed by acetogens under 

certain environments (e.g. oligotrophic marine and terrestrial deep biosphere) (33). 

Acetobacterium was the most abundant genus in the pH 7.2 enrichment, suggesting 

reductive acetogenesis as one of the dominant metabolisms in the consortium. 

Acetobacterium may fulfill relevant roles for supporting Dhc activity.  For example, Dhc 
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is a corrinoid auxotroph and prefers cobalamin for reductive dechlorination, which 

Acetobacterium can de novo synthesize (34,35). It is also hypothesized that acetogens can 

couple with Dhc for syntrophic acetate oxidation (36).  pH may affect populations that 

have important supporting roles. Then Dhc growth may be restricted because the 

supporting players cannot grow at low pH. Both phyla Chloroflexi and Spirochaetae were 

sensitive to low pH conditions, and their relative abundance decreased at lower pH. 

Moreover, the coexistence between Dhc of Chloroflexi and Sphaerochaeta have been 

frequently observed in other dechlorinating communities (37), and it was suggested that 

Sphaerochaeta may provide Dhc with substrates (e.g., acetate and H2) or protect Dhc 

from redox stress (38). Desulfovibrio was enriched in the pH 5.5 enrichment. 

Desulfovibrio has not been implicated PCE reductive dechlorination but can utilize 

different other electron acceptors (e.g., sulfate, sulfur, nitrate, and nitrite) (39, 40). 

Studies on the interaction between Desulfovibrio and dechlorinators (e.g. 

Desulfitobacterium, Dhc) suggested syntrophic relationships and interspecies hydrogen 

transfer (41, 42). The functional roles of Desulfovibrio in the PCE dechlorinating 

enrichment at pH 5.5 remains to be identified.  

 

Several Sulfurospirillum strains are capable of PCE dechlorination, such as 

Sulfurospirillum sp. strain MV, Sulfurospirillum multivorans, Sulfurospirillum 

halorespirans and Sulfurospirillum sp. strain JPD-1(23, 30, 43, 44). Their pH ranges and 

optimal pH were between 5.9 and 8.5 (43, 44). Here two novel strains (PLC-TCE and 

PLC-DCE) were isolated with 98.6% and 98.4% 16S rRNA gene sequence similarities to 
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Sulfurospirillum sp. strain JPD-1. strains PLC-TCE and PLC-DCE were able to degrade 

PCE to TCE and cDCE at pH 5.5, respectively. A similar microbial consortium SL2-

PCEb also possessed two different Sulfurospirillum populations (45). Although 

Sulfurospirillum populations were not isolated from consortium SL2-PCEb, two types of 

reductive dehalogenases responsible for step-wise PCE dechlorination were identified by 

a terminal restriction fragment length polymorphism (TRFLP), which indicates strains 

PLC-TCE and PLC-DCE may possess different types of PCE reductive dehalogenases. 

Sulfurospirillum multivorans was demonstrated to be capable of enhancing PCE DNAPL 

(Dense Non-Aqueous Phase Liquid) dissolution (46). PCE dechlorination at the source 

zone area will produce large amounts of strong acid HCl, which will reduce pH values of 

the aquifer. Since Sulfurospirillum can deal with low pH better than other PCE 

dechlorinators, this type of microorganism may be important for achieving enhanced PCE 

DNAPL dissolution. Moreover, Sulfurospirillum multivorans strain PLC-TCE and strain 

PLC-DCE were capable of PCE dechlorination as low as pH 5.5, suggesting their 

potentials of wide applications in bioremediation of PCE source zone area. 

 



42 

 

References 

 

1. Pandey J, Chauhan A, Jain RK. 2009. Integrative approaches for assessing the 

ecological sustainability of in situ bioremediation. FEMS Microbiol Rev 33:324-375. 

 

2. Koenig J, Lee M, Manefield M. 2015. Aliphatic organochlorine degradation in 

subsurface environments. Rev Environ Sci Bio 14:49-71. 

 

3. Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L. 

2013. Overview of organohalide-respiring bacteria and a proposal for a classification 

system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 368:20120322. 

 

4. Yang Y. 2012. Exploring anaerobic reductive dechlorination at low pH 

environments. Master Thesis. University of Tennessee, Knoxville. 

 

5. Lacroix E, Brovelli A, Barry DA, Holliger C. 2014. Use of silicate minerals for 

pH control during reductive dechlorination of chloroethenes in batch cultures of different 

microbial consortia. Appl Environ Microbiol 80:3858-3867. 

 

6. McCarty PL, Chu M-Y, Kitanidis PK. 2007. Electron donor and pH 

relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in 

groundwater. Eur J Soil Biol 43:276-282. 

 

7. Leeson A, Beevar E, Henry B, Fortenberry J, Coyle C. 2004. Principles and 

practices of enhanced anaerobic bioremediation of chlorinated solvents. DTIC Document. 

 

8. Giller KE, Witter E, Mcgrath SP. 1998. Toxicity of heavy metals to 

microorganisms and microbial processes in agricultural soils: a review. Soil Biology and 

Biochemistry 30:1389-1414. 

 

9. Hiortdahl KM, Borden RC. 2014. Enhanced reductive dechlorination of 

tetrachloroethene dense nonaqueous phase liquid with EVO and Mg(OH)2. Environ Sci 

Technol 48:624-631. 

 

10. Robinson C, Barry DA. 2009. Design tool for estimation of buffer requirement 

for enhanced reductive dechlorination of chlorinated solvents in groundwater. Environ 

Modell Softw 24:1332-1338. 

 

11. Van Breemen N, Wielemaker W. 1974. Buffer intensities and equilibrium pH of 

minerals and soils: II. Theoretical and actual pH of minerals and soils. Soil Sci Soc Am J 

38:61-66. 

 



43 

 

12. Robinson C, Barry DA, McCarty PL, Gerhard JI, Kouznetsova I. 2009. pH 

control for enhanced reductive bioremediation of chlorinated solvent source zones. Sci 

Total Environ 407:4560-4573. 

 

13. Kouznetsova I, Mao X, Robinson C, Barry DA, Gerhard JI, McCarty PL. 

2010. Biological reduction of chlorinated solvents: Batch-scale geochemical modeling. 

Adv. Water Resour 33:969-986. 

 

14. Brovelli A, Barry DA, Robinson C, Gerhard JI. 2012. Analysis of acidity 

production during enhanced reductive dechlorination using a simplified reactive transport 

model. Adv. Water Resour 43:14-27. 

 

15. Lacroix E, Brovelli A, Holliger C, Barry DA. 2012. Evaluation of silicate 

minerals for ph control during bioremediation: application to chlorinated solvents. Water 

Air Soil Pollut 223:2663-2684. 

 

16. Philips J, Maes N, Springael D, Smolders E. 2013. Acidification due to 

microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or 

formate as electron donor: experimental demonstration in diffusion-cells. J Contam 

Hydrol 147:25-33. 

 

17. Lacroix E, Brovelli A, Holliger C, Barry DA. 2014. Control of groundwater pH 

during bioremediation: improvement and validation of a geochemical model to assess the 

buffering potential of ground silicate minerals. J Contam Hydrol 160:21-29. 

 

18. Löffler FE, Sanford RA, Ritalahti KM. 2005. Enrichment, cultivation, and 

detection of reductively dechlorinating bacteria. Method Enzymol 397:77-111. 

 

19. Sung Y, Ritalahti KM, Sanford RA, Urbance JW, Flynn SJ, Tiedje JM, 

Löffler FE. 2003. Characterization of two tetrachloroethene-reducing, acetate-oxidizing 

anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl 

Environ Microbiol 69:2964-2974. 

 

20. Tront JM, Amos BK, Löffler FE, Saunders FM. 2006. Activity of 

Desulfitobacterium sp. strain Viet1 demonstrates bioavailability of 2, 4-dichlorophenol 

previously sequestered by the aquatic plant Lemna minor. Environ Sci Technol 40:529-

535. 

 

21. Fletcher KE, Ritalahti KM, Pennell KD, Takamizawa K, Löffler FE. 2008. 

Resolution of culture Clostridium bifermentans DPH-1 into two populations, a 

Clostridium sp. and tetrachloroethene-dechlorinating Desulfitobacterium hafniense strain 

JH1. Appl Environ Microbiol 74:6141-6143. 

 



44 

 

22. Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramos-Hernandez N, 

Sanford RA, Mesbah NM, Löffler FE. 2006. Geobacter lovleyi sp. nov. strain SZ, a 

novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ 

Microbiol 72:2775-2782. 

 

23. Scholz-Muramatsu H, Neumann A, Meßmer M, Moore E, Diekert G. 1995. 

Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a 

tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163:48-56. 

 

24. Cápiro NL, Wang Y, Hatt JK, Lebrón CA, Pennell KD, Löffler FE. 2014. 
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Appendix 

 

 

 

 

 

 

Figure S2.1 PCE degradation by Sulfurospirillum multivorans at pH 5.5. Error bars 

represent one standard deviation below or above the average of triplicate samples. (Blue 

Triangle-PCE, Red Square-TCE and Green Diamond-cDCE). 
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Figure S2.2. Rarefaction curve between pH 7.2 (Pink line) and pH 5.5 (Light Purple line) 

enrichments, indicating pH 7.2 enrichment has more richness than pH 5.5. Acidic 

conditions limited growth of some microorganisms. Each curve was accompanied by a 

pair of lines representing the corresponding upper and lower 95% confidence intervals. 
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Table S2.1 Soil/groundwater sample list and test conditions 

# Sample sites ID Locations Sample Type 

Carbon 

Source 

Electron 

Donor 

Electron 

Acceptor 

PCE Degradation End Product 

pH 5.5 pH 7.2 

1 Ft. Pierce USA Soil Lactate + H
2
 PCE X X 

2 PNNL USA Soil Lactate + H
2
 PCE X X 

3 
Contaminated 

Site 
CA, USA Soil Lactate + H

2
 PCE X X 

4 - Brazil Soil Lactate + H
2
 PCE X X 

5 Third Creek TN, USA Sediment Lactate + H
2
 PCE Ethene Ethene 

6 Neckar River Germany Sediment Lactate + H
2
 PCE Ethene Ethene 

7 
Rotenberg 

Trester 
Germany Soil Lactate + H

2
 PCE VC, Ethene VC, Ethene 

8 
Rotenberg 

Creek 
Germany Soil Lactate + H

2
 PCE X X 

9 McGuire AFB USA Soil, GW Lactate + H
2
 PCE X X 

10 - USA Soil, GW Lactate + H
2
 PCE X X 

11 - USA Soil, GW Lactate + H
2
 PCE Ethene Ethene 

12 Shady Valley TN, USA Soil, Sediment Lactate + H
2
 PCE cDCE cDCE 

13 Axton Cross USA Soil, GW Lactate + H
2
 PCE VC Ethene 

14 - USA Soil Lactate + H
2
 PCE X X 

15 Tidal Flat Korea Soil Lactate + H
2
 PCE X TCE 

16 
Elkhart Rail 

Yard 
USA Soil, GW Lactate + H

2
 PCE Ethene Ethene 

Note: - indicated the contaminated site names were not disclosed. X indicated no PCE 

dechlorination was detected. 
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Table S2.2 16S rRNA gene amplicon sequencing analysis summary by SILVA-NGS 

Project Summary 

Sequence Type: SSU  

Number of Samples: 2  

Number of Sequences: 172533  

Number of Rejected Sequences: 83 -0.05% 

   

Raw Sequence Information 

Min. Length: 191  

Avg. Length: 253  

Max. Length: 374  
   

Aligned Sequence Information 

Min. Length: 191  

Avg. Length: 253  

Max. Length: 374  
   

Clustering Information 

Number of OTUs: 815 -0.47% 

Number of Clustered Sequences: 12540 -7.27% 

Number of Replicates: 159095 -

92.21% 

   

Classification Information 

Number of Classified Sequences: 172409 -

99.93% 

Number of No Relative: 41 -0.02% 

   

Alignment 

SILVAngs: SINA v1.2.10 for 

ARB SVN 

(revision 21008) 

Min Align. Identity (%): 50  

Min Align. Score: 40  

Min Basepair Score (%): 30  
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Table S2.2. continued. 

 

Project Summary 

Quality Control   

Min. Sequence Quality (%): 30  

Min. Length (aligned nuc.): 50  

Max. Ambiguities (%): 2  

Max. Homopolymers (%): 2  
   

Clustering     

CD-Hit: 3.1.2  

Min. OTU Identity (%): 98  
   

Classification     

BLAST: 2.2.30+  

Reference: SILVA  

Reference Version: 123  

Similarity (%): 93   
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Table S2.3 Details of 16S rRNA gene sequences used to build the phylogenetic tree 

Name 
Accession 

Number 

Sequence 

Length 

Desulfitobacterium dehalogenans strain ATCC 51507 NR_074128.1 1447 

Desulfitobacterium dichloroeliminans AJ565938.1 1467 

Desulfitobacterium frappieri U40078.1 1655 

Desulfitobacterium hafniense strain DCB-2 NR_122068.1 1554 

Escherichia coli str. K12 AP009048.1 1551 

Sulfurospirillum alkalitolerans strain HTRB-L1 GQ863490.1 1437 

Sulfurospirillum arcachonense strain F1F6 NR_026408.1 1433 

Sulfurospirillum arsenophilum U85964.1 1321 

Sulfurospirillum arsenophilum strain MIT-13 NR_044806.1 1321 

Sulfurospirillum barnesii SES-3 NR_102929.1 1497 

Sulfurospirillum carboxydovorans strain MV AY740528.1 1354 

Sulfurospirillum cavolei AB246781.1 1336 

Sulfurospirillum cavolei strain Phe91 NR_041392.1 1336 

Sulfurospirillum deleyianum strain DSM 6946 NR_074378.1 1497 

Sulfurospirillum deleyianum strain Spirillum 5175 NR_026422.1 1431 

Sulfurospirillum halorespirans strain PCE-M2 AF218076.1 1489 

Sulfurospirillum multivorans strain DSM 12446 NR_121740.1 1498 

Sulfurospirillum multivorans strain K NR_044868.1 1464 

Sulfurospirillum sp. C6 DQ228139.1 1201 

Sulfurospirillum sp. EK7 AJ535704.1 1431 

Sulfurospirillum sp. JPD-1 AY189928.1 1415 

Sulfurospirillum sp. NO3A AY135396.1 1300 

Sulfurospirillum sp. strain PLC-DCE  1375 

Sulfurospirillum sp. strain PLC-TCE  1015 
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CHAPTER III RECOVERY OF DEHALOCOCCOIDES MCCARTYI 

EXPOSED TO LOW PH AND DISTRIBUTION OF 

DEHALOCOCCOIDES MCCARTYI IN GROUNDWATER WITH 

TWO PH RANGES 
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A version of this chapter is going to be submitted for publication. Yang, Y., N.L. Cápiro, 

J. Yan, T.F. Marcet, K.D. Pennell, and F.E. Löffler. Recovery of Dehalococcoides 

mccartyi Exposed to Low pH and Distribution of Dehalococcoides mccartyi in 

Groundwater with Different pH Ranges. 

 

Abstract 

 

Dehalococcoides mccartyi (Dhc) is a keystone microorganism for VC-to-ethene 

detoxification. Although successful bioremediation has been achieved at many sites 

impacted with chlorinated ethenes, fermentation of electron donor amendments and 

dechlorination (i.e., release of hydrochloric acid) can cause groundwater pH decreases 

and impact Dhc activity.  The goal of this study was to evaluate Dhc response to and 

recovery from low pH conditions.  The Dhc-containing consortium BDI dechlorinated 

PCE to ethene within 40 days at pH 7.2, but no PCE dechlorination was observed at pH 

5.5.  While some reductive dechlorination of PCE to cDCE occurred at pH 5.5, the 

monitoring of Dhc biomarker genes (i.e., 16S rRNA, tceA and vcrA genes) with 

quantitative PCR (qPCR) demonstrated that Dhc cells did not grow at pH 5.5. Dhc 

reductive dechlorination activity and growth recovered in pH 7.2 medium, when the pH 

5.5 exposure did not exceed 16 days; however, the cultures performance catalyzing the 

VC-to-ethene reductive dechlorination step was impaired. qPCR monitoring 

demonstrated that Dhc strain GT carrying the vcrA VC reductive dehalogenase genes was 

more susceptible to low pH-induced stress than Dhc strain FL2. Dhc cells exposed to pH 
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5.5 conditions for >40 days did not recover dechlorination activity and did not grow 

following transfer to pH 7.2 growth medium. Apparently, the duration of pH 5.5 

exposure strongly affected the ability of Dhc to recover at circumneutral pH and Dhc 

strain-specific responses were observed. Dhc strain GT carrying the vcrA gene 

responsible for VC reductive dechlorination to ethene was less tolerant to low pH 

exposure than Dhc strain FL2 carrying the tceA gene implicated in TCE-to-VC reductive 

dechlorination. To further investigate how low pH in situ affected the abundance of Dhc 

at chlorinated ethenes contaminated sites, monitoring data from more than 200 wells 

were collected and analyzed, indicating the distribution of Dhc biomarkers (16S rRNA 

gene, tceA gene and vcrA gene) was not determined by pH alone, and Dhc was also 

abundant at low pH wells. These findings together will provide useful information for 

low pH sites and chlorinated ethenes source zone bioremediation. 

 

Introduction 

 

Chlorinated solvents remain major hazardous groundwater contaminants as documented 

in the Substance of Priority List (https://www.atsdr.cdc.gov/spl/). Different technologies 

have been developed to clean up sites contaminated with chlorinated solvents, such as in 

situ chemical oxidation, in situ thermal treatment, air sparging and soil vapor extraction 

(1). One of the promising in situ remedial approaches enhanced reductive dechlorination 

(ERD) that uses anaerobic microorganisms to degrade chlorinated solvents to innocuous 

end products (2). In the past decades, different dechlorinating microbial isolates (e.g. 
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Dehalobacter, Dehalococcoides, Geobacter, Desulfuromonas, Desulfitobacterium) and 

consortia (e.g. KB-1, SDC-9, ANAS, BDI) have been intensively investigated, which 

provide useful insights for in situ bioremediation of chlorinated ethenes (3). 

Dehalococcoides (Dhc) has been well known for its uniqueness since only Dhc has been 

demonstrated to perform VC-to-ethene reductive dechlorination (4). However, the 

successful application of Dhc cultures to clean up chlorinated solvent-contaminated sites 

is constrained by geochemical factors. In particular, pH affects successful application of 

bioremediation (5).  

 

Dechlorination releases hydrochloride acid, and this strong acid could result in the 

groundwater acidification (6). Moreover, fermentation of organic electron donor 

amendments, which are added with the intention to increase hydrogen flux, will also 

contribute to pH decreases. Low pH will affect microbial populations and their activities, 

including Dhc. Dhc dechlorinates chlorinated ethenes within a fairly narrow pH range of 

6.5- 8 (4). Thus successful bioremediation based on Dhc activity requires a stable 

circumneutral pH. When the buffering capacity of contaminated aquifer is sufficient, pH 

can be maintained within the range suitable for dechlorinators; but at other sites without 

enough buffering capacity, pH decreases are observed and become detrimental to 

dechlorinators.(7) Also cleaning contaminated sites with low pH groundwater is still 

challenging. 
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To address adverse impacts of low pH on Dhc in situ, one of the solutions is to 

precondition and adjust the pH of contaminated groundwater to neutral and counteract 

acid production by adding enough buffer solutions, such as carbonate, bicarbonate, 

formate and other commercial available buffer agents (e.g., AquaBupH and Neutral 

Zone) (6, 8). Typically, the addition of pH stabilizers is not done proactively, and pH 

adjustments occur after reductive dechlorination activity slows down due to pH 

decreases. Thus, dechlorinating populations, both native or bioaugmented, experience 

low pH conditions. While it is established that Dhc perform best at circumneutral pH, 

information about the effects of low pH exposure on the ability of Dhc to recover 

reductive dechlorination activity is lacking. To address this knowledge gap, experiments 

were conducted to investigate the growth of Dhc under acidic conditions, and to study the 

recovery of Dhc after low pH exposure. To further investigate how low pH of 

groundwater affects the distribution of Dhc at chlorinated ethenes contaminated sites, 

monitoring data from more than 200 wells were collected and analyzed.  

 

Materials and Methods 

 

Chemicals. PCE and TCE were purchased from Acros Organics (Distributed by VWR 

international, West Chester, PA, USA). cDCE, VC and ethene were bought from Sigma-

Aldrich Chemicals (St. Louis, MO, USA). MES (2-(N-morpholino)ethanesulfonic acid) 

was purchased from Acros Organics. Sodium bicarbonate was purchased from Fisher 

Scientific (Pittsburgh, PA, USA). 
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Medium preparation and pH measurement. Reduced mineral salts medium was 

prepared following established protocols (9). Vitamin stock solution was added by 

passing through sterile 0.22 µm membranes filters after the medium had been autoclaved. 

Lactate (5 mM) and hydrogen gas (10 mL) were added into 160 mL serum bottles as 

carbon source and electron donor, respectively. The pH 7.2 mineral salts medium was 

buffered with 30 mM bicarbonate. For pH 5.5 mineral salts medium, 30 mM bicarbonate 

was replaced with 30 mM MES. The pH of bulk liquid phase was measured by 

transferring 1 mL liquid aliquots from a culturing vessel into a 2-ml plastic tube. After 

centrifuging the tube for 30 seconds at 14,000 rpm, the pH of the supernatant was 

measured with Fisher Scientific Accumet Glass AgCl pH electrode (Pittsburgh, PA, 

USA). 

 

Quantification of chlorinated ethenes. Total chlorinated solvent mass or concentrations 

of chlorinated compounds were measured by analyzing 100 µL headspace gas samples on 

a gas chromatograph (GC). The concentrations of chlorinated ethenes were calculated by 

normalizing the peak area values to standard curves generated by adding known amounts 

of chlorinated ethenes into the bottles with same gas to liquid ratio. The total moles of 

polychlorinated ethenes per bottle was calculated by the formula: total moles = (volume x 

density) / molecular weight. Gas samples (100 µL) were removed from the headspace of 

160 mL serum bottles using a gastight 250 µL Hamilton SampleLock syringe and then 

injected into the GC manually. Samples were measured with an Agilent 7890A GC 

equipped with an Agilent DB624 column (30 m x 0.53 mm I.D., 3 µm.) with a flame 
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ionization detected (FID). The retention times were determined by injecting neat 

compounds into the GC. The retention time was used as the identity for the specific 

chlorinated compounds. 

 

pH Tolerance and resilience of a PCE-to-ethene-dechlorinating consortium. To 

better understand whether dechlorination activity resumes following exposure to low pH 

conditions after pH adjustment, we conducted a resilience experiment with the a PCE-to-

ethene consortium. The consortium biomass grown at pH 7.2 with PCE as electron 

acceptor was collected and suspended in pH 5.5 medium.  Following incubation of 8, 16, 

and 40 days at pH 5.5, the biomass was collected again and transferred to pH 7.2 medium 

amended with hydrogen (electron donor), lactate (carbon source) and PCE. Chlorinated 

ethenes and ethene are monitored to explore if reductive dechlorination activity recovers 

from the exposure to low pH for 8-40 days.  In addition, Dhc 16S rRNA gene copies 

were being enumerated with qPCR to evaluate Dhc cell growth.  Further, the reductive 

dehalogenase genes tceA, vcrA and bvcA are monitored to determine of different Dhc 

strains respond differently to low pH (Figure S3.1).  

 

DNA extraction and PCR. Microbial biomass was collected from 2-mL liquid culture 

suspension by vacuum filtration through 0.22 µm membrane filters (Millipore 

GVWP025000). Filter-trapped microbial cells were suspended in the PowerSoil® bead 

tubes (Mo Bio Laboratories Inc., Carlsbad, CA) and ruptured with a high efficiency Bead 

Ruptor Homogenizer (Omni International, Kennesaw, GA, USA) at a speed of 3.25 m/s 
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for 5 minutes. Genomic DNA was extracted using the PowerSoil® DNA Isolation Kit 

(Mo Bio Laboratories Inc., Carlsbad, CA) following the manufacturer’s 

recommendations. DNA concentrations were quantified with a NanoDrop 1000 

(NanoDrop Technologies, Wilmington, DE). DNA samples extracted from replicate 

cultures were pooled and stored at -20°C. Molecular tools, such as quantitative PCR have 

been used to investigate how low pH condition exposure affected dechlorinators and their 

functional genes. qPCR assay followed establishes protocols and used the primers and 

probes in the published paper (10). 

 

Functional genes and 16S rRNA gene data from contaminated sites. Functional genes 

(bvcA, vcrA and tceA) and 16S rRNA gene of Dhc data were kindly provided by 

Microbial Insights Inc. (Knoxville, TN). Groundwater samples collected from various 

undisclosed chlorinated solvents contaminated sites were subject to different chemical 

and microbial tests (e.g. pH and qPCR assays). And groundwater samples with less than 

100 functional genes or Dhc 16S rRNA gene copies per liter groundwater were excluded 

from analysis. 

 

Statistical analysis. All statistical analyses were performed using R Statistical Software 

(version 3.2.4., R Foundation for Statistical Computing, Vienna, Austria). Variance 

homogeneity of two pH intervals was tested by Bartlett test and Fligner-Killeen test with 

the default parameters. One-way t-test was used to compare the average of two pH 

intervals with the alternative parameter set as “less”. 
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Results 

 

Dhc growth at pH 5.5 and pH 7.2. qPCR targeting the Dhc 16S rRNA gene and the 

reductive dehalogenase genes tceA, bvcA and vcrA was applied to investigate the 

response of Dhc strains in a PCE-to-ethene consortium to low pH conditions. In pH 5.5 

medium, PCE was not degraded, and the Dhc cell numbers did not increase during the 

incubation period at pH 5.5. Since different steps of PCE-to-ethene were accomplished 

by different dechlorinators, Dhc may also be affected if PCE could not be degraded to 

TCE or cDCE. By comparison, within 2 weeks, about 75% of the initial amount of PCE 

was transformed to ethene at pH 7.2, and qPCR demonstrated growth of Dhc (Figure 

3.1). The Dhc 16S rRNA gene copies increased from 1.55±0.42 X 108 mL-1 (cells 

introduced with the inoculum) to 6.99±1.99 X 108 mL-1. The vcrA and tceA genes 

increased from 1.57±0.09 X 108 and 1.29±0.11 X108 mL-1 to 4.92±1.79 X 108 and 

2.31±0.47 X 108 mL-1, respectively. Dhc Strain BAV1 carrying the bvcA gene is part of 

consortium BDI but this strain is not competitive in cultures fed with PCE and was 

consequently not detected, which was also reported in the previous publication (11). 

 

pH tolerance and resilience. To explore the effects of low pH exposure on Dhc growth 

and reductive dechlorination performance, consortium BDI biomass was suspended in pH 

5.5 medium for 8, 16, and 40 days. Recovery of growth and dechlorination activity was 

then tested in pH 7.2 medium. Consortium BDI biomass exposed to pH 5.5 for 8 days 

recovered activity at pH 7.2 and the cultures dechlorinated PCE to VC. qPCR monitoring 

demonstrated that the 16S rRNA, tceA and vcrA genes increased 39.2  9.6-, 50.9  8.9- 
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Figure 3.1 PCE dechlorination at pH 5.5 and 7.2 by a PCE-to-ethene consortium 

containing Dhc. No dechlorination activity and growth of Dhc at pH 5.5; while PCE 

could be degraded to ethene at pH 7.2 coupled with Dhc growth. PCE loss at pH 5.5 was 

mainly due to abiotic loss (e.g. absorption to the stoppers). (Filled black diamond-PCE, 

empty blue square-TCE, filled purple triangle-cDCE, filled red square-VC, empty green 

diamond-ethene, shaded bar-Dhc 16S rRNA gene copy number). 
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and 14.2 7.4-fold, respectively. PCE-to-VC dechlorination was also observed in pH 7.2 

cultures initiated with biomass that experienced a 2-week exposure to pH 5.5, and the 

Dhc 16S rRNA, tceA and vcrA genes increased 11.5 3.9-, 41.3  15.6- and 6.3  2.5-

fold. Following a 40-day exposure to pH 5.5, the consortium degraded PCE to mainly 

cDCE and some VC when transferred to pH 7.2 medium, and the Dhc 16S rRNA, tceA 

and vcrA genes increased only 6.0  3.8-, 11.6  8.8- and 2.5  1.1-fold. The recovery 

experiments showed longer low pH exposure time will result in longer recovery time of 

dechlorinators. Statistical analysis on average fold increases of 16S rRNA, tceA and vcrA 

genes suggested no statistically differences between pH 5.5 and pH 7.2 (control group) 

after 8 days’ incubation (16S rRNA gene: p-value =0.211; tceA gene: p-value = 0.567; 

vcrA gene: p-value: 0.242; Table 3.1). There is no statistical difference between pH 5.5 

and pH 7.2 groups after 16 days’ incubation, indicating up to 16 days’ pH 5.5 acid stress 

did not severely affect Dhc’s survival; but there was statistical significance between pH 

5.5 and pH 7.2 after 40 days’ incubation (16S rRNA gene: p-value =0.014; tceA gene: p-

value = 0.034; vcrA gene: p-value: 0.000; Table 3.1), suggesting Dhc was inhibited after 

extended acid stress.  

 

The VC-to-ethene dechlorination step was most severely inhibited and only the cultures 

initiated with biomass exposed to pH 5.5 for 8 days produced some ethene. The pH 7.2 

control cultures produced ethene demonstrating that the manipulations of the biomass 

(i.e., centrifugation and resuspension) were not the reason for the limited reductive 

dechlorination activity (Figure 3.2). These findings suggest that the duration of low pH 

exposure determines the ability of Dhc to recover from low pH-induced stress.  
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Figure 3.2 Average fold increase of 16S rRNA gene (A), tceA (B) and vcrA (C) genes 

after 8, 16, 40 days’ pH 5.5 (blue bar) and pH 7.2 (red bar) incubations. The error bar 

indicates one standard error (for pH 5.5 n=6; for pH 7.2 n =4.) 
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Apparently, recovery is Dhc strain-specific because the VC-to-ethene step was more 

affected than the cDCE-to-VC reductive dechlorination step suggesting that Dhc strain 

GT carrying the VC-RDase vcrA was more susceptible to pH stress. 

 

Relationship between groundwater pH and Dhc abundance. To further assess 

whether pH values will affect the abundance of Dhc between neutral and acid conditions 

at chlorinated ethenes contaminated sites, a total number of 221 groundwater wells from 

23 chlorinated solvents-contaminated sites were investigated. These groundwater wells 

were chosen for the availability of both geochemical and biological data. In 50 

groundwater wells, Dhc 16S rRNA gene were below 100 copies/L; and these 50 wells 

were not included into further analysis. The pH of the rest 171 groundwater wells ranged 

from 5.2 to 8.3, with a median number of 6.4. And Dhc 16S rRNA gene copy numbers in 

these 171 wells spread from 100 to 4.0 X 106 copies/L, with a median 6.96 X 105 

copies/L. Since the optimal pH for dechlorinating consortia applied for bioaugmentation 

is 6.0~8.3 (8), pH values were categorized into two intervals: acidic range (4.5~6.0) and 

circumneutral range (6 ~8.3). Both Bartlett and Fligner-Killeen tests accepted the null 

hypothesis of variance homogeneity (Bartlett test: k-square =0.49, df =1, p-value = 

0.4827; Fligner-Killeen test: chi-squared = 0.76, df=1, p-value = 0.38). Comparison of 

the average Dhc abundance between acid and circumneutral ranges by one-way t-test 

suggested statistically significant difference of the average Dhc abundance (df=67.4, p-

value=0.009). The group mean of Dhc abundance for pH range 4.5~6.0 was 7.49 X 105 

copies/L (Figure 3.3). By comparison, the average Dhc abundance for pH range 6.0~8.3 
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was 1.14 X 106 copies/L (Figure 3.3). The abundances of the functional genes tceA and 

vcrA between acid and circumneutral pH ranges followed a similar pattern. Statistical 

analysis of the average tceA and vcrA gene copies at two pH ranges indicated statistically 

significant differences (vcrA: p-value=0.001; tceA: p-value=0.015, Figure 3.3, Table 

S3.2). Yet analysis of total bacterial 16S rRNA gene abundance indicated no statistical 

significance between 4.5~6.0 pH range and 6.0~8 pH range (p-value=0.314, Figure 3.3, 

Table S3.2). 

Discussion 

 

This study demonstrated that no Dhc growth occurred at pH 5.5. Limited reductive 

dechlorination activity was observed indicating that Dhc cells maintained some level of 

activity but cell division did not occur. Application of Dhc to clean up low pH sites or 

chlorinated solvents source zones will be restricted. To overcome this problem, two 

possible solutions are suggested: either adjusting in situ pH to neutral or seeking 

dechlorinators capable of dechlorinating chlorinated ethenes at low pH. One study 

suggested using economical silicate minerals to adjust and maintain neutral pH, but how 

silicate minerals affected dechlorinators need further studies (12). Also some cultures 

were acclimated to low pH conditions by exposure to stepwise decreasing pH 

environments (e.g. a consortium KB-1 Plus containing Dhc, 

http://www.siremlab.com/products/kb-1); but KB-1 Plus performs dechlorination only at 

pH 5.8~6.3. Although several studies claimed having enriched consortia capable of 

dechlorinating PCE to ethene at low pH conditions, further evidences are required to  

http://www.siremlab.com/products/kb-1
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Figure 3.3 Distribution of Dhc 16S rRNA (A), total bacterial 16S rRNA (B) and vcrA 

(C), and tceA (D) gene copy numbers in terms of two pH categories (pH 4.5~6.0 and pH 

6.0~8.3) from a survey of 221 groundwater wells contaminated with chlorinated ethenes. 
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prove the cultures’ sustainability of dechlorinating chlorinated ethenes at low pH.  

 

One of the key findings in this study is that Dhc does not grow at pH 5.5, and that 

prolonged pH 5.5 exposure reduces the ability of Dhc to recover from low pH exposure. 

These observations have implications for low pH contaminated sites clean-up and 

DNAPL (Dense Non-Aqueous Phase Liquid) source zone bioremediation. Adjusting and 

maintaining neutral pH by buffer additions was one of the popular strategies to create 

suitable pH for bioremediation (13). Also pH decrease from 7.2 to 5.3 was observed after 

nutrients injection during cleaning up DNAPL area. And pH fluctuations inhibited the 

initial establishment of dechlorinating microbial activity (14). But no study has been 

conducted to assess Dhc’s recovery after low pH exposure. This study then suggested  

buffer amendments should be applied in tandem with the evaluation of Dhc’s recovery if 

Dhc has been exposed to low pH conditions for extended time. Without proper evaluation 

of Dhc’s viability, dechlorination of cDCE or VC cannot be achieved successfully with 

pH adjustment only. Buffer systems (e.g. bicarbonate, formate) may be consumed by 

other microorganisms or washed away by groundwater flow long before Dhc becomes 

active. Under such circumstances, bioaugmentation combined with pH adjustment would 

be a better strategy to clean up DNAPL area and/or low pH contaminated sites.     

 

Dhc was reported to have a strain-specific susceptibility towards environment stress (e.g. 

oxygen, temperature) (11, 15). Of three Dhc strains in BDI consortium, only strain FL2 

carrying tceA gene could survive oxygen exposure or increased temperature, but not 
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strain GT carrying vcrA gene and strain BAV1 carrying bvcA gene (11, 15). This study 

also found Dhc carrying tceA gene, which cannot dechlorinate VC to ethene, was more 

tolerant of low pH exposure. This commonality suggested cDCE or VC stall observed in 

the chlorinated ethenes contaminated sites was also due to the vulnerability of Dhc strains 

responsible for VC-to-ethene step.  

 

Dhc could recover dechlorination after 16 days’ weak acid exposure. But the mechanisms 

of Dhc to tackle acid stress was not well understood yet. To distinguish different 

mechanisms to cope with different low pH conditions, the acid responses mechanisms 

were categorized into acid tolerance responses (ATR) for mild acid pH (> pH 3.0) and 

extreme acid resistance (XAR) for extreme acid pH (< pH 2.0) (16). Microorganisms 

apply different mechanisms to deal with low pH stress, such as proton 

exchange/consumption system (e.g. F1F0-ATPase, amino-acid dependent 

decarboxylase/antiporter systems), buffer production system (e.g. deiminase and 

deaminase, or urease enzymes to produce ammonia), and cell modification/repair (e.g. 

changing the composition of cell membrane) (16).  Although Dhc could not perform 

dechlorination at pH 5.5, Dhc may possess ATR systems to survive at mildly acidic pH 

for extended period. But the mechanisms of Dhc surviving under low pH are still not well 

understood. Escherichia coli (E. coli) has been a model microorganism to study the 

mechanisms of both ATR and XAR, which may offer insights to figure out Dhc’s acid 

resistance mechanisms. For example, E. coli could survive at pH 2.5 or lower, when the 

cultivating media rich with amino acids, but was quickly killed in minimal glucose 
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medium lack of amino acids (17). Another mechanism to resist extreme acid is involved 

with ubiquitous chloride channels (ClC) possessed by E. coli. Two homologues genes 

(eriC and mriT) of ClC channels were annotated from E. coli genome, and deletion of 

both genes severely reduced their ability to survive the extreme acid condition (18). 

BLASTing these two ClC genes against publicly available Dhc genomes rendered no 

hits, suggesting different types of ClC possessed by Dhc, or absence of ClC in Dhc. If 

Dhc does not possess ClC, it may indicate that Dhc cannot survive extreme acidic pH. 

Last but not least, periplasmic carbonic anhydrase, which can convert carbon dioxide into 

bicarbonate, was suggested to help the Gram-negative bacterium Helicobacter pylori to 

survive in the acid environment of the stomach (16). Genomes of Dhc strains also possess 

carbonic anhydrase genes, indicating Dhc may be capable of using carbonic anhydrase to 

keep periplasmic pH above 6.0 when the environmental pH is below pH 6. But some 

questions are still open to answers, such as the location of carbonic anhydrase in Dhc, 

whether the pH in the periplasm is directly affected by the groundwater pH or 

dechlorinators have mechanisms to adjust the periplasmic pH.  

 

A data mining approach was to investigate the factors that can be used to predict in situ 

dechlorination; but pH failed to be incorporated into the modeling process possibly due to 

the lack of input sites with pH < 6.0 (19). In this study, we demonstrated that the average 

Dhc abundance in the pH range 6.0~8.3 was much higher than that in the pH range 

4.5~6.0, suggesting pH affects the abundance of Dhc in situ. Dhc was not commonly 

detected below 4.5 or above 8.5, suggesting their neutrophile lifestyle. To improve the 
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modeling process, pH parameters may be treated as a category variable (pH<6.0 and pH 

>6.0) rather than a numeric variable.  

 

This study demonstrated that Dhc can survive under mildly acid stress and recover 

dechlorination capability but the duration to low pH exposure also matters. Besides, Dhc 

strains have different tolerance towards low pH, and the strain carrying tceA gene is more 

tolerant. Although the average bacterial abundances were similar between pH range 

4.5~6.0 and pH range 6~8.3, Dhc and functional genes were more abundant in the pH 

range 6~8.3. Dhc could be detected at contaminated sites with pH from 4.5 to 8.5.  
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Appendix 

 

 

Figure S3.1. Experiment scheme of recovery of a PCE-to-ethene consortium exposed to 

low pH stress. pH 7.2 incubation was set as the control group. 
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Table S3.1 Statistical analysis of average fold increase between pH 5.5 and pH 7.2 

incubation. 

Exposure Time 

(Days) 
Genes 

Average Fold Increase  
  p-Value of         

t-Test pH 5.5 

(n=6) 

pH 7.2 

(n=4) 

8 

16S 39.2 76.2 0.211 

tceA 50.9 70.2 0.567 

vcrA 14.2 41.7 0.242 

16 

16S 11.5 29.9 0.304 

tceA 41.3 32.8 0.743 

vcrA 6.3 33.1 0.174 

40 

16S 6.0 38.0 0.014* 

tceA 11.6 58.7 0.034* 

vcrA 2.6 28.7 0.000* 

 

 

Table S3.2. One-way t-test of different gene abundances between acid and circumneutral 

pH ranges (df: degree of freedom; significance level: ** 0.01, * 0.05) 

 

Gene 
Average copies/L 

t value df p-value 
pH 4.5~6.0 pH 6.0~8.3 

Dhc 16S rRNA 7.49 X 105         1.14 X 106 -2.44 67.4 0.009** 

tceA 1.11 X 104         4.15 X 104 -2.19 121.8 0.015* 

vcrA 3.77 X 104         2.05 X 105 -3.04 117.2 0.001** 

Total bacteria 16S rRNA 1.06 X 107         1.20 X107 -0.49 126.1 0.314 
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CHAPTER IV GRAPE POMACE COMPOST AS A HABITAT FOR 

STRICTLY ORGANOHALIDE-RESPIRING DEHALOGENIMONAS 

SPECIES HARBORING NOVEL REDUCTIVE DEHALOGENASE 

GENES 
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A version of this chapter is going to be submitted for publication. Yang Y., S. Higgins, J. 

Yan, B. Şimşir, K. Chourey, R.L. Hettich, B. Baldwin, D.M. Ogles, F.E. Löffler. Grape 

Skin Compost as a Habitat for Strictly Organohalide-Respiring Dehalogenimonas 

Species Harboring Novel Reductive Dehalogenase Genes. In preparation. 

Abstract 

Organohalide-respiring bacteria play key roles in the natural chlorine cycle; however, 

most of the current knowledge has been obtained from cultures derived from 

contaminated environments.  We demonstrate that grape pomace, without prior exposure 

to chlorinated solvents, harbors a Dehalogenimonas (Dhgm) species capable of respiring 

chlorinated ethenes, including the human carcinogen and common groundwater pollutant 

vinyl chloride (VC).  Grape pomace microcosms amended with lactate and 

tetrachloroethene (PCE) produced trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), 

1,1-dichloroethene (1,1-DCE), VC and ethene. Solid-free enrichment cultures 

dechlorinated TCE to ethene and 16S rRNA gene amplicon sequencing linked this 

activity to the presence of Dhgm. The enumeration of Dhgm 16S rRNA genes 

demonstrated VC-dependent growth, and 4.4 ± 0.2 x 108 cells were produced per µmole 

of chloride released.  Metagenome sequencing enabled the assembly of a Dhgm draft 

genome, and 52 putative reductive dehalogenase (RDase) genes were identified. 

Proteomics applied to biomass grown with TCE, cDCE, 1,1-DCE or VC as electron 

acceptors identified an RDase with 49% (34.9%) and 56.1% (42.1%) amino acid 

similarity (identity) to the known VC RDases VcrA and BvcA, respectively.  A survey of 

1,237 groundwater samples collected from 111 chlorinated solvent-contaminated sites 
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revealed quantifiable Dhgm and Dehalococcoides mccartyi (Dhc) 16S rRNA genes in 

812 samples with a median Dhgm-to-Dhc ratio of 3.83. These findings demonstrate that 

non-polluted environments are a source of strictly organohalide-respiring bacteria with 

novel RDase genes, and that Dhgm are relevant contributors to chlorinated solvent 

reductive dechlorination in contaminated aquifers. 

 

Significance 

Most of the current understanding about organohalide-respiring bacteria reflects cultures 

derived from environments impacted with anthropogenically-released chloroorganic 

compounds.  We demonstrate that grape pomace never exposed to chlorinated solvents 

harbors strictly organohalide-respiring bacteria and is a reservoir for novel RDases, 

including an RDase that detoxifies the priority pollutant VC.  To date, respiratory VC 

reductive dechlorination has been exclusively attributed to Dehalococcoides (Dhc) 

bacteria, and the finding that a broader bacterial diversity shares this phenotype has 

implications for environmental monitoring regimes and predictions about the fate of VC 

in contaminated aquifers.  The discovery demonstrates that highly specialized 

organohalide-respiring bacteria contribute to the natural terrestrial chlorine cycle and 

emphasize their contributions to nutrient turnover. 

 

Introduction 

Chlorinated hydrocarbons have been widely used in different areas of modern societies, 

such as cleaning of machinery, manufacturing, and agrochemicals (e.g. pesticides) (1).  
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Widespread usage and uncontrolled disposal of chlorinated hydrocarbons has caused 

environmental and human health concerns. For example, the widely used chlorinated 

solvent trichloroethene (TCE) has been implicated in increased risk of cancer (2) and 

Parkinson’s disease (3). Vinyl chloride (VC), a TCE transformation product, is a 

notorious groundwater contaminant and a proven human carcinogen (4). TCE and VC are 

ranked #16 and #4 on the Substance Priority List (SPL) and have been detected in 1,153 

and 593 superfund sites, respectively (www.atsdr.cdc.gov/spl/resources/index.html).   

 

A landmark achievement was the discovery of organohalide-respiring bacteria, laying the 

foundation for in situ bioremediation (5). Diverse microorganisms, including members of 

the genera Desulfitobacterium (6), Sulfurospirillum (7), Dehalobacter (8), 

Desulfuromonas (9), Geobacter (10), and Dehalococcoides (11, 12), were isolated and 

demonstrated the ability to degrade PCE and TCE. Interestingly, the reductive 

dechlorination of chlorinated ethenes to non-toxic ethene has been attributed exclusively 

to Dehalococcoides mccartyi (Dhc) strains (13) and a few reductive dehalogenase 

(RDase) genes implicated in the detoxification of chlorinated ethenes have been 

identified (14). Consequently, contaminated site characterization, bioremediation 

monitoring, and decision-making rely on the quantitative assessment of Dhc biomarker 

genes in groundwater or aquifer solids. Although correlations between the presence and 

abundance of Dhc with the detoxification of chlorinated ethenes have been established, 

VC disappearance at sites lacking Dhc biomarkers has been observed (15). Moreover, the 
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presence/absence of Dhc biomarker genes does not always explain dechlorination activity 

and ethene formation (16, 17).  

 

Information regarding microbial degradation of chlorinated ethenes has been almost 

exclusively derived from organisms obtained from environments impacted with 

contaminants.  For obvious reasons, this approach was justified to derive process-relevant 

understanding; however, more recent discoveries demonstrated that chlorinated 

hydrocarbons, including priority pollutants, also have natural origins (18). For instance, 

even the human carcinogen VC can be generated abiotically in the soil environment, a 

process likely occurring since the first soils formed on Earth some 400 million years ago 

(19). Apparently, VC had been part of the biosphere long before human activities 

affected environmental concentrations of this carcinogen. A recent study correlated the 

abundance of Dhc-like Chloroflexi with the quantity of natural organohalogens in soils, 

supporting the notion that the organohalide-respiring phenotype is not merely a 

consequence of anthropogenic activities (20).   

 

We observed PCE reductive dechlorination and ethene formation in microcosms 

established with grape pomace (GP) compost never exposed to chlorinated solvents. 

Characterization of the microcosm-derived enrichment culture GP demonstrated that the 

ability to grow with VC as electron acceptor is not limited to members of the Dhc genus. 

Thus, our study expands the current understanding of the diversity of bacteria capable of 

metabolizing VC under anoxic conditions, provides an explanation for ethene formation 
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in chlorinated solvent contaminated aquifers in the absence of Dhc, and demonstrates that 

agroecosystems harbor strictly organohalide-respiring bacteria, which use priority 

pollutants as electron acceptors and likely contribute to the chlorine-cycle in soil (21).  

 

Materials and Methods 

 

Chemicals. PCE and TCE (both 99+% purity) were both purchased from ACROS 

ORGANICS (Distributed by VWR International, Inc., West Chester, PA, USA). cDCE 

(>96.0% purity), VC (≥99.5%) and ethene (≥99.5%) were purchased from Sigma-Aldrich 

Chemicals (St. Louis, MO, USA). All other chemicals were of scientific grade or better 

and purchased from Sigma-Aldrich (St. Louis, MO, USA) or Fisher Scientific 

(Pittsburgh, PA, USA). 

 

Microcosms and transfer cultures. Reduced, bicarbonate-buffered mineral salts 

medium with 5 mM lactate was prepared following established protocols (61). Anoxic, 

filter-sterilized (0.22 µm) Wolin vitamin solution (62) was added after the medium had 

been autoclaved. Microcosms were established with grape pomace compost collected in 

the wine-growing area of Rotenberg near Stuttgart, Germany (Stuttgart Rotenberg). 

Following opening 20 mL vials containing 10 mL of medium inside the glove box (filled 

with N2 and 3% H2), samples (1 gram of wet solids) were quickly transferred to the vials 

using autoclaved stainless steel spatulas. The vials were sealed with black stoppers and 

crimped with aluminum caps. After removing the vials from the glove box, 1 µL neat 
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PCE was added to each vial with a Hamilton micro-syringe to reach an aqueous 

concentration of approximately 575 µM. Duplicate microcosms were incubated statically 

at room temperature in the dark. After the formation of VC and ethene, the vials were 

shaken by hand, and about 3 mL suspension was transferred with nitrogen-flushed 3-mL 

plastic syringes to 160 mL serum bottles containing 100 mL of fresh mineral salts 

medium amended with 5 mM sodium lactate, 10 mL hydrogen gas and 5 µL neat PCE 

(360 µM). The bottles were incubated at 30°C in the dark without agitation. Subsequent 

transfers yielded solid-free enrichment cultures, and in replicate bottles 2 mL VC (0.53 

mM) replaced PCE as electron acceptor.  To inhibit methanogenesis, 1.2 mM 2-

bromoethanesulfonate (BES) was added. Prior to use, all plastic syringes were flushed 

with sterile, oxygen-free nitrogen to remove any residual air. Microcosms and transfer 

cultures were all set up in at least duplicate. Autoclaved microcosms and transfer cultures 

served as negative controls.  

 

DNA extraction and PCR procedures. Microbial cells were collected from 2-mL 

culture suspensions by vacuum filtration onto 0.22 µm membrane filters (Millipore 

GVWP025000, EMD Millipore Corp., Billerica, Mass., USA). Trapped cells were broken 

up by bead beating at a speed of 3.25 m/s for 5 minutes at room temperature (Omni Bead 

Ruptor Homogenizer, Kennesaw, GA). Genomic DNA was extracted with the PowerSoil 

DNA Isolation Kit (Mo Bio Laboratories Inc., Carlsbad, CA) following the 

manufacturer’s manual. DNA quantity and purity were estimated with a NanoDrop 1000 
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(Thermo Fisher Scientific, NanoDrop Wilmington, DE). Genomic DNA samples from 

two replicate cultures were pooled for Illumina sequencing.  

 

PCR assays to detect Dhc and Dhgm 16S rRNA genes, as well as the tceA, bvcA and vcrA 

genes, were performed following established procedures (63). DNA-free water and DNA 

samples from a PCE-to-cDCE-dechlorinating enrichment not containing Dhc and Dhgm 

populations served as negative controls. Dhc strain BAV1 genomic DNA and DNA 

samples from the PCE-to-ethene-dechlorinating consortium containing multiple Dhc 

strains (64) were used as positive controls. 

 

Quantitative real-time PCR (qPCR) assays were performed using an Applied Biosystems 

ViiA™ 7 Real-Time PCR system. Assays targeting Dhgm and Dhc 16S rRNA genes 

enumerated Dhgm and Dhc cell numbers based on the observation that the known 

genomes harbor single copy 16S rRNA genes. Calibration curves (log-transformed gene 

copy numbers versus cycle threshold values) were obtained using 10-fold serial dilutions 

of plasmid DNA carrying either a cloned Dhc or Dhgm 16S rRNA gene. qPCR assay 

efficiency was calculated using the formula E=10(-1/slope). The efficiencies for all Dhc- and 

Dhgm-targeted qPCR assays were in the 90-110% range. The quantification limits for 

Dhc and Dhgm 16S rRNA genes were in the range of 30 gene copies per assay volume. 

The primers and probe for quantifying Dhc 16S rRNA genes were previously described 

(65). Quantification of Dhgm 16S rRNA genes used forward primer 5’-

AGCAGCCGCGGTAATACG (Dhgm478F), reverse primer 5’- 
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CCACTTTACGCCCAATAAATCC (Dhgm536R), and probe 5’-AGGCGAGCGTTAT 

(Dhgm500Probe).  Primers and probe were designed with the Realtime PCR tool of IDT 

and specificity was verified using NCBI primer design tool. 

 

16S rRNA amplicon sequencing and analysis. DNA extracted from PCE-fed and VC-

fed culture GP biomass was cleaned and concentrated using the Genomic DNA Clean 

and Concentrator Kit (Zymo Research, Irvine, CA, USA). Purified DNA samples were 

PCR-amplified using barcoded-primers F515/R806 targeting the V4 region. The 

amplicon sequencing approach followed established protocols (66, 67). Raw sequences 

were paired and analyzed using the mothur software package (http://www.mothur.org/) 

following MiSeq standard operating procedures (68). Paired sequences trimmed and 

filtered by mothur were uploaded to SILVA (https://www.arb-silva.de/ngs/) for 

verification and comparison.  

 

Metagenomic sequencing and analyses. Shotgun sequencing was performed to 

investigate the genetic content of the VC-grown enrichment culture GP. The resultant 

sequencing run produced 15,059,934 paired-end reads (150 bp length), which were 

filtered using the software NGS QC Toolkit v2.3.3 (69) with a minimum phred score of 

30 and a read cutoff length of 70%. The resulting 13,667,850 (90.7%) paired-end reads 

were then assembled following established procedures (70). Briefly, paired-end reads 

were assembled with De Bruijn graph assembler velvet v1.2.07 (71) and RAY v2.2.0 

(72). Contigs representing the three best assemblies from each program (assembly quality 
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assessed by N50 value, maximum number of reads retained, and fewest number of 

contigs produced) were then fragmented by in-house scripts to 1,500 nucleotides in 

length and subjected to a final round of assembly with Newbler v2.6 (Roche Applied 

Science, Penzberg, Germany). The resulting assembly produced 4,925 contigs (≥500 nt). 

Average coverage of each contig was calculated by aligning quality-filtered reads to 

assembled contigs with Bowtie2 v2.1.0 (73) and multiplying the number of reads aligned 

to each contig by the average length of aligned reads and dividing by contig length. The 

assembled contigs were BLASTXed against non-redundant database of NCBI by 

DIAMOND (74) with a maximum e-value cutoff of 10-3. MEGAN (75) was used to 

analyze the functional assignment from the BLASTX output compared with the SEED 

database (76). To understand the differences between the Dhgm-dominant culture GP and 

Dhc-dominant dechlorinating cultures, comparative metagenomic analyses was 

conducted using MG-RAST pipelines following published methods (22, 77). For a 

comparative metagenome analysis, the sequences of VC-fed culture GP (MG-RAST ID: 

4625853.3) were uploaded to the MG-RAST server and compared with the three 

PCE/TCE-dechlorinating consortia KB-1 (MG-RAST ID: 4450840.3), ANAS (MG-

RAST ID: 4451655.3) and Donna II (MG-RAST ID: 4451259.3). Metagenomic datasets 

from an acid mine drainage site (Richmond Mine, Iron Mountain, CA; MG-RAST ID: 

4441137.3 and 4441138.3) and a pristine freshwater in Antarctica (Ace Lake; MG-RAST 

ID: 4443683.3) were chosen as non-dechlorinating communities for comparison. These 

two metagenomes were chosen for their well-documented meta information, good-quality 

reads, and their distinct environment sources. Metagenomic raw sequences were 
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classified into SEED categories using a maximum e-value of 1e-5, a minimum identity of 

60%, and a minimum alignment length of 50 measured in aa for protein and bp for RNA 

by MR-RAST. Annotation results were then imported into STAMP for principle 

component analysis (PCA) and visualization (78). 

 

Genome binning and annotation. Binning of metagenomic contigs was conducted with 

MetaWatt v1.7 (79) and VizBin (80), using GC content, tetranucleotide frequency, and 

coverage as quality metrics to assess consistency of contigs within the genomic bin (80). 

Contigs belonging to the Dhgm bin were further assessed with CheckM (23) using default 

settings to further assess genome bin completeness, contamination, and taxonomic 

affiliation. The draft genome bin was uploaded to RAST (Rapid Annotation using 

Subsystem Technology) (81) for annotation (Access ID: 1536648.4). RAST annotation 

results were validated by using additional annotation pipelines including Prokka (82). 

Sequence similarity and identity of different RDase genes identified within the coding 

sequences were calculated by EBI EMBOSS Needle 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/). 

 

Phylogenetic analyses. Additional rRNA sequences from representative bacteria of the 

phylum Chloroflexi were retrieved from NCBI’s RefSeq database (83) and rRNA genes 

were extracted with RNAmmer. The 5S, 16S, and 23S rRNA genes from each organism 

were individually aligned using mafft v7.130b (84) and subjected to optimal model 

estimation with jmodeltest v2.1.5 (85). Maximum likelihood tree estimation was 

http://www.ebi.ac.uk/Tools/psa/emboss_needle/
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performed using PhyML v3.0 (86) on individual and concatenated rRNA gene alignments 

with 100 bootstrap replicates using the TN93 model (selected from jModelTest) (87) with 

estimations of the proportion of invariable sites and rate heterogeneity among sites (8 

substitution rate categories). A phylogenetic tree including all RDase sequences 

annotated from the draft genome of Dhgm sp. strain GP and other Dhc and Dhgm 

genomes was built (88). Other RDase A protein sequences were searched and 

downloaded from the UniProt database. The phylogenetic tree was then imported into 

Interactive Tree of Life web browser (itol.embl.de) for enhancement and beautification 

(89).  

 

Proteomics analysis. The microbial cells were harvested by passing the culture 

suspension through 0.22 µm membranes filters (Millipore GVWP025000, EMD 

Millipore Corp., Billerica, Mass., USA). The filters were cut into small pieces ~ 1 cm in 

size) and proteins were extracted following established procedures (90, 91). Amounts of 

extracted protein was calculated using the RC/DC protein estimation kit (Bio-Rad 

Laboratories, Hercules, CA, USA) as per the manufacturer’s instructions. Bovine serum 

albumin (supplied with the kit) was used as standard for the assay. Protein digestion was 

initiated by the addition of trypsin to the sample (40 µg trypsin/ 1-3 mg protein), resulting 

peptides desalted and solvent exchanged as described (92). The peptides were stored at -

80 until MS analysis. Peptides (~75 µg) were loaded onto an in-house prepared resin 

packed SCX (Luna, Phenomenex, Torrance, CA) and C18 (Aqua, Phenomenex, 

Torrance, CA) columns and subjected to an offline wash as described (93). The biphasic 
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column was connected to a 10 cm C18-packed nanospray tip (New Objective, Woburn, 

MA) aligned to an Proxeon (Odense, Denmark) nanospray source (93). Peptides were 

subjected to 24-hour, 11-step chromatographic separation and measurements using the 

Multi-Dimensional Protein Identification Technology (MuDPIT) approach (92-94). 

Measurements were carried out using LTQ Velos mass spectrometer (Thermo Fisher 

Scientific, Germany) coupled to the Ultimate 3000 HPLC system (Dionex, USA) and 

operated in data dependent mode regimented by Thermo Xcalibur software V2.1.0. Each 

full scan was followed by fragmentation via collision-activated dissociation (CID) using 

35% collision energy of 20 most abundant parent ions with a mass exclusion width of 0.2 

m/z and dynamic exclusion duration of 60 seconds. For protein identifications, the raw 

spectra were searched against selected databases (CDs annotated from draft Dhgm 

genome) via Myrimatch v2.1 algorithm (95) set to parameters described by (96) with 

minor modifications. Static cysteine and dynamic oxidation modifications were not 

considered and identification of at least two peptides per protein (one unique and one 

non-unique) sequence was a prerequisite for protein identifications. Common 

contaminant peptide sequences from trypsin and keratin were concatenated to the 

database. Spectral counts of identified peptides were normalized as described (97) to 

obtain the normalized spectral abundance factor (NSAF), also referred to as normalized 

spectral counts (nSpc). Average nSpc values from duplicate runs were used to get the 

final proteome profile of the sample.  

 

Analytical methods. Chlorinated solvents were measured in 100 µL headspace gas 

samples on a gas chromatograph (GC) (Agilent Technologies, Santa Clara, CA, USA). 
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The concentrations of chlorinated ethenes were calculated by normalizing the peak areas 

to standard curves generated by adding known amounts of chlorinated ethenes and ethene 

into the bottles with the same gas to liquid ratios. Gas samples (100 µL) were removed 

from the headspace using a gastight 250 µL Hamilton SampleLock syringe and then 

manually injected into the GC. Samples were measured with an Agilent 7890A GC 

equipped with an Agilent DB624 column with a flame ionization detector (FID). The 

retention times were determined by injecting neat compounds into the GC. The total 

amounts of PCE, TCE, cDCE and 1,1-DCE were calculated using the equation: Mole 

mass of chlorinated solvent = (volume of chlorinated solvent) x (density of chlorinated 

solvent) / (molecular weight of chlorinated solvent). The total moles of VC and ethene 

were calculated by applying the ideal gas law (PV=nRT). The concentrations of 

chlorinated compounds and ethene in the aqueous phase were calculated using the 

equation: 𝐶𝑙𝑖𝑞𝑢𝑖𝑑 =
𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠

𝑉𝑙𝑖𝑞𝑢𝑖𝑑+𝐻𝑐𝑐×𝑉𝑔𝑎𝑠
. The dimensionless Henry’s constants for PCE, TCE, 

cDCE, 1,1-DCE, VC and ethene at 21°C were 0.576, 0.308, 0.133, 0.922, 0.933 and 

9.222, respectively (https://www3.epa.gov/ceampubl/learn2model/part-

two/onsite/esthenry.html). 

Results 

 

Reductive dechlorination of chlorinated ethenes in grape pomace microcosms and 

transfer cultures.  In anoxic grape pomace microcosms, PCE was reductively 

dechlorinated to ethene via TCE, cDCE, 1,1-DCE and VC as intermediates after a 300-

day incubation period. Transfer cultures also produced TCE, cDCE, 1,1-DCE, and VC as 

https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/esthenry.html
https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/esthenry.html
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dechlorination daughter products and ethene as end product (Figure 4.1). Following the 

addition of BES, an inhibitor of methanogenesis, cDCE was the dechlorination end 

product and VC and ethene were not formed (data not shown). Without BES addition, the 

transfer cultures maintained the ability to produce ethene in completely synthetic, defined 

medium.  

 

Community structure of ethene-producing enrichment cultures. To identify the 

population(s) responsible for the observed dechlorination activity, DNA was extracted 

from ethene-producing PCE- and VC-fed cultures for 16S rRNA gene amplicon profiling. 

No evidence for the presence of Dhc 16S rRNA gene sequences was obtained, a finding 

supported by PCR-based analyses, which failed to detect Dhc 16S rRNA genes and the 

tceA, bvcA, and vcrA reductive dehalogenase genes implicated in dechlorination of 

chlorinated ethenes. Instead, Dhgm 16S rRNA gene amplicons dominated the sequence 

pool, and represented 43.9% and 46.1% of all bacterial sequences in the PCE-fed and in 

VC-fed cultures, respectively (Figure 4.2). Also detected were sequences of not-yet-

cultured bacteria of the WWE1 and WPS-2 candidate divisions, which contributed 3.6% 

and 8.3%, respectively, in the PCE-fed cultures and 2.6% and 9.4%, respectively, in the 

VC-fed cultures.  

 

Growth of Dehalogenimonas coupled with VC to ethene reductive dechlorination. 

VC dechlorination to ethene commenced after a lag phase of about 20 days, and transfer 

cultures provided with VC (83.3 µmol/bottle) as electron acceptor produced 
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Figure 4.1 PCE enrichment from Grape Pomace without inhibiting methanogenesis. 

Dechlorination activity was not optimized under current cultivating condition. The 

culture demonstrated the potential of PCE degradation to innocuous ethene. (Filled circle-

PCE; Open circle-TCE; Filled inverse triangle-cDCE; Open triangle -11DCE; Filled 

diamond-VC; Open square-ethene; Cross-Methane). Data points represent one of the 

duplicate dechlorinating cultures; both cultures followed the same dechlorination pattern 

with time difference. 
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Figure 4.2 Relative abundance of genera in PCE-fed and VC-fed cultures GP as revealed 

by 16S rRNA gene amplicon sequencing. Rare groups (less than 1% of total community) 

were classified into “Others”. The Bacteroidetes (uncl) and Firmicutes (uncl) represented 

the phylum level (uncl stands for unclassified). 
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stoichiometric amounts of ethene within a 50-day incubation period (Figure 4.3). 

Quantitative real-time PCR (qPCR) results demonstrated that the Dhgm 16S rRNA gene 

copy numbers per mL increased from 1.02 0.12 x 107 (cells transferred with the 

inoculum) to 3.76 0.14 x 108 (a 37-fold increase) following complete VC degradation. 

 

Following seven repeated transfers with VC as electron acceptor, culture GP maintained 

the ability to dechlorinate TCE, 1,1-DCE and cDCE, but failed to dechlorinate PCE, 

suggesting that the VC-dechlorinating population can also dechlorinate polychlorinated 

ethenes but not PCE (Figure S4.2). The growth yields of Dhgm strain GP with TCE, 1,1-

DCE, cDCE, or VC provided as electron acceptor ranged from 5.9 1.5 to 8.6 0.1 x108 

per µmol of Cl- released, which were up to 2 orders of magnitude higher compared to the 

growth yields reported for Dhgm lykanthroporepellens strain BL-DC-9 and in the range 

reported for Dhc strains (Table 4.1). Culture GP could not dechlorinate carbon 

tetrachloride, 1,2-dichloroethane (1,2-DCA), 1,2,3,-trichloropropane (1,2,3-TCP) and 

1,2-dichloropropane(1,2-DCP). 

 

Comparative metagenomic analysis.  To further characterize the dechlorinating culture, 

metagenome sequencing of DNA derived from VC-grown biomass was performed. More 

than 50% of the coding sequences from assembled contigs could not be assigned to a 

SEED (www.theseed.org) functional group, indicating the presence of many genes with 

unknown functions in dechlorinating culture GP. Among assigned SEED functional 

categories, genes encoding the metabolisms of carbohydrates, amino acids and  
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Figure 4.3 VC degradation by culture GP (Fill triangle-VC; open circle-ethene; filled 

square-methane; filled bar- Dhgm 16S rRNA gene copy number). Data points are average 

of duplicate cultures; the error bars are one standard deviation, which are masked by the 

data symbols. 

 

Table 4.1 Comparison of doubling times and growth yields between Dhc and Dhgm 

strains and culture GP  

Genus Strain 
Electron 

Acceptor 

Doubling 

Time (Days) 

Yield per µmol 

Cl- released 

Dehalococcoides 

BAV1 VC 2.2 6.30E+07 

GT VC 2-2.5 2.50E+08 

VS VC 1.7‡ 5.20E+08 

 
BL-DC-9 

1,2,3-TCP 4.1 2.90E+06 

Dehalogenimonas 

1,2-DCP ND 1.50E+07 

GP 

TCE 6.1 5.55E+08 

1,1-DCE 5.9 8.62E+08 

cDCE 10.0 3.61E+08 

VC 8.4 6.55E+08 

‡Determined in a highly enriched mixed culture. ◊Data from Löffler et al., 2013 
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derivatives, proteins, DNA, and cofactors/vitamins/prosthetic groups/pigments were 

highly represented in the assembled reads (Table S4.2). Tetrapyrrole, folate and pterine 

biosynthesis were dominant subgroups in the SEED cofactors/vitamins category. Aside 

from reductive dehalogenase genes, functional genes related to electron-accepting 

processes (e.g., tetrathionate respiration, trimethylamine-N-oxide (TMAO) reductase, 

dimethyl sulfoxide (DMSO) reductase, sulfite reductase, arsenate reductase) were present 

in the VC-dechlorinating culture GP (Table S4.2). Genes encoding dehydrogenases (e.g., 

formate dehydrogenase, NADH dehydrogenase, L-lactate dehydrogenase, succinate 

dehydrogenase, and carbon monoxide dehydrogenase) and hydrogenases (e.g. [Ni/Fe] 

hydrogenase, periplasmic [Fe] hydrogenase), which associated with electron transport 

systems, were abundant in culture GP. Metagenome sequence information is available for 

three Dhc-containing consortia capable of dechlorinating chlorinated ethenes to ethene 

(ANAS, KB-1 and Donna ll) (22), and comparative analysis focused on taxonomic and 

functional genes was conducted. Included in the analysis were two metagenomes 

representing non-dechlorinating communities (i.e., acid mine drainage and Antarctic 

freshwater sample). The taxonomic comparison between dechlorinating and non-

dechlorinating communities suggested differences at the phylum level among six 

communities were distinct (Figure 4.4A); but functional analysis indicated dechlorinating 

communities were more similar to each other at functional levels than to non-

dechlorinating communities (Figure 4.4B). 

 

Draft genome of the Dhgm strain GP.  Binning of the metagenome sequences allowed 

the assembly of 16 contigs ranging in size between 1.0 kbp and 6.7 kbp (N50 = 2.3 kbp),  
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Figure 4.4 Principal component analysis of taxonomic (A) and functional (B) profiles of 

six metagenomes. Dechlorinating (ANAS, DonnaII, KB-1 and GP) and non-dechlorinating 

(AMD and Antarctica) communities were compared at phylum level (A). Metagenomic 

sequences of previous six communities were classified into SEED categories, and the 

distribution of SEED categories were compared (B).  
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and a draft genome of the organohalide-respiring Dhgm strain GP was obtained. The draft 

genome had a size is 2.02 Mbp with a G+C content of 52%. CheckM analysis (23) 

indicated that the genome was 94% complete (144 single copy marker genes detected) 

with 0% contamination and no strain heterogeneity (default 90% amino acid identity 

cutoff). Average contig coverage ranged between 7.5 and 505 fold, with an 

averagegenome coverage of 276 fold. Prokka annotation of the genomic bin predicted a 

total of 2,099 genes including three ribosomal RNAs (5S, 16S and 23S rRNA), 2,036 

coding DNA sequences (CDS), 14 non-coding RNA sequences and 46 transfer RNAs. 

Pairwise sequence comparisons demonstrated that the 16S rRNA gene sequence 

representing Dhgm strain GP shares 96.0% and 95.3% sequence identities with Dhgm sp. 

strain WBC-2 and Dhgm lykanthroporepellens strain BL-DC-9, respectively. 

Phylogenetic analysis based on concatenated 5S-16S-23S rRNA gene alignments 

supported affiliation with the Dhgm genus (Figure 4.5). A characteristic feature of 

obligate organohalide-respiring bacteria is the presence of multiple hydrogenase genes, 

and gene clusters encoding a [Ni/Fe] hydrogenase complex ( EC 1.12.2.1), an NAD-

reducing hydrogenase complex (EC 1.12.1.2), a periplasmic [Fe] hydrogenase complex 

(EC 1.12.7.2) and an uptake hydrogenase complex (EC 1.12.99.6) were identified on the 

draft genome. Similar to the sequenced Dhgm genomes, three genes encoding the major 

subunits of formate dehydrogenase (EC 1.2.1.2) were identified, whereas Dhc genomes 

harbor only one copy of the respective gene. On the contrary, Dhc and Dhgm could not 

utilize formate (13, 24), and it was speculated that formate dehydrogenase(s) in Dhgm 

and Dhc may in fact function as hydrogenase(s). Phylogenetic analysis of putative 
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formate dehydrogenases annotated from Dhgm and Dhc genomes and several 

characterized formate dehydrogenases genes suggested Dhgm may possess two types of 

formate hydrogenases, while only one type of formate hydrogenase possessed by Dhc 

(Figure S4.2).  

A total of 52 putative RDase genes were identified, 10 of which were associated with B 

genes, which encode B proteins with 1 to 4 trans-membrane spanning helices (Table S3). 

All putative RDase protein sequences had either TAT signal peptide or sec signal peptide 

predicted by PRED-TAT (Table S3) (25). One of the predicted RDases (prokka_01475) 

shared 36.8%, 67.6% and 65.8% identities with the three characterized PcbA RDases 

identified in Dhc strains CG1, CG4 and CG5 (26), suggesting the Dhgm strain GP has the 

potential to dechlorinate polychlorinated biphenyls (PCBs). Although c-type cytochrome 

genes were not found, two c-type cytochrome biogenesis genes, ccsA and ccsB, were 

present. Both c-type cytochrome biogenesis genes were also present on other sequenced 

Dhgm and Dhc genomes but their functions remain unclear (27). Genes for de novo 

corrin ring biosynthesis were absent, but genes implicated in corrinoid salvage and 

modification (i.e., cobA, cbiP, cbiB, cobU, cobT, cobC, cobS and cbiZ) were detected. 

Similar to observations made with Dhc, the Dhgm genome possessed genes encoding two 

distinct cobinamide (Cbi-)-salvaging pathways: the bacterial pathway relying on 

cobU/cobP genes and the archaeal pathway with the cbiZ gene. Moreover, genes coding 

for the vitamin B12 ABC transporter BtuFCD and the dual-functional cobalt/nickel 

transporter system cbiMNQO were also present. Heterodisulfide reductase (HdrABC) 

was proposed to be involved in different electron bifurcation systems (e.g., HdrABC- 
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 Figure 4.5 Phylogenetic tree based on concatenated 5S-16S-23S rRNA genes. 

“Dehalogenimonas ethenogenes” was clustered with Dhgm strain BL-DC-9 and WBC-2. 

 

MvhADG, HdrABC-FlxABCD). In these electron bifurcation systems, HdrABC complex 

was responsible for splitting electrons (from hydrogen or NADH) to oxidized ferredoxin 

and CoM-S-S-CoB heterodisulfide (28).Genes encoding subunits of the heterodisulfide 

reductase (HdrABC) were annotated in the strain GP draft genome, which were also 

present in the other two available Dhgm genomes (strain WBC-2 and strain BL-DC-9) 

but absent in all sequenced Dhc genomes, suggesting Dhgm and Dhc may employ 

different electron transfer proteins. It is also worth mentioning that the Dhgm draft 

genome encodes the arsenic resistance genes arsA, arsD and arc3 in a single operon  
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Figure 4.6 Orthologous clusters from two Dhc genomes (strains 195, BAV1) and two 

Dhgm genomes (strains BL-DC-9, GP). From the genomes of 195, BAV1, BL-DC-9 and 

GP, a total of 1580, 1371, 1659 and 2036 coding sequences were annotated and used in 

this comparison, respectively. These sequences were compared and clustered using markov 

cluster algorithm with e-value1e-5 and inflation value 1.5.  

 

suggesting Dhgm GP was under arsenic selection pressure and is capable of detoxifying 

arsenicals. The comparative analysis of whole genome coding sequences (CDs) between 

the Dhgm strain BL-DC-9 and strain GP genomes and the genomes of Dhc strains 195 

and BAV1 identified a total of 1591 orthologous gene clusters, and 1500 gene clusters 

were shared by at least by two genomes. Dhgm strain GP shared 222, 20 and 14 

orthologous clusters with strains BL-DC-9, 195, and BAV1, respectively (Figure 4.6).  

 

Protein profiling and identification of a novel putative VC RDase. Dhgm strain GP 

grew with VC as electron acceptor but, consistent with the draft genome sequence, qPCR  
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Figure 4.7 Phylogenetic tree of total 528 reductive dehalogenases (355 sequences were 

collected by Hug et. al. (58); the rest were annotated and collected from genomes of Dhc 

strains CG1, CG4, CG5 and Dhgm strains WBC-2, GP, SG1). The phylogenetic tree was 

built by Geneious software using default settings of MAFFT Alignment and Geneious Tree 

Builder. (yellowish brown-“PcbA” group; light blue-“Bvc/Vcr/TceA” group; 51 RDase of 

Dhgm strain GP were labeled in red; CerA RDase of Dhgm was in blue). 

 

assays failed to detect the known VC RDase genes tceA, vcrA and bvcA suggesting strain 

GP harbors a different (novel) VC RDase gene. One of the RDases encoded on the Dhgm 

genome (prokka_02004) grouped in a cluster comprising the characterized RDases TceA, 

BvcA and VcrA (Figure 4.7), suggesting the prokka_02004 RDase may have activity 

towards chlorinated ethenes. This Dhgm RDase shared 83.3%, 56.1% and 49% amino 

acid similarity (76.2%, 42.1, and 34.9% amino acid identity) with TceA, BvcA and VcrA, 

respectively. To verify if the prokka_02004 RDase is responsible for the observed VC-to-
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ethene reductive dechlorination activity, proteins extracted from culture GP biomass 

grown with TCE, 1,1-DCE, cDCE, and VC as electron acceptor were analyzed using 

proteomic workflows. Normalized spectral counts indicated high expression of the 

prokka_02004 RDase in cells collected from 1,1-DCE-, cDCE-, and VC-grown GP 

cultures (Table S4.1). Based on the phylogenetic and proteomics analysis, the 

prokka_02004 RDase gene is a likely candidate encoding the VC RDase and was 

designated cerA (i.e., chloroethene reductase gene). In addition to CerA, the proteomics 

analysis identified three additional RDases (PROKKA 01300, PROKKA 01297 and 

PROKKA 00862), albeit in relatively lower abundance (Figure 4.8, Table S4.3). The 

examination of expressed Dhgm proteins during active dechlorination of different 

chlorinated ethenes revealed high abundance of chaperonin proteins GroES, GroEL and 

Hsp20 (Table S4.1). High expression levels of rubrerythrin and thioredoxin suggested 

that the cells had to cope with oxidative stress either caused by their own metabolic 

activity or caused by the cultivation conditions. Glyoxalase, responsible for detoxifying 

reactive aldehydes, was expressed in strain GP (Table S4.1). Although formate is not 

known to be metabolized by the available Dhgm isolates, it was observed that formate 

dehydrogenase were expressed abundantly by Dhgm strain GP.   

 

Detection and abundance of Dhgm at sites impacted with chlorinated solvents.  For 

contaminated site assessment, monitoring, and treatment decision-making, the 

quantitative measurement of Dhc biomarker genes has become routine practice. A survey 

of samples collected from 1,237 groundwater wells from 111 sites impacted with 
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chlorinated solvents revealed Dhc and Dhgm 16S rRNA genes in 957 (77%) and 964 

(78%) locations, respectively.  At 954 wells, Dhgm 16S rRNA gene copy number 

exceeded 1x104 L-1, and in these wells, the average Dhgm-to-Dhc ratio was 3.8 (Table 

4.2).  These findings strongly suggest that Dhgm contribute to reductive dechlorination 

activity in contaminated aquifers. 

 

 

Figure 4.8 Relative abundances (based on normalized spectral counts) of RDase-A 

proteins detected in GP cultures grown with TCE, cDCE, 1,1-DCE, and VC as electron 

acceptors. 

 

Description of Dehalogenimonas ethenoformans sp. nov.  Dehalogenimonas 

ethenoformans (e.the.no.for’mans. N.L. n. ethenum, ethene; N.L. pref. etheno-, pertaining 

to ethene; L.v. formo to establish, produce; N.L. gen. masc. n. ethenoformans, ethene-

producing bacteria), named to emphasize the organism’s ability to form ethene form 

chlorinated ethenes. Dehalogenimonas ethenoformans utilizes TCE, cDCE, 1,1-DCE, and 

VC as respiratory electron acceptors. The organism uses hydrogen as electron donor, and, 

acetate and/or lactate as carbon sources. Growth occurs at 20-30C and pH 7.2. The G + 
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C content of strain GP is 52 mol%. Strain GP was present in a mixed culture derived 

from non-contaminated grape pomace collected from the wine-growing region of 

Rotenberg near Stuttgart, Germany.  Phylogenetic, genotypic and phenotypic 

characteristics place strain GP in the Dehalogenimonas genus within the organohalide-

respiring Chloroflexi, and warrant classifying strain GP as the type strain of a new 

species, Dehalogenimonas ethenoformans sp. nov.. 

 

Table 4.2 Dhc and Dhgm 16S rRNA genes detected in groundwater collected wells at 

sites impacted with chlorinated solvents.   

16S rRNA Gene Copies per 

Liter Groundwater (cells/L) 

# of Wells with 

Dhc                              Dhgm 

Dhgm-to-Dhc 

Detection 

Frequency 

Ratio◊  

>103      21 10 0.48 

>104       17 51 3.0 

>105       18 110 6.1 

>106       21 239 11.38 

>107       880 554 0.63 

 

◊The Dhgm-to-Dhc Detection Frequency Ratio was calculated according to 
# of 𝐷ℎ𝑔𝑚−positive wells with 𝐷ℎ𝑔𝑚

# of Dhc−positive wells with 𝐷ℎ𝑐
 

 

Discussion 

To date, metabolic VC-to-ethene reductive dechlorination has been exclusively linked to 

the presence and activity of Dhc strains carrying the VC RDase genes vcrA or bvcA. Here 
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we report metabolic VC reductive dechlorination in the absence of Dhc and the known 

VC RDase genes vcrA or bvcA in enrichment culture GP.  The dechlorinating organism, 

strain GP, affiliated with the genus Dehalogenimonas and coupled the reductive 

dechlorination of TCE, cDCE, 1,1-DCE and VC with growth, producing biomass and 

environmentally benign ethene as products. Culture GP was obtained from grape pomace 

composted in the wine-growing area of Rotenberg near Stuttgart, Germany. Fungicides 

containing halogenated hydrocarbons are applied to the grape vine foliage during the 

growing season (April-August); however, none of these compounds are associated with 

the grapes at the time of harvest (September-October) and therefore not present in grape 

pomace. This raises the question why an organism whose energy metabolism hinges on 

the presence of certain organohalogens is found in grape pomace that has never 

encountered chlorinated solvents. There is ample evidence for the natural formation of 

organohalogens in soil, including the human carcinogen VC (19). A plausible explanation 

is active production of organohalogens in soils, possibly including grape pomace, which 

support organohalide-respiring Chloroflexi such as Dhgm strain GP. The presence of 16S 

rRNA gene sequences associated with the organohalide-respiring Chloroflexi in pristine 

grassland and forest soils has been linked to the soils’ organochlorine content (20). Our 

findings provide additional support that pristine environments harbor specialized 

organohalide-respiring bacteria that use priority contaminants, including chlorinated 

ethenes, as electron acceptors. Further, strain GP harbors a novel VC RDase gene (cerA) 

that has so far not been reported at contaminated sites, demonstrating that a broader 
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diversity of VC RDases exists. Thus, the search for organisms and genes with potential 

applications in bioremediation should not be limited to contaminated environments. 

Dhgm and Dhc are both obligate organohalide-respiring bacteria that characteristically 

carry multiple RDase genes on their genomes. For example, 19, 32, 36, 11 and 19 RDase 

genes were identified on the genomes of Dhc strains 195, CBDB1, VS, BAV1 and Dhgm 

strain BL-DC-9, respectively (29), suggesting that the utilization of a broader suite of 

organohalogens as electron acceptors is a common feature. Dhgm strain GP possesses an 

RDase (prokka_01475), which shared more than 65% amino acids identity with PCB 

RDases PcbA-CG4 and PcbA-CG5 of Dhc strains CG4 and CG5, respectively. Dhgm 

16S rRNA gene sequences have been detected in PCB-dechlorinating enrichment cultures 

(30) and PCB-impacted marine sediment (31), and it is likely that prokka_01475 

represent a novel PCB RDase. Strain GP carries a staggering number of 52 RDase genes 

on its genome, a possible adaptation to the non-contaminated soil environment, from 

where the culture was obtained. For survival in pristine environments, obligate 

organohalide-respiring bacteria must rely on naturally produced organohalogens, and 

very likely must use a diversity of halogenated compounds to derive sufficient energy for 

cell maintenance and growth. Evidence is accumulating that chlorinated hydrocarbons, 

including priority pollutants such as VC, are produced naturally in many environments, 

including soils (19, 32). This is an important observation suggesting that RDases that use 

priority pollutants (e.g., VC) as substrates evolve in environments without anthropogenic 

chlorinated solvent contamination. A survey detected Dhc-like Chloroflexi 16S rRNA 

gene fragments in nearly 90% of the investigated 116 soil samples collected from 
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locations not impacted by anthropogenic chlorinated hydrocarbons (20). These findings 

are consistent with the hypothesis that organohalide-respiring bacteria evolved long 

before human activities released chlorinated chemicals into the environment. It is 

plausible that this bacterial metabolism evolved in response to soil processes generating 

organohalogens, which could have started when soils first formed in the late Silurian to 

Early Devonian some 400 million years ago (19, 33, 34). Microorganisms control the 

turnover of chlorine from organic compounds to inorganic chloride in environmental 

systems, and thus affect estimates of the chlorine budget (35). Efforts to enrich and 

isolate organohalide-respiring bacteria from pristine environments can help elucidating 

the biogeochemical cycling and turnover of organochlorine, and also be a source of novel 

organisms and RDase genes with value for biotechnological applications. 

 

The characterized Dhgm cultures show preference for chlorinated ethanes as electron 

acceptors (36, 37). Enrichment efforts with chlorinated ethenes from contaminated 

aquifer materials generally yield Dhc- rather than Dhgm-containing cultures. A possible 

reason is the slower growth of Dhgm compared to Dhc (Table 1) and Dhc out-compete 

Dhgm strains. The growth conditions (e.g., medium composition) have not been refined 

to meet the nutritional requirements of chlorinated ethene-dechlorinating Dhgm, an issue 

that has also limited the initial experimental efforts with Dhc cultures (13). For example, 

it was recently demonstrated that the lower base of the essential RDase corrinoid 

prosthetic group can affect reductive dechlorination rates and extents (45, 46), and the 
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exact cobamide requirement to support efficient CerA maturation and maximum catalytic 

activity has not been elucidated.  

 

BES, a competitive inhibitor of coenzyme M (2-mercaptoethanesulfonate), a key cofactor 

in the final step of methane formation, inhibited cDCE and VC reductive dechlorination 

in culture GP.  This is not unprecedented and BES has been demonstrated to inhibit 

organohalide-respiring Chloroflexi and reductive dechlorination beyond cDCE (38). The 

mechanistic underpinning of this inhibition is not understood but could have a nutritional 

basis. For example, methanogens in culture GP (i.e., Methanocorpusculum spp.) could be 

required to supply an essential cobamide that corrinoid auxotrophic Dhgm require to 

assemble functional RDases. BES did not affect PCE-to-cDCE dechlorination indicating 

that the observed inhibitory effect had some specificity towards the Dhgm population.  

 

Attempts to assemble nucleotide sequences derived from mixed communities can 

produce artifacts, but improved binning methodologies identify chimeric sequences and 

robustly delineate distinct microbial populations from metagenomes (23, 39). Previous in 

silico investigations of genome binning from community metagenomes suggested that a 

coverage of at least 20X is required for binning and draft genome assembly (40). 

Coverages of contigs from Dhgm strain GP were on average an order of magnitude above 

this 20X cutoff. Only the shortest contig possessed a lower coverage, but BLASTn 

alignment of this 3810-bp contig to NCBI’s nt database revealed 96% nucleotide identity 

to the genome of Dhgm lykanthroporepellens strain BL-DC-9, which suggested this 
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contig belonged to the Dhgm genome bin, and was not an artifact of the binning 

methodology. Furthermore, the apparent lack of strain heterogeneity and contaminating 

sequences in the genomic bin supports the classification of the Dhgm genomic bin as a 

single species. It is generally challenging to determine the strain diversity within cultures 

that were not derived from single colonies. For instance, a Dhc culture that contained a 

single 16S rRNA gene sequence harbored multiple Dhc strains (41). Genome sequencing 

using the current technologies will not settle this issue, especially in the case for the 

organohalide-respiring Chloroflexi with streamlined and similar genomes, and strain-

level resolution cannot be attained.  Characterization of Dhc genomes showed that the 

majority of RDase A genes encoding the catalytically active A unit are associated with B 

genes encoding membrane-anchor proteins (e.g., Dhc strain CBDB1 had 32 pairs of 

RDase A and B genes) (42). By comparison, Dhgm lykanthroporepellens strain BL-DC-9 

possessed 17 putative RDase A genes, of which only six had cognate RDase B genes 

(43). Similar observations of missing RDase B genes were made for Dhc strain 11a and 

strain MB, and 3 out of 11 and 9 out of 38 putative RDase A genes, respectively, do not 

have accompanying B genes (44). 

 

An interesting observation was the persistence of 16S rRNA genes of the bacterial 

phylum WWE1 during the enrichment process.  Phylum WWE1 was first identified in a 

municipal anaerobic sludge digester (45). To date, no stable enrichment cultures or 

isolates representing this phylum have been obtained, likely due to their symbiotic 

relationships with hydrogenotrophic microorganisms (46). Cultivation-independent 
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metagenomic analysis of a municipal anaerobic sludge digester lead to the assembly of 

the genome of “Candidatus Cloacimonas acidaminovorans”, a member of phylum 

WWE1. Annotation of the genome suggested amino acid fermentation as the organism’s 

main metabolism (47). In meromictic Sakinaw Lake, the depth-dependent co-occurrence 

of Chloroflexi, Candidate divisions WWE1, OP9/JS1, OP8 and OD1, and methanogens 

suggested syntrophic interactions between these groups (48). The findings reported in 

several metagenomic studies support a coexistence pattern between Chlorofexi, candidate 

phylum WWE1 and methanogens (49-51). Dechlorinating culture GP harbored Dhgm-

type Chloroflexi, phylum WWE1, and hydrogenotrophic methanogens, and this 

community could be maintained in defined, bicarbonate-buffered medium amended with 

lactate and VC.  Thus, culture GP is a potential source for isolating representative culture 

from bacterial phylum WWE1, which has been proposed as candidate phylum 

Cloacimonetes (52).  

 

Among the organohalide-respiring Chloroflexi, Dhc have received most attention because 

of their ability to detoxify priority pollutants (12, 26), their demonstrated relevance for in 

situ bioremediation (5), and the availability of representative isolates (11, 12, 53) and 

bioaugmentation consortia (54). The presence and abundance of Dhc has been linked to 

ethene formation and the value of monitoring Dhc 16S rRNA genes and the Dhc RDase 

genes tceA, vcrA and bvcA for supporting contaminated site management decisions has 

been demonstrated (55). At sites, where VC disappearance was observed but Dhc were 

not detected, VC degradation was attributed to other processes, including abiotic 
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reactions mediated by mineral phases such as magnetite (56, 57) or aerobic microbial VC 

oxidation (58-60). The discovery of non-Dhc populations carrying novel VC RDase 

genes indicates that a broader diversity of microorganisms contributes to anaerobic VC 

detoxification. This relevant observation demonstrates that the absence of known Dhc 

biomarker genes should not be used as an argument that the microbial reductive 

dechlorination process is not driving contaminant removal. A survey of 1,237 

groundwater wells from chlorinated solvent-impacted sites demonstrated that Dhgm were 

as equally distributed as Dhc, and in fact more abundant than Dhc at 77% of the wells 

examined. The known Dhgm genomes indicate a strict organohalide-respiring energy 

metabolism, and it is very likely that the presence of Dhgm implies that these bacteria are 

metabolically active. Thus, the contribution of this organismal group to attenuation of 

chlorinated solvent contaminant plumes is probably far greater than is currently realized. 

Apparently, both Dhgm and Dhc are distributed in contaminated aquifers, and at the 

majority of sites not impacted by bioaugmentation with Dhc-containing consortia, Dhgm 

outnumber Dhc cells.  

 

Collectively, these results demonstrate that pristine environments (e.g., grape pomace 

compost) harbor strictly organohalide-respiring bacteria and can be a source of novel 

RDases, such as CerA, involved in detoxification of the priority pollutant VC. Dhgm 

bacteria are commonly present in contaminated aquifers, and evidence that this bacterial 

group contributes to VC detoxification has implication for contaminated site assessment 

and monitoring, and thus will affect decision-making. The findings emphasize that 
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organohalide-respiring Chloroflexi participate in the natural cycling of chlorine, and also 

highlight that the global biogeochemical cycle of halogens is currently poorly understood.  

  



113 

 

References 

 

1. McCarty PL. 2010. Groundwater contamination by chlorinated solvents: history, 

remediation technologies and strategies, p. 1-28. In Stroo HF, Ward CH (ed.), In Situ 

Remediation of Chlorinated Solvent Plumes. Springer, New York. 

 

2. Wartenberg D, Reyner D, Scott CS. 2000. Trichloroethylene and cancer: 

epidemiologic evidence. Environ Health Perspect 108 Suppl 2:161-176. 

 

3. Goldman SM, Quinlan PJ, Ross GW, Marras C, Meng C, Bhudhikanok GS, 

Comyns K, Korell M, Chade AR, Kasten M, Priestley B, Chou KL, Fernandez HH, 

Cambi F, Langston JW, Tanner CM. 2012. Solvent exposures and Parkinson disease 

risk in twins. Ann Neurol 71:776-784. 

 

4. Kielhorn J, Melber C, Wahnschaffe U, Aitio A, Mangelsdorf I. 2000. Vinyl 

chloride: still a cause for concern. Environ Health Perspect 108:579-588. 

 

5. Löffler FE, Edwards EA. 2006. Harnessing microbial activities for 

environmental cleanup. Curr Opin Biotechnol 17:274-284. 

 

6. Gerritse J, Renard V, Gomes TMP, Lawson PA, Collins MD, Gottschal JC. 

1996. Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by 

reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch 

Microbiol 165:132-140. 

 

7. Luijten ML, de Weert J, Smidt H, Boschker HT, de Vos WM, Schraa G, 

Stams AJ. 2003. Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, 

tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the 

genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. Int J Syst Evol 

Microbiol 53:787-793. 

 

8. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, 

Vazquez F, Weiss N, Zehnder AJB. 1998. Dehalobacter restrictus gen. nov. and sp. 

nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and 

trichloroethene in an anaerobic respiration. Arch Microbiol 169:313-321. 

 

9. Sung Y, Ritalahti KM, Sanford RA, Urbance JW, Flynn SJ, Tiedje JM, 

Löffler FE. 2003. Characterization of two tetrachloroethene-reducing, acetate-oxidizing 

anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl 

Environ Microbiol 69:2964-2974. 

 

10. Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramos-Hernandez N, 

Sanford RA, Mesbah NM, Löffler FE. 2006. Geobacter lovleyi sp. nov. strain SZ, a 



114 

 

novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ 

Microbiol 72:2775-2782. 

 

11. Maymó-Gatell X, Chien Y-t, Gossett JM, Zinder SH. 1997. Isolation of a 

bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568-

1571. 

 

12. He JZ, Ritalahti KM, Yang KL, Koenigsberg SS, Löffler FE. 2003. 

Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. 

Nature 424:62-65. 

 

13. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, 

Muller JA, Fullerton H, Zinder SH, Spormann AM. 2013. Dehalococcoides mccartyi 

gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to 

halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia 

classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. 

nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63:625-635. 

 

14. Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L. 

2013. Overview of organohalide-respiring bacteria and a proposal for a classification 

system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 368:20120322. 

 

15. Lu X, Wilson JT, Kampbell DH. 2006. Relationship between Dehalococcoides 

DNA in ground water and rates of reductive dechlorination at field scale. Water Res 

40:3131-3140. 

 

16. He YT, Wilson JT, Su C, Wilkin RT. 2015. Review of abiotic degradation of 

chlorinated solvents by reactive iron minerals in aquifers. Ground Water Monit R 35:57-

75. 

 

17. Da Silva ML, Alvarez P. 2008. Exploring the correlation between halorespirer 

biomarker concentrations and TCE dechlorination rates. J Environ Eng 134:895-901. 

 

18. Gribble GW. 2015. A recent survey of naturally occurring organohalogen 

compounds. Environ Chem 12:396-405. 

 

19. Keppler F, Borchers R, Pracht J, Rheinberger S, Scholer HF. 2002. Natural 

formation of vinyl chloride in the terrestrial environment. Environ Sci Technol 36:2479-

2483. 

 

20. Krzmarzick MJ, Crary BB, Harding JJ, Oyerinde OO, Leri AC, Myneni SC, 

Novak PJ. 2012. Natural niche for organohalide-respiring Chloroflexi. Appl Environ 

Microbiol 78:393-401. 

 



115 

 

21. Öberg G. 2002. The natural chlorine cycle–fitting the scattered pieces. Appl 

Microbiol Biotechnol 58:565-581. 

 

22. Hug LA, Beiko RG, Rowe AR, Richardson RE, Edwards EA. 2012. 

Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: 

the role of the non-dechlorinating community. BMC Genomics 13:327. 

 

23. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. 

CheckM: assessing the quality of microbial genomes recovered from isolates, single 

cells, and metagenomes. Genome Res 25:1043-1055. 

 

24. Bowman KS, Nobre MF, da Costa MS, Rainey FA, Moe WM. 2013. 

Dehalogenimonas alkenigignens sp. nov., a chlorinated-alkane-dehalogenating bacterium 

isolated from groundwater. Int J Syst Evol Microbiol 63:1492-1498. 

 

25. Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD. 2010. Combined 

prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics 

26:2811-2817. 

 

26. Wang S, Chng KR, Wilm A, Zhao S, Yang KL, Nagarajan N, He J. 2014. 

Genomic characterization of three unique Dehalococcoides that respire on persistent 

polychlorinated biphenyls. Proc Natl Acad Sci U S A 111:12103-12108. 

 

27. Hamel PP, Dreyfuss BW, Xie Z, Gabilly ST, Merchant S. 2003. Essential 

histidine and tryptophan residues in CcsA, a system II polytopic cytochrome c biogenesis 

protein. J Biol Chem 278:2593-2603. 

 

28. Ramos AR, Grein F, Oliveira GP, Venceslau SS, Keller KL, Wall JD, Pereira 

IA. 2015. The FlxABCD-HdrABC proteins correspond to a novel NADH 

dehydrogenase/heterodisulfide reductase widespread in anaerobic bacteria and involved 

in ethanol metabolism in Desulfovibrio vulgaris Hildenborough. Environ Microbiol 

17:2288-2305. 

 

29. Jugder BE, Ertan H, Lee M, Manefield M, Marquis CP. 2015. Reductive 

dehalogenases come of age in biological destruction of organohalides. Trends Biotechnol 

33:595-610. 

 

30. Wang S, He J. 2013. Phylogenetically distinct bacteria involve extensive 

dechlorination of aroclor 1260 in sediment-free cultures. PLoS One 8:e59178. 

 

31. Klaus J, Kourafalou V, Piggot A, Reniers A, Kang H, Kumar N, Zahran E, 

Bachas L, Fernandez A, Gardinali P, Toborek M, Daunert S, Deo S, Solo-Gabriele 

H. 2016. Potential impacts of PCBs on sediment microbiomes in a tropical marine 

environment. J Mar Sci Eng 4:13. 



116 

 

32. Gribble GW. 2010. Occurrence, p. 9-348, Naturally Occurring Organohalogen 

Compounds - A Comprehensive Update. Springer Vienna, Vienna. 

 

33. Fahimi IJ, Keppler F, Scholer HF. 2003. Formation of chloroacetic acids from 

soil, humic acid and phenolic moieties. Chemosphere 52:513-520. 

 

34. Keppler F, Eiden R, Niedan V, Pracht J, Scholer HF. 2000. Halocarbons 

produced by natural oxidation processes during degradation of organic matter. Nature 

403:298-301. 

 

35. Bastviken D, Thomsen F, Svensson T, Karlsson S, Sanden P, Shaw G, 

Matucha M, Oberg G. 2007. Chloride retention in forest soil by microbial uptake and 

by natural chlorination of organic matter. Geochimica Et Cosmochimica Acta 71:3182-

3192. 

 

36. Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA. 2009. 

Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating 

bacterium isolated from chlorinated solvent-contaminated groundwater. Int J Syst Evol 

Microbiol 59:2692-2697. 

 

37. Lorah MM, Majcher EH, Jones EJ, Voytek MA. 2008. Microbial consortia 

development and microcosm and column experiments for enhanced bioremediation of 

chlorinated volatile organic compounds, West Branch Canal Creek wetland area, 

Aberdeen Proving Ground, Maryland, p. 1-79. USGS Scientific Investigations Report 

2007-5165. 

 

38. Löffler FE, Ritalahti KM, Tiedje JM. 1997. Dechlorination of chloroethenes is 

inhibited by 2-bromoethanesulfonate in the absence of methanogens. Appl Environ 

Microbiol 63:4982-4985. 

 

39. Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP, 

Banfield JF. 2009. Community-wide analysis of microbial genome sequence signatures. 

Genome Biol 10:R85. 

 

40. Luo C, Tsementzi D, Kyrpides NC, Konstantinidis KT. 2012. Individual 

genome assembly from complex community short-read metagenomic datasets. Isme J 

6:898-901. 

 

41. Sung Y, Ritalahti KM, Apkarian RP, Löffler FE. 2006. Quantitative PCR 

confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring 

Dehalococcoides isolate. Appl Environ Microbiol 72:1980-1987. 

 



117 

 

42. Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L. 2005. Genome 

sequence of the chlorinated compound–respiring bacterium Dehalococcoides species 

strain CBDB1. Nat Biotechnol 23:1269-1273. 

 

43. Siddaramappa S, Challacombe JF, Delano SF, Green LD, Daligault H, Bruce 

D, Detter C, Tapia R, Han S, Goodwin L, Han J, Woyke T, Pitluck S, Pennacchio L, 

Nolan M, Land M, Chang YJ, Kyrpides NC, Ovchinnikova G, Hauser L, Lapidus A, 

Yan J, Bowman KS, da Costa MS, Rainey FA, Moe WM. 2012. Complete genome 

sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9(T)) and 

comparison to "Dehalococcoides" strains. Stand Genomic Sci 6:251-264. 

 

44. Low A, Shen Z, Cheng D, Rogers MJ, Lee PK, He J. 2015. A comparative 

genomics and reductive dehalogenase gene transcription study of two chloroethene-

respiring bacteria, Dehalococcoides mccartyi strains MB and 11a. Sci Rep 5:15204. 

 

45. Chouari R, Le Paslier D, Dauga C, Daegelen P, Weissenbach J, Sghir A. 

2005. Novel major bacterial candidate division within a municipal anaerobic sludge 

digester. Appl Environ Microbiol 71:2145-2153. 

 

46. Chojnacka A, Szczesny P, Blaszczyk MK, Zielenkiewicz U, Detman A, 

Salamon A, Sikora A. 2015. Noteworthy facts about a methane-producing microbial 

community processing acidic effluent from sugar beet molasses fermentation. PLoS One 

10:e0128008. 

 

47. Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R, Riviere D, 

Ganesan A, Daegelen P, Sghir A, Cohen GN, Medigue C, Weissenbach J, Le Paslier 

D. 2008. "Candidatus Cloacamonas acidaminovorans": genome sequence reconstruction 

provides a first glimpse of a new bacterial division. J Bacteriol 190:2572-2579. 

 

48. Gies EA, Konwar KM, Beatty JT, Hallam SJ. 2014. Illuminating microbial 

dark matter in meromictic Sakinaw Lake. Appl Environ Microbiol 80:6807-6818. 

 

49. Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, 

Williams KH, Tringe SG, Banfield JF. 2013. Community genomic analyses constrain 

the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in 

sediment carbon cycling. Microbiome 1:22. 

 

50. Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, VerBerkmoes 

NC, Wilkins MJ, Hettich RL, Lipton MS, Williams KH, Long PE, Banfield JF. 
2012. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial 

phyla. Science 337:1661-1665. 

 

51. Wrighton KC, Castelle CJ, Wilkins MJ, Hug LA, Sharon I, Thomas BC, 

Handley KM, Mullin SW, Nicora CD, Singh A, Lipton MS, Long PE, Williams KH, 



118 

 

Banfield JF. 2014. Metabolic interdependencies between phylogenetically novel 

fermenters and respiratory organisms in an unconfined aquifer. Isme J 8:1452-1463. 

 

52. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, 

Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, 

Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin 

EM, Hugenholtz P, Woyke T. 2013. Insights into the phylogeny and coding potential of 

microbial dark matter. Nature 499:431-437. 

 

53. Adrian L, Rahnenfuhrer J, Gobom J, Holscher T. 2007. Identification of a 

chlorobenzene reductive dehalogenase in Dehalococcoides sp. strain CBDB1. Appl 

Environ Microbiol 73:7717-7724. 

 

54. Löffler FE, Ritalahti KM, Zinder SH. 2013. Dehalococcoides and reductive 

dechlorination of chlorinated solvents, p. 39-88. In Stroo HF, Leeson A, Ward CH (ed.), 

Bioaugmentation for groundwater remediation. Springer. 

 

55. Lebron CA, Petrovskis E, Löffler F, Henn K. 2011. Application of Nucleic 

Acid-Based Tools for Monitoring Monitored Natural Attenuation (MNA), Biostimulation 

and Bioaugmentation at Chlorinated Solvent Sites. DTIC Document. 

 

56. Lee W, Batchelor B. 2002. Abiotic reductive dechlorination of chlorinated 

ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environ Sci Technol 

36:5147-5154. 

 

57. Ferrey ML, Wilkin RT, Ford RG, Wilson JT. 2004. Nonbiological removal of 

cis-dichloroethylene and 1,1-dichloroethylene in aquifer sediment containing magnetite. 

Environ Sci Technol 38:1746-1752. 

 

58. Mattes TE, Alexander AK, Coleman NV. 2010. Aerobic biodegradation of the 

chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 

34:445-475. 

 

59. Öberg G, Bastviken D. 2012. Transformation of chloride to organic chlorine in 

terrestrial environments: variability, extent, and implications. Crit Rev Env Sci Tec 

42:2526-2545. 

 

60. Coleman NV, Mattes TE, Gossett JM, Spain JC. 2002. Phylogenetic and 

kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. 

Appl Environ Microbiol 68:6162-6171. 

 

61. Löffler FE, Sanford RA, Ritalahti KM. 2005. Enrichment, cultivation, and 

detection of reductively dechlorinating bacteria. Method Enzymol 397:77-111. 

 



119 

 

62. Wolin EA, Wolin MJ, Wolfe RS. 1963. Formation of methane by bacterial 

extracts. J Biol Chem 238:2882-2886. 

 

63. Yan J, Rash BA, Rainey FA, Moe WM. 2009. Detection and quantification of 

Dehalogenimonas and "Dehalococcoides" populations via PCR-based protocols targeting 

16S rRNA genes. Appl Environ Microbiol 75:7560-7564. 

 

64. Ritalahti KM, Löffler FE, Rasch EE, Koenigsberg SS. 2005. Bioaugmentation 

for chlorinated ethene detoxification: bioaugmentation and molecular diagnostics in the 

bioremediation of chlorinated ethene-contaminated sites. Industrial Biotechnology 1:114-

118. 

 

65. Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE. 2006. 

Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously 

monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72:2765-2774. 

 

66. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, 

Owens SM, Betley J, Fraser L, Bauer M. 2012. Ultra-high-throughput microbial 

community analysis on the Illumina HiSeq and MiSeq platforms. The ISME journal 

6:1621-1624. 

 

67. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, 

Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a 

depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516-4522. 

 

68. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, 

Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger 

GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: open-source, platform-

independent, community-supported software for describing and comparing microbial 

communities. Appl Environ Microbiol 75:7537-7541. 

 

69. Patel RK, Jain M. 2012. NGS QC Toolkit: a toolkit for quality control of next 

generation sequencing data. PLoS One 7:e30619. 

 

70. Oh S, Caro-Quintero A, Tsementzi D, DeLeon-Rodriguez N, Luo C, Poretsky 

R, Konstantinidis KT. 2011. Metagenomic insights into the evolution, function, and 

complexity of the planktonic microbial community of Lake Lanier, a temperate 

freshwater ecosystem. Appl Environ Microbiol 77:6000-6011. 

 

71. Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly 

using de Bruijn graphs. Genome Res 18:821-829. 

 

72. Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J. 2012. Ray 

Meta: scalable de novo metagenome assembly and profiling. Genome Biol 13:R122. 



120 

 

73. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. 

Nat Methods 9:357-359. 

 

74. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using 

DIAMOND. Nat Methods 12:59-60. 

 

75. Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC. 2011. 

Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552-

1560. 

 

76. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M, 

de Crécy-Lagard V, Diaz N, Disz T, Edwards R. 2005. The subsystems approach to 

genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids 

Res 33:5691-5702. 

 

77. Glass EM, Meyer F. 2011. The metagenomics RAST server: a public resource 

for the automatic phylogenetic and functional analysis of metagenomes. Handbook of 

Molecular Microbial Ecology I: Metagenomics and Complementary Approaches:325-

331. 

 

78. Parks DH, Tyson GW, Hugenholtz P, Beiko RG. 2014. STAMP: statistical 

analysis of taxonomic and functional profiles. Bioinformatics 30:3123-3124. 

 

79. Strous M, Kraft B, Bisdorf R, Tegetmeyer HE. 2012. The binning of 

metagenomic contigs for microbial physiology of mixed cultures. Front Microbiol 3:410. 

 

80. Laczny CC, Sternal T, Plugaru V, Gawron P, Atashpendar A, Margossian 

HH, Coronado S, van der Maaten L, Vlassis N, Wilmes P. 2015. VizBin-an 

application for reference-independent visualization and human-augmented binning of 

metagenomic data. Microbiome 3:1. 

 

81. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, 

Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. 

The SEED and the Rapid Annotation of microbial genomes using Subsystems 

Technology (RAST). Nucleic Acids Res 42:D206-214. 

 

82. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 

30:2068-2069. 

 

83. Pruitt KD, Tatusova T, Maglott DR. 2007. NCBI reference sequences 

(RefSeq): a curated non-redundant sequence database of genomes, transcripts and 

proteins. Nucleic Acids Res 35:D61-65. 

 



121 

 

84. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software 

version 7: improvements in performance and usability. Mol Biol Evol 30:772-780. 

 

85. Posada D. 2008. jModelTest: phylogenetic model averaging. Mol Biol Evol 

25:1253-1256. 

 

86. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 

2010. New algorithms and methods to estimate maximum-likelihood phylogenies: 

assessing the performance of PhyML 3.0. Syst Biol 59:307-321. 

 

87. Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in 

the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 

10:512-526. 

 

88. Hug LA, Edwards EA. 2013. Diversity of reductive dehalogenase genes from 

environmental samples and enrichment cultures identified with degenerate primer PCR 

screens. Front Microbiol 4:341. 

 

89. Letunic I, Bork P. 2011. Interactive Tree Of Life v2: online annotation and 

display of phylogenetic trees made easy. Nucleic Acids Res 39:W475-478. 

 

90. Chourey K, Jansson J, VerBerkmoes N, Shah M, Chavarria KL, Tom LM, 

Brodie EL, Hettich RL. 2010. Direct cellular lysis/protein extraction protocol for soil 

metaproteomics. J Proteome Res 9:6615-6622. 

 

91. Chourey K, Nissen S, Vishnivetskaya T, Shah M, Pfiffner S, Hettich RL, 

Löffler FE. 2013. Environmental proteomics reveals early microbial community 

responses to biostimulation at a uranium- and nitrate- contaminated site. Proteomics 

13:2921-2930. 

 

92. Thompson MR, VerBerkmoes NC, Chourey K, Shah M, Thompson DK, 

Hettich RL. 2007. Dosage-dependent proteome response of Shewanella oneidensis MR-

1 to acute chromate challenge. J Proteome Res 6:1745-1757. 

 

93. Sharma R, Dill BD, Chourey K, Shah M, VerBerkmoes NC, Hettich RL. 

2012. Coupling a detergent lysis/cleanup methodology with intact protein fractionation 

for enhanced proteome characterization. J Proteome Res 11:6008-6018. 

 

94. Brown SD, Thompson MR, Verberkmoes NC, Chourey K, Shah M, Zhou J, 

Hettich RL, Thompson DK. 2006. Molecular dynamics of the Shewanella oneidensis 

response to chromate stress. Mol Cell Proteomics 5:1054-1071. 

 



122 

 

95. Tabb DL, Fernando CG, Chambers MC. 2007. MyriMatch: highly accurate 

tandem mass spectral peptide identification by multivariate hypergeometric analysis. J 

Proteome Res 6:654-661. 

 

96. Xiong W, Abraham PE, Li Z, Pan C, Hettich RL. 2015. Microbial 

metaproteomics for characterizing the range of metabolic functions and activities of 

human gut microbiota. Proteomics 15:3424-3438. 

 

97. Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC, 

Conaway JW, Florens L, Washburn MP. 2006. Quantitative proteomic analysis of 

distinct mammalian Mediator complexes using normalized spectral abundance factors. 

Proc Natl Acad Sci U S A 103:18928-18933. 

 

  



123 

 

Appendix 

 

Figure S4.1 Grape pomace samples used for establishing microcosms 

 

 

 

Figure S4.2 Dechlorination of a) TCE, b) 1, 1-DCE c) cDCE, and d) VC by VC-enriched 

culture GP. (Blue filled circle-TCE, purple filled triange-1,1-DCE, red filled square-

cDCE, black filled diamond-VC, green open triangle-ethene and orange open square-

methane). The data points represent the average of triplicate cultures and the error bars 

are one standard deviation. 
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Figure S4.3 Phylogenetic analysis of formate dehydrogenases among putative and 

characterized formate dehydrogenases. All sequences were aligned by MUSCLE in 

Geneious software; and the tree was built based on previous alignment by FastTree in 

Geneious. Scale bar indicated 0.5 amino acid substitutions per site. 
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Table S4.1 Highly expressed proteins detected by proteomics. 

 Average of normalized spectral counts (nSpc)  

Protein 
Starved VC 

enrichment culture 
VC-fed 
culture 

TCE-fed 
culture 

cDCE-fed 
culture 

1,1-DCE-fed  
culture 

Protein description 

PROKKA_01118 7515.55 13733.03 15065.80 13557.64 16707.29 Co-chaperonin GroES 

PROKKA_01119 4991.84 10481.78 9835.54 9180.91 8770.31 Chaperone GroEL 

PROKKA_01145 2247.41 1921.01 1497.33 987.19 1015.84 Hypothetical protein 

PROKKA_01650 2228.71 3630.08 3473.64 5100.72 3397.74 Heat shock protein Hsp20 

PROKKA_02004 2152.66 1168.84 473.61 914.34 280.03 CerA vinyl chloride reductase 

PROKKA_01029 2039.75 727.68 475.09 663.57 695.65 
DNA repair and recombination protein 

RadA 

PROKKA_00277 1650.88 2905.44 2484.33 2241.27 1902.19 Elongation factor Tu 

PROKKA_01300 1514.07 0.00 52.97 159.44 815.50 Reductive dehalogenase 

PROKKA_00800 1437.57 1732.79 1759.87 1258.86 1154.16 Hypothetical protein 

PROKKA_00285 1325.31 866.77 870.07 966.88 806.69 50S ribosomal protein L7/L12 

PROKKA_01751 1188.78 1555.33 1890.23 1024.40 836.32 Rubrerythrin 
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CHAPTER V DEVELOPMENT OF DECISION-MAKING TOOL: 

BIOLOGICAL PATHWAY IDENTIFICATION CRITERIA (BIOPIC) 
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Abstract 

 

Monitored natural attenuation (MNA) is a remedy harnessing naturally occurring 

biological and abiotic processes to clean up sites impacted by chlorinated solvents. At 

contaminated sites where MNA alone cannot meet remediation goals, engineering 

strategies including bioaugmentation and biostimulation are introduced to clean up the 

contaminations. Several guidance and protocols on implementing in situ bioremediation 

of chlorinated solvents have been published by government agencies, such as ESTCP 

(Environmental Security Technology Certification Program) and AFCEE (Air Force 

Center for Environmental Excellence). A quantitative framework to direct the remedial 

practitioners to select the appropriate bioremediation strategy is lacking in these 

government guidance and recommendations. This research is aimed to develop a 

quantitative framework by correlating site-specific biogeochemical and aquifer matrix 

parameters with pseudo first order rate constants to estimate in situ degradation rates of 

chlorinated contaminants. In addition, a user-friendly, Excel-based screening tool named 

BioPIC (Biological Pathway Identification Criteria) was developed.  Together, the 

quantitative framework and BioPIC are intended to allow the remedial practitioners to 

select the most efficient remedial strategies in order to minimize detrimental 

environmental impacts and reduce cleanup costs. 

 

Introduction 

 

Analytical and numerical modeling has become a valuable tool for remediation project 

managers to design appropriate remediation plans based on cost-effectiveness analysis. 
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Due to the complexity of contaminated sites, some key challenges, such as the 

incorporation of biological reactions terms into the models, needs to be addressed. 

Researchers have improved the methodology by developing different analytical and 

numerical models to more accurately simulate the fate and transport of chlorinated 

solvents in the subsurface environment (1). Commonly used analytical models include 

Biochlor, REMChlor, ART3D, Natural Attenuation software (NAS), MNAtoolbox and 

BioBalance Toolkit, while numerical models include SEAM3D, BioRedox, RT3D, 

MISER and PHT3D. These modeling tools have been applied to different sites based on 

site-specific aims and requirements. Among these tools, the updated Biochlor version 2.2 

can be used to estimate biotransformation rate constants (2). 

 

Briefly, Biochlor is a screening model that simulates remediation by natural attenuation 

of dissolved solvents at chlorinated solvent release sites 

(http://www.epa.gov/ada/csmos/models/biochlor.html). This tool has three types of 

models: 1) solute transport without decay; 2) solute transport with biotransformation 

modeled as a sequential first-order decay process; 3) solute transport with 

biotransformation modeled as a sequential first-order decay process with two different 

reaction zones (i.e., each zone has a different set of rate coefficient values). Figure 5.1 

shows the input screen of Biochlor and detailed explanations of the input parameters can 

be found in the manual (3). Biochlor output includes plume centerline graphs (Figure 

5.2), three-dimensional color plots of plume concentrations and mass balance data 

showing the contaminant mass removal by each chlorinated solvent (Figure 5.3) which 
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Figure 5.1 Input screen of Biochlor. NAS North Island Site 5 Unite 2, CA. 

 

can be obtained by clicking the corresponding buttons using the input interface. 

Following the protocol developed by Wiedemeier et al. (4, 5), Clement et al. conducted a 

case study on a chlorinated solvent Superfund site located in Louisiana, USA. The site 

data combined with Biochlor modeling results indicated that the chlorinated solvents 

plume could be naturally attenuated within 1,000 feet down gradient from the source 

zone before reaching the exposure point; therefore, monitored natural attenuation could 

be considered as one of the feasible remediation options for the site (6). Aziz et al. 

compiled a Biochlor chlorinated solvent plume database to aid site managers to estimate 

potential effectiveness of natural attenuation for plume management by offering them 

general plume length and to estimate field-scale biodegradation rate constants 

(https://clu-in.org/download/contaminantfocus/tce/BIOCHLOR-plume-database.pdf). 
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Figure 5.2 Individual centerline output for VC. NAS North Island Site 5 Unite 2, CA 

 

Figure 5.3 Array concentration output for VC. NAS North Island Site 5 Unite 2, CA. 



131 

 

The previous researches validated the application of Biochlor tool to investigate in situ 

bioremediation. 

 

The protocol developed by Wiedemeier et al. was published in 1996 (4,5), and new 

results and findings since then make revising the protocol a necessity. Based on the 

previous protocol, a quantitative framework has been developed, which will help 

remediation project managers to select the most appropriate bioremediation strategy for a 

given chlorinated solvent site (http://www.serdp.org/Program-Areas/Environmental-

Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-201129).  

 

This research project consists of the following sequential tasks:  

 Developing a database including more than 100 different geophysical, 

geochemical and biological parameters, such as hydraulic conductivity, 

porosity, seepage velocity, temperature, pH, concentrations of sulfate, 

nitrate, and chlorinated solvents, bacterial 16S rRNA gene copies. This 

database will be used to model biodegradation rate constants and conduct 

statistical modeling analysis.  

 Using the Biochlor software to model and estimate biotransformation rate 

constants of selected contaminated sites. 

 Developing a decision support tool (programmed in a Microsoft Excel 

spreadsheet environment) that can be used to link quantifiable 

biogeochemical parameters with remediation of chlorinated ethenes. 

http://www.serdp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-201129
http://www.serdp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-201129
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Materials and Methods 

 

Methods for estimating pseudo first order biotransformation rate by Biochlor. A 

database derived from several site remedial investigation reports and site monitoring data 

was compiled before estimating the field-scale biodegradation rate constants. Rate 

constants were estimated by calibrating the Biochlor model to in situ chlorinated solvents 

concentrations along the selected plume centerline. This centerline was identified in two 

steps: 1) finding the potentiometric surface map and identify the flow path, and 2) 

choosing the monitoring wells from source zone to the downstream along the flow path 

(Note: only wells with a D.O. (Dissolved Oxygen) concentration of less than 1 mg/L 

were chosen indicating anoxic conditions along the plume). Seepage velocity, one of the 

most important parameters in the Biochlor model, could be either calculated from the 

mean hydraulic conductivity, hydraulic gradient and porosity, or extracted from the 

database. Parameters, such as longitudinal dispersivity, transverse dispersivity and 

vertical dispersivity were set as default values in accordance with the User’s Manual. The 

simulation time was estimated and adjusted to the respective contaminated sites. The 

concentrations of chlorinated solvents in the source zone area were treated as initial 

concentration data of the plume. Retardation factors, although considered as “less 

important and did not impact the magnitude of the rate constant” (7), were calculated in 

the Biochlor model or assumed from experiences. The hydrogeological data and 

monitoring well data that were entered into the Biochlor model were extracted from the 

previously compiled database. The biodegradation rate constants were estimated by 
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adjusting the rate constants until the Biochlor modeling fitted the concentrations of 

chlorinated solvents in situ.  

Results and Discussion 

 

Database development. A database (Microsoft Excel) with more than 100 parameters 

(see Appendix) was extracted from remedial investigation documents from 21 

contaminated sites (Figure 5.4). This database will be utilized to estimate biodegradation 

rate constants of chlorinated solvents. 

 

Estimation of rate constants. The Biochlor modeling tool was applied to estimate the 

biotransformation rates for different chlorinated solvents at 21 contaminated sites. Table 

5.1 shows a summary of pseudo-first order rate constants for selected chlorinated ethenes. 

 

Development of decision-making tool (BioPIC). A quantitative framework that will aid 

remediation project managers in evaluating and selecting the most appropriate 

biologically-mediated remediation strategy for a given chlorinated solvent site is updated 

and developed (Figure 5.5). This quantitative framework will then be developed into a 

decision support tool (BioPIC: Biological Pathway Identification Criteria) based on the 

Microsoft Excel platform. BioPIC, following the USEPA lines of evidence for Monitored 

Natural Attenuation (MNA), is intended to support and facilitate the remedial 

investigation process to determine if MNA would be an effective remediation strategy at 

a specific contaminated sites. If MNA is not appropriate, BioPIC also provides guidance 

on selecting bioaugmentation or biostimulation during in situ bioremediation. BioPIC and 
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users’ manual can be accessed at https://www.serdp-estcp.org/Program-

Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-

Contamination/ER-201129/ER-201129. 

 

 

Figure 5.4 Screenshot of the excel-based database 

 

 

 

 

 

 

 

 

https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-201129/ER-201129
https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-201129/ER-201129
https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-201129/ER-201129
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Table 5.1 Summary of source zone concentrations and pseudo first order rate constants 

of chlorinated ethenes at various contaminated sites 

Facility/ Location Date 

PCE TCE cDCE VC PCE TCE cDCE VC 

Concentration near source (µg/L) 
Pseudo-first order rate constant for dechlorination 

(per year) 

Cecil  OU9 Site 59-Northern 

Plume 
 1.1 0.006 0 0  0.277 3.3 2.567 

Cecil  OU9 Site 59-Southern 
Plume 

 0.477     0.277 3.3 2.567 

NASNI-OU-11 2000  310000 14000 0  0.7 1.2 5 

Parris Island-Site45-Lower 2005 11 3.3 0.23 0.02 3.5 0.9 0.8 3 

Parris Island-Site45-Upper 2005 0.7 35 110 3 1 10 6 60 

Parris Island-Site45-RFI 2004 18.8 3.15 0.825 0 1.12 0.77 3.47 2.77 

Parris Island-Site45-RI 2004 18.8 3.15 0.825 0 0.28 0.07 0.23 1.39 

NAS-Whiting-Site 3-Shallow 1994  0.55 0 0  0.2   

NAS-Whiting-Site 3-

Intermediate 
2011      0.38   

Plasttsburgh AFB 1996  562 12602 0  0.7 0.9 0.5 

NCBC Gulfport, Mississippi-Site 
4 

2004  0.12 1.77 1.6  18 11 25 

KingsBay-Site 11 1997 4500    0.8 1.6 2.5 3 

NSA-MidSouth 1997  1.16 0.212   0.35 8.5  

Charleston SWMU 12 1999 6.15 12.8 1.32 0.7 0.1 0.2 0.15 10 

Charleston SWMU 17 2004  31 0.354   2.2 3.7  

NASNI Site 5 OU 2 2005.July   500 87   15 10 

NASNI Site 5 OU 2 2005.July 25 120 525 87 6.5 7.5 15 6 

NASNI Site 5 OU 2 2007.Sept 0.1 0.16 322.3 18 9 11 16 15 

NASNI Site 5 OU 2 2008.Mar   125.6 18   2 0.1 

Aniston-Landfill Area 2002 2.2 19 13.061 0.1 1.1 0.6 0.45 60 

Aniston-Trench Area 1995 2.2 15 2 0.8 1.5 3.2 4 30 

Aniston-North East Area 2003.Mar 3 23   0.27 0.3 0.65 1 

Aniston-Industrial Area 2003.Mar  2.8 2.3   1.1 2  

Hill AFB-O10-Shallow Plume 
2006 

Winter 
     0.021   

Hill AFB-O10-Shallow Plume 
2006 

Summer 
     0.039   

Hill AFB-O10-Shallow Plume 
2005 

Summer 
     0.034   

Hill AFB-O10-Shallow Plume 
2004 

Winter 
     0.079   

Hill AFB-O10-Shallow Plume 
2004 

Summer 
     0.056   

Hill AFB-O10-Deep Northen 

Plume 

2007 

Summer 
     0.116(0.07-.021) 

0.10(0.08-

0.13) 
 

Hill AFB-O10-Deep Southern 

Plume 

2006 

Summer 
     0.188 0.36  

Hill AFB-O10-Deep Southern 

Plume 

2006 

Summer 
     0.212 0.338  

Hill AFB-O10-Deep Southern 

Plume 

2005 

Winter 
     0.279 0.472  

Hill AFB-O10-Deep Southern 
Plume 

2005 
Summer 

     0.243   

Hill AFB-O10-Deep Southern 

Plume 

2004 

Winter 
     0.258 0.357  
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Figure 5.5 Framework for decision-making tool BioPIC
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Appendix 

 

Table S5.1 Complete list of parameters in the database 

Parameter names 

Site name 
Methane dissolved in groundwater 

[mg/L] 
cis-1,2-Dichloroethene [µg/L] 

Site location (State) 
Methane dissolved in groundwater 

Flag 
cis-1,2-Dichloroethene Flag 

Well ID Butyrate [mg/L] cis-1,2-Dichloroethene δ13C (‰) 

Internal ID Butyrate  Flag cis-1,2-Dichloroethene δ37Cl (‰) 

Sample collected (mm/dd/yyyy) Propionate  [mg/L] cis-1,2-Dichloroethene δ2H (‰) 

Matrix (type of sample material 

provided) 
Propionate Flag trans-1,2-Dichloroethene [µg/L] 

Easting coordinates of well Lactate  [mg/L] trans-1,2-Dichloroethene Flag 

Northing coordinates of well Lactate Flag trans-1,2-Dichloroethene δ13C (‰) 

Ground surface elevation (altitude) 

[ft above mean sea level] 
Acetate  [mg/L] trans-1,2-Dichloroethene  δ37Cl (‰) 

Datum Elevation (i.e., top of well 

casing) [ft above mean sea level] 
Acetate Flag trans-1,2-Dichloroethene  δ2H (‰) 

Depth to top of screen [ft bgs] Carbon tetrachloride [µg/L] Vinyl chloride [µg/L] 

Depth to bottom of screen [ft bgs] Carbon tetrachloride Flag Vinyl chloride Flag 

Elevation top of Screen [feet msl] Carbon tetrachloride δ13C (‰) Vinyl chloride δ13C (‰) 

Elevation bottom of Screen [feet 

msl] 
Carbon tetrachloride δ37Cl (‰) Vinyl chloride δ37Cl (‰) 

Depth to water [ft below  datum 

(usually top of casing)] 
Chloroform [µg/L] Vinyl chloride δ2H (‰) 

Groundwater elevation [ft msl] Chloroform  Flag Ethene [µg/L] 

Sampling method: Low flow 

sampling 
Chloroform δ13C (‰) Ethene Flag 

Sampling method: Bailer Chloroform δ37Cl (‰) Ethene δ13C (‰) 

Sampling method: Hydropunch Chloroform δ2H (‰) Ethene δ2H (‰) 

Sampling method: Positive 

displacement pump 
Dichloromethane [µg/L] 

Total BTEX+TMB+Naphthalene 

[µg/L] 

Sampling method: Peristaltic pump Dichloromethane Flag 
Total BTEX+TMB+Naphthalene 

Flag 

Sampling method: Diffusion 

sampler 
Dichloromethane δ13C (‰) 1,4-Dioxane [µg/L] 

Sampling method: Biotrap or similar Dichloromethane δ37Cl (‰) 1,4-Dioxane  Flag 

Sampling method: Other Dichloromethane δ2H(‰) 
First order degradation rate along 

the flowpath  (PCE-yr-1) 

Hydraulic conductivity [ft/day] Chloromethane [µg/L] 
First order degradation rate along 

the flowpath  (TCE-yr-1) 

Hydraulic conductivity 

measurement technique [ft/day] (i.e., 

slug test, pumping test, literature 

value, etc.) 

Chloromethane Flag 
First order degradation rate along 

the flowpath (cDCE/yr-1) 

Most transmissive material 

encountered across screen interval 

(sand/silt/clay/fractures) 

1,1,1-Trichloroethane [µg/L] 
First order degradation rate along 

the flowpath (tDCE/yr-1) 
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Table S5.1 Continued. 

Parameter names 

How was effective porosity 

determined (measured or literature 

value) 

1,1,1-Trichloroethane δ2H (‰) 
Point rate decay constant (kpoint) 

TCE 

Porosity 1,1,1-Trichloroethane Flag 
First order degradation rate along 

the flowpath   (1,1-DCE-yr-1) 

How was porosity determined 

(measured or literature value) 
1,1,1-Trichloroethane δ13C (‰) 

First order degradation rate along 

the flowpath (VC-yr-1) 

Effective porosity 1,1,1-Trichloroethane δ37Cl (‰) 
Point rate decay  constant  (kpoint) 

PCE 

Seepage velocity [ft/ day] 1,2-Dichloroethane [µg/L] 
Point rate decay constant  (kpoint) 

cDCE 

Treatment (implemented) 1,2-Dichloroethane Flag 
Point rate decay constant (kpoint) 

tDCE 

Treatment details 1,2-Dichloroethane δ13C (‰) 
Point rate decay constant (kpoint) 

1,1-DCE 

Groundwater pH 1,2-Dichloroethane δ37Cl (‰) 
Point rate decay  constant (kpoint) 

VC 

Groundwater temperature [˚C] 1,2-Dichloroethane δ2H (‰) 
Biodegradation rate constant (λ) for 

PCE 

Electrical conductivity [µS/cm] 1,1-Dichloroethane [µg/L] 
Biodegradation rate constant (λ) for 

TCE 

Salinity (Percent) 1,1-Dichloroethane Flag 
Biodegradation rate constant (λ) for 

cDCE 

Salinity Flag 1,1-Dichloroethane δ13C (‰) 
Biodegradation rate constant (λ) for 

tDCE 

Dissolved oxygen (DO)[mg/L] 1,1-Dichloroethane δ37Cl (‰) 
Biodegradation rate constant (λ) for 

1,1-CE 

Dissolved oxygen (DO) Flag 1,1-Dichloroethane δ2H (‰) 
Biodegradation rate constant (λ) for 

VC 

ORP measured against a silver 

chloride reference electrode  [mV] 
Chloroethane [µg/L] Comments on degradation rates 

ORP measured against a silver 

chloride reference electrode Flag 
Chloroethane Flag 

Volume of groundwater provided 

for Microbial Analyses [mL] 

Total organic carbon (TOC) in 

groundwater [mg/L] 
Chloroethane δ13C (‰) 

Bacterial 16S rRNA genes [gene 

copies per L] 

Total organic carbon (TOC) in 

groundwater Flag 
Chloroethane δ37Cl (‰) 

Dhc 16S rRNA gene-targeted 

primers [gene copies per L] 

Total organic carbon (TOC) 

associated with solids [mg/kg] 
Chloroethane δ2H (‰) 

Ratio Dhc/Bac 16S rRNA gene copy 

numbers 

Total organic carbon (TOC) 

associated with solids Flag 
Ethane [µg/L] 

Geobacter lovleyi 16S rRNA gene-

targeted primers [gene copies per L] 

Dissolved organic carbon 

(DOC)[mg C/L] 
Ethane Flag 

Dhgm 16S rRNA gene-targeted 

primers [gene copies per L] 

Dissolved organic carbon (DOC) 

Flag 
Ethane δ13C (‰) 

Dhb restrictus 16S rRNA gene-

targeted primers [gene copies per L] 

Solids-associated organic carbon 

(Munsell color system) 
Ethane δ2H(‰) 

Dhb CF50 16S rRNA gene-targeted 

primers [gene copies per L] 

Solids-associated organic carbon 

(Munsell color system) Flag 
1,2,3-Trichloropropane [µg/L] 

Dehalobacterium formicoaceticum 

16S rRNA gene-targeted primers 

[gene copies per L] 

Hydrogen in groundwater  [nM] 1,2,3-Trichloropropane Flag 
Dhb RM1 16S rRNA gene-targeted 

primers [gene copies per L] 

Hydrogen in groundwater Flag 1,2,3-Trichloropropane δ13C (‰) 
Dsf BB1 16S rRNA gene-targeted 

primers [gene copies per L] 
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Table S5.1 Continued. 

Parameter names 

Sulfate in groundwater Flag 1,2-Dichloropropane δ37Cl (‰) pceA1 (Dhc) [gene copies per L] 

Chloride in groundwater [mg/L] 1,2,3-Trichloropropane δ37Cl (‰) bvcA [gene copies per L] 

Chloride in groundwater Flag 1,2,3-Trichloropropane δ2H (‰) vcrA [gene copies per L] 

Nitrate-N in groundwater  [mg/L] 1,2-Dichloropropane [µg/L] 
Ratio bvcA+vcrA/Dhc  gene copy 

numbers 

Nitrate-N in groundwater Flag 1,2-Dichloropropane  Flag tceA [gene copies per L] 

Sulfate in groundwater [mg/L] 1,2-Dichloropropane δ13C (‰) pceA1 (Dhc) [gene copies per L] 

Total Fe dissolved or suspended in 

groundwater [mg/L] 
1,2-Dichloropropane δ2H (‰) pceA (Geo) [gene copies per L] 

Total Fe dissolved or suspended in 

groundwater Flag 
Propene [µg/L] pceA (Dhb) [gene copies per L] 

Total Fe associated with solids 

[mg/kg] 
Propene Flag dcpA [gene copies per L] 

Total Fe associated with solids Flag Propene δ13C (‰) mbrA [gene copies per L] 

Fe2+ in groundwater [mg/L] Propene δ2H (‰) cbrA [gene copies per L] 

Fe2+ in groundwater Flag Tetrachloroethene [µg/L] cfrA [gene copies per L] 

Fe2+ associated with solids [mg/kg] Tetrachloroethene Flag dcrA [gene copies per L] 

Fe2+ associated with solids Flag Tetrachloroethene δ13C (‰) aprA [gene copies per L] 

Mn2+ in groundwater[mg/L] Tetrachloroethene δ37Cl (‰) dsrA [gene copies per L] 

Mn2+ in groundwater Flag Tetrachloroethene δ2H (‰) etnC [gene copies per L] 

Carbonate alkalinity [mg/L] Trichloroethene [µg/L] etnE [gene copies per L] 

Carbonate alkalinity Flag Trichloroethene Flag etnE2 [gene copies per L] 

Magnetic susceptibility (meter set to 

SI units) [m3/kg] 
Trichloroethene δ13C (‰) mcrA [gene copies per L] 

Magnetic susceptibility (meter set to 

SI units) Flag 
Trichloroethene δ37Cl (‰) General Comments 

Acid-volatile sulfide (FeS) [mg/kg] Trichloroethene δ2H (‰) Client or site owner 

Acid-volatile sulfide (FeS)  Flag 1,1-Dichloroethene [µg/L] Contact phone # (area-xxx-xxxx) 

Sulfide (as S) [mg/L] 1,1-Dichloroethene Flag Contact email address 

Sulfide (as S)  Flag 1,1-Dichloroethene δ13C (‰)  

Chromium-reducible sulfur [mg/kg] 1,1-Dichloroethene δ37Cl (‰)  

Chromium-reducible sulfur Flag 1,1-Dichloroethene δ2H (‰)  
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CHAPTER VI CONCLUSIONS 
 

Various biogeochemical factors (e.g., pH, microorganisms and nutrients) affect 

successfully applying in situ bioremediation to clean up chlorinated ethenes contaminated 

sites. This dissertation work is aimed at further developing our understanding about in 

situ bioremediation of chlorinated ethenes. Based on experimental results in previous 

chapters, conclusions and recommendations for in situ bioremediation are discussed. 

 

Various dechlorinating pure cultures and enrichments showed highest dechlorination 

activities at circumneutral pH. Only Sulfurospirillum multivorans dechlorinated PCE to 

cDCE at pH 5.5. The screening efforts suggest that dechlorinators capable of degrading 

chlorinated ethenes below pH 6.0 are not common. An enrichment culture was obtained 

that degraded PCE to cDCE at pH 5.5, from which two PCE dechlorinating isolates were 

obtained. One isolate dechlorinated PCE to TCE (strain PLC-TCE), and the other isolate 

degraded PCE to cDCE (strain PLC-DCE). Both isolates were identified as members of 

Sulfurospirillum. This finding suggested Sulfurospirillum may play a significant role in in 

situ bioremediation of chlorinated ethenes under low pH conditions. Also dechlorinating 

microbial community structure was affected by pH values. Dehalococcoides and its 

potential supporters (e.g. acetogens) were phased out from pH 5.5 environments after 

continuous transfers at pH 5.5, but dominated at pH 7.2. These findings suggested pH 

control was critical for applying Dhc to in situ bioremediation. 

 

Longer low pH exposure would take Dhc strains longer time to recover dechlorination 

activities. Dhc could tolerate up to 40 days’ low pH exposure, but Dhc was severely 

inhibited by low pH after 40 days’ low pH exposure, suggesting pH adjustment at low pH 

sites may be required in tandem with Dhc bioaugmentation. Furthermore, Dhc strains 

harboring tceA gene and Dhc strains with vcrA gene have different resistance to low pH 

condition, indicating dehalogenase may be susceptible to low pH differently. Although 

Dhc could not perform dechlorination at pH 5.5, Dhc may possess ATR (Acid Tolerant 
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Resistance) systems to survive at mildly acidic pH for extended period. But the 

mechanisms of Dhc surviving under low pH are still not well understood. 

 

It is also demonstrated that pristine environments (e.g., grape pomace compost) harbor 

strictly organohalide-respiring bacteria and can be a source of novel RDases, such as 

CerA, involved in detoxification of the priority pollutant VC. Dhgm bacterium is 

commonly present in contaminated aquifers, and evidence that this bacterial group 

contributes to VC detoxification has implication for contaminated site assessment and 

monitoring, and thus will affect decision-making. The findings further suggest that 

organohalide-respiring bacteria participate in chlorine cycling in pristine environments, 

and emphasize that the global biogeochemical cycle of halogens is currently poorly 

understood. 
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