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Abstract: As part of an overall decline in biodiversity, populations of many organisms are 

declining and species are being lost at unprecedented rates around the world. This includes 

many populations and species of amphibians. Although numerous factors are affecting 

amphibian populations, we show potential direct and indirect effects of climate change on 

amphibians at the individual, population and community level. Shifts in amphibian ranges 

are predicted. Changes in climate may affect survival, growth, reproduction and dispersal 

capabilities. Moreover, climate change can alter amphibian habitats including vegetation, 

soil, and hydrology. Climate change can influence food availability, predator-prey 

relationships and competitive interactions which can alter community structure. Climate 

change can also alter pathogen-host dynamics and greatly influence how diseases are 

manifested. Changes in climate can interact with other stressors such as UV-B radiation and 

contaminants. The interactions among all these factors are complex and are probably driving 

some amphibian population declines and extinctions. 
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1. Introduction 

 

Large losses in biodiversity are occurring around the world [1]. Though the exact number of species 

being lost is unknown, some estimate that the rate of extinction is greater than any known in the last 

100,000 years [2]. This so called “biodiversity crisis” is exemplified by population declines, range 

reductions and extinctions of amphibian species around the world [3-7]. In at least some regions, 

amphibian losses appear to be more severe than losses in other vertebrate taxa [4,8,9]. From an 

evolutionary historical perspective, amphibians may be part of a sixth major extinction event [10]. 

There appears to be no single cause for amphibian population declines. Like other animals, 

amphibians are affected by numerous environmental stresses that often act in complex ways [11]. Such 

stressors include habitat alteration and destruction, environmental contamination, introduced exotic 

species, disease, increasing ultraviolet-B radiation and climate change. The causes for the decline of a 

given species may be different from region to region and even in different populations of the same 

species. There may be synergistic interactions between more than one factor. There may be 

interspecific differences and even differences between life stages in how amphibians react to  

these stresses. 

The emphasis of our review is on how climate change may affect amphibians at the individual, 

population and even community level. There are often complex and even synergistic interactions 

among climatic factors affecting amphibians. Nevertheless, we attempt to categorize these factors as 

direct and indirect, realizing that this is often a simplistic categorization involving abiotic and biotic 

components. We also summarize how climate change may interact with other stressors such as 

contaminants, ultraviolet radiation and diseases. Because numerous declines of amphibian populations 

are well documented, we believe the potential effects of climate change at the population level are 

especially important to document and discuss.  

  

2. Discussion  

 

2.1. Climate Perspective 

 

In the 1970s, environmental biologists and atmospheric scientists predicted that two significant 

human-induced environmental changes, global warming and ozone depletion, could potentially affect 

the biology of a wide array of plants, animals and microorganisms. Increased emissions of 

"greenhouse" gases resulting from burning fossil fuels and land conversion were projected to cause a 

significant rise in global temperatures in the coming decades. Moreover, it was shown that 

chlorofluorocarbons (CFCs) and other commonly used industrial gases, were depleting the earth's 

protective ozone layer, increasing the amount of cell-damaging ultraviolet-B (UV-B; 280−315 nm) 

radiation that reaches the Earth’s surface [12]. Scientists projected that species might respond to these 

global changes by altering their behavior and shifting ranges. However, if they are unable to adapt to 
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these environmental changes, they may experience increased mortality and significant sublethal 

effects. Additionally, a number of scientists suggested that global warming and ozone depletion will 

affect entire ecological communities [13-15]. 

It is now abundantly clear that the Earth’s climate is changing in response to anthropogenic 

greenhouse-gas emissions. Average annual global temperatures have risen 0.7 °C over the last  

century [16]. The rate of increase has been greatest in the latter part of the century. For example, the 

rate at which annual average global temperatures increased from 1980 to 2005 was roughly double the 

rate of increase from 1905 to 2005. Although different parts of the globe have warmed at different 

rates, at least in the last 25 years, most of the Earth’s surface has warmed. Precipitation patterns have 

also changed over the last 100 years. These, changes, however, have been less consistent—some areas 

have experienced decreases in precipitation and some areas experienced increases [16]. 

The Earth’s climate is projected to change even more dramatically over the next century. Global 

average annual temperatures are projected to rise between 1.1 and 6.4 °C by 2100 [16]. The largest 

increases are projected for the high northern latitudes where average annual temperatures may increase 

more than 7.5 °C (Figure 1a). This projected pattern is much more pronounced for the months that 

make up the northern hemisphere’s winter (December, January, and February). In June, July, and 

August, the largest temperature increases are projected for the centers of the continents [16].  

Although global mean precipitation is projected to increase by the end of the century, there is far 

less agreement across the general circulation model projections [17] as to the magnitude, and in some 

regions the sign of precipitation changes. In addition, there is much more spatial variability in the 

projections, such that some regions are projected to receive less precipitation and others are projected 

to receive more (Figure 1b). Total annual precipitation is projected to increase at higher latitudes in 

both hemispheres. At low- to mid-northern latitudes—specifically Central America, northern Africa, 

and Europe—and mid-southern latitudes—specifically southern Africa, and parts of Brazil, Chile, 

Argentina, and Australia—total annual precipitation is projected to decrease (Figure 1b). In some 

areas, these projected changes in precipitation vary by season. For example, central North America is 

projected to experience more precipitation in winter months, but less precipitation in summer months. 

Much of Southeast Asia is projected to see increases in precipitation in June, July, and August, and 

decreases in December, January, and February. It is important to note, however, that due to the greater 

variability in the precipitation projections generated by the general circulation models, there is more 

uncertainty in the precipitation projections than the temperature projections. 

The latest United Nations panel on the environment discussed the importance of the link between 

ozone depletion (with increasing UV-B radiation) and climate [18]. Exposure of organisms to 

increasing UV-B radiation is often linked to fluctuations in weather and changes in climate [18-22]. 

This can occur with changes in precipitation and temperature and these changes can affect aquatic 

organisms, especially because changes in weather and climate can affect hydroperiods. Decreases in 

stratospheric ozone, climate warming and lake acidification leading to decreases in dissolved organic 

carbon concentrations [22] all result in increasing levels of UV-B radiation. Levels of UV-B radiation 

have risen significantly in modern time (especially since 1979) both in the tropics and in temperate 

regions [23-25]. UV-B radiation can cause mutations and cell death [15,21]. At the individual level, 

UV-B radiation can slow growth rates, cause immune dysfunction, induce sublethal damage and can 

cause individual mortality [15,21]. 
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Figure 1. Projected changes in (A) mean annual temperature, and (B) total annual 

precipitation. All changes are for an averaged period from 2070 to 2099 relative to an 

averaged period from 1961 to 1990. Mapped values are the medians of projections from 16 

general circulation models run for the SRES A2 emissions scenario. All 16 climate 

projections were created for the World Climate Research Programme’s (WCRP’s) Coupled 

Model Intercomparison Project phase 3 (CMIP3) multi-model dataset and used for 

analyses reported in the IPCC Fourth Assessment Report. The climate projections were 

downscaled to a 0.5-degree resolution as described in Maurer et al. [223]. The maps were 

created with the ClimateWizard climate data analysis tool [224]. 

 

Changes in global temperature, precipitation and levels of ultraviolet radiation may contribute to 

amphibian population declines. Moreover, environmental stressors may act in conjunction with global 

climate and atmospheric changes to adversely affect amphibian populations. Finally, a number of 

investigators have proposed that emerging infectious diseases may be stimulated by climate change 

and changes in the levels of UV-B radiation reaching the earth’s surface (discussed below).  
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2.2. Direct Effects of Climate Change on Amphibians 

 

2.2.1. Climate change, extreme weather patterns and amphibians 

 

Climate change and other changes in the environment that are global in nature have been 

recognized as potential problems for amphibian populations by a number of investigators [19,26-30]. 

Moreover, there is some evidence that short-term changes in weather may affect amphibian population 

declines. Although weather conditions are more likely to be transient, localized events rather than 

sustained changes in climate per se, the effects of extreme weather on amphibians may give us some 

insight on how amphibians may respond to long-term changes in climate. Thus, McMenamin et al. [31] 

described how increasing temperatures and drought have contributed to loss of amphibian habitats in 

parts of western North America. The disappearance of several amphibian species in southeastern 

Brazil in the late 1970s was attributed to unusual frost [32]. Weygoldt [33] attributed population 

declines of Brazilian frogs in the Atlantic mountains to extremely dry winters. It was suggested that 

the disappearance of the golden toad (Bufo periglenes) in Costa Rica may have been due to unusual 

weather conditions [34].  

Pounds et al. [9] illustrated the complex interrelationships among global environmental changes 

and amphibian population declines. They found that changes in water availability associated with 

changes in large-scale climate processes, such as the El Niño/Southern Oscillation (ENSO) may 

significantly affect amphibian, reptile and bird populations in the Monte Verde cloud forest of Costa 

Rica. They showed that dry periods associated with global warming are correlated with amphibian and 

reptile losses and changes in the bird community. In Costa Rica and potentially in other high altitude 

tropical sites, global warming appears to have resulted in a decrease in the amount of mist precipitation 

received in the forest due to increased altitude of the cloud bank. 

Changes in ambient temperature may influence amphibian behaviors, including those related to 

reproduction. Potentially, changes in ambient temperature on a global scale could disrupt the timing of 

breeding, periods of hibernation, and the ability to find food [26,35].  

 

2.2.2. Range shifts 

 

Predicted changes in the global climate can potentially cause shifts in the geographic ranges of 

plants and animals. Furthermore, altitudinal shifts with changes in climate have been reported in some 

regions [36,37]. Recent climatic changes have already resulted in species range shifts [38]. The more 

extreme changes in climate projected for the coming century [16] will likely produce even larger shifts 

in species distributions [39,40]. The impacts of these range shifts may have profound effects on both 

community structure and the functioning of ecosystems [41]. Predictions of future range shifts have 

relied on a variety of modeling approaches. However, few studies have attempted to model the 

potential future impacts of climate change on amphibians [39,42]. The studies that have been 

conducted generally make use of bioclimatic models to predict climate-driven shifts in the potential 

ranges of species [17]. Bioclimatic models define the current distribution of a species as a function of 

current climate and then project future potential ranges based on projected future climate data [43-45].  
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Using bioclimatic models, Lawler et al. [44] assessed the relative vulnerability of amphibians to 

climate change in the western hemisphere. The bioclimatic model projections provide a general 

indication of where changes in amphibian faunas might be expected to occur over the coming century. 

Lawler et al. [44] mapped the distributions of 1,099 restricted-range species for which they were 

unable to build accurate bioclimatic models.  

Lawler et al. [44] showed that some of the greatest impacts to amphibian populations will likely 

occur in Central America (Figure 2). Several areas in this region have high concentrations of  

restricted-range species and are simultaneously projected to get hotter and drier and to experience high 

rates of species turnover. Other portions of the hemisphere were projected to experience combinations 

of these factors. Although the analysis of Lawler et al. [44] included three ways in which amphibians 

might be vulnerable to climate change, there are several other aspects of climate vulnerability that 

were not addressed. For example, climate change may indirectly affect amphibians by altering the 

spread of or the susceptibility to disease and changing phenological relationships.  

 

Figure 2. Predictions of (A) losses and (B) gains in amphibian species as a result of 

potential climate-driven shifts in species distributions. Predictions were based on 10 

different climate projections for a mid-high (A2) greenhouse-gas emission scenario. Eighty 

percent (8 of 10) of the climate-change projections resulted in greater percent losses  

(A) and gains (B) in species richness than the values in these maps. The light grey areas 

indicate where small sample sizes precluded reliable estimates of change. These data and 

analyses are described in full in Lawler et al. [17]. 

 

 

2.2.3. Effects of climate change on survival 

 

In amphibians, temperature acts as a controlling factor for many physiological processes, including 

rates of oxygen uptake, heart rate, locomotion, water balance, digestion, developmental rate, sex 

determination, and immune function [46]. In addition, temperature can influence the concentration of 

dissolved oxygen in aquatic habitats, where warmer water generally has lower concentrations of 
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dissolved oxygen. Water balance, which is essentially the interplay between water gain through 

osmosis and water loss through evaporation, also heavily influences amphibian physiology and 

behavior. Most amphibian species have highly vascularized permeable skin, which acts as an 

osmoregulatory and respiratory organ. With the exception of a few “watertight” species, water moves 

freely across the skin, resulting in high rates of evaporative water loss under dry or windy  

conditions [47]. Precipitation, humidity, and soil moisture can influence water availability for 

amphibians, and can therefore influence survival and behavior. Changes in temperature and 

precipitation will influence the physiology, behavior, and ecology of many amphibian species. 

Although the effects of climate change on amphibians are likely to be complex, it is possible to 

offer some predictions about the direct effects of these changes on amphibians. Alterations to 

temperature and precipitation regimes may result in mortality events. Changes to these two physical 

factors may also result in changes in reproduction, development, feeding, dispersal, and immune 

function. The responses of amphibians will likely be species-specific and perhaps even specific to 

different populations of the same species. Temperature or desiccation thresholds for an individual will 

depend on both adaptation and acclimation. Changes in climate may push some individuals or 

populations past these thresholds, resulting in mortality or sublethal effects such as reduced growth. 

The projected changes in temperature and precipitation may increase the chances of mortality for 

certain species or individuals. Those populations living in sensitive habitats, such as ephemeral  

ponds [48], coastal wetlands [49], arid and semi-arid systems [50], or alpine areas [51] are likely to see 

habitat loss or alteration as a result of changes in climate, which in turn may result in population 

decline or extirpation in these habitats. In addition, species with life history characteristics that make 

them more susceptible to changes in temperature or precipitation may be more likely to suffer 

mortality under changing climates. For example, salamanders in the family Plethodontidae lack 

internal lungs and rely heavily on cutaneous respiration. In general, diffusion of oxygen across the skin 

requires a moist surface; therefore, these salamanders may be more susceptible to changes in 

precipitation or temperature which increase rates of evaporative water loss across their skin. Warmer 

winter temperatures associated with climate change are negatively correlated with body condition, 

female body size, number of eggs laid, and survival of female common toads (Bufo bufo; [52]). 

However, with a few notable exceptions [52], evidence for such direct effects of climate change on 

survival of individual species or populations is rare.  

The lack of data on the direct effects of climate change on survival may be due in part to the 

difficulty in assigning a causative agent for an observed decline. Assigning the causative agent for 

observed declines or extinctions is necessarily correlative in nature, and thus it is nearly impossible to 

identify a culprit with certainty. Some evidence exists for correlations between population declines or 

extinctions and climatic variability or trends ([9,53,54] but see [28,55]). However, the interaction 

between climate, climate change, and population trends is complex and other factors may be involved 

with the declines observed. Thus, climate change is suspected to play a role in declining amphibian 

populations. However, it is unclear whether climate change increases mortality rates directly, affects 

other aspects of the biology of the organism such as feeding rates, or interacts with other factors such 

as disease to cause declines in populations. 
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2.2.4. Effects of climate change on reproduction 

 

Changes in temperature or precipitation have the potential to influence many aspects of amphibian 

reproduction, including timing of reproduction. Shifts in phenology due to climate change have been 

observed in several species. For example, Beebee [56] analyzed timing of reproduction in three species 

of anurans in Britain and found evidence for earlier breeding with shifting climate. Trends towards 

earlier breeding have been observed for several species of amphibians in Japan [57]. Newts in the 

genus Triturus also show trends towards earlier breeding with shifts in climate [58]. In addition, 

Chadwick et al. [58] found that different sexes may respond differently to changing climates. Male 

Triturus helveticus and T. vulgaris showed a greater degree of change in arrival date compared to 

females of the same species. Some species appear to breed earlier in response to changing climate, but 

other species do not, even within the same geographic area. In New York State, four species of anurans 

show trends towards earlier breeding correlated with changes in climate, while two species of anurans 

do not show these trends [59]. Amphibian breeding tends to peak at different times in different species. 

As a result, any one breeding habitat may have different species breeding at different times, with 

certain species present at similar stages simultaneously. However, shifts in breeding phenology due to 

climate change that vary among species may result in changes to amphibian assemblages in breeding 

habitats over time. Species that historically did not develop concurrently may suddenly inhabit the 

same breeding habitat at the same time, resulting in new biotic environments for the developing larvae.  

Regardless of a link with previous or current changes in climate, environmental cues such as 

temperature and precipitation are clearly linked to onset of reproduction in many species. For example, 

Blaustein et al. [35] detected a relationship between timing of reproduction and temperature in three 

species, but not a fourth species. Temperature in February was the best predictor of onset of breeding 

in Rana dalmantina in Romania [60]. Rainfall events can also be associated with breeding events. In 

the same population of R. dalmantina, amount of precipitation in February explained 41% of the 

variance in number of egg masses deposited [60]. Spawning activity of the diurnal toad 

(Melanophryniscus rubriventris) is closely associated with heavy rainfall events [61]. The 

environmental cue associated with timing of reproduction may vary depending on the species’ 

breeding habitat or other life history characteristics. A recent study found that species using permanent 

ponds had a breeding peak related to temperature, while those using ephemeral ponds responded to 

precipitation [62]. These data suggest that timing of reproduction is closely linked to environmental 

cues and supports the assertion that climate change will likely affect the timing of reproduction in 

many species.  

The effects of climate change on reproductive phenology have received the most attention, but other 

aspects of reproduction are likely to be affected. For example, warmer temperatures are likely to result 

in lower concentrations of dissolved oxygen (DO) in aquatic habitats. This reduction in oxygen may 

negatively affect developing embryos and larvae, particularly as increases in temperature increase the 

oxygen consumption rate in amphibians [46]. Chronic hypoxia can delay development, delay hatching, 

and result in less developed embryos at hatching in Ambystoma [63]. In addition, reduced oxygen 

concentrations can result in accelerated hatching in Rana, but at a smaller size [63]. Dissolved oxygen 

concentrations can also affect behavior of larvae. Larvae inhabiting areas with low DO move to the 

surface and “gulp” air more frequently than larvae in areas with high DO concentrations [64]. Frequent 
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bobbing to the surface for air may reduce time available for foraging in these larvae, and therefore may 

reduce rates of growth and development. High temperatures may also affect sex determination in some 

species. Warm temperatures can result in either masculinization or feminization, depending on the 

species [65]. A shift towards more males in a population may eventually reduce reproductive rates as 

females become a limited resource. Changes to water temperatures due to climate change will likely 

have a myriad of effects on amphibians, and those effects may be complex and unexpected. 

 

2.2.5. Effects of climate change on development 

 

Changes in temperature due to climate change are likely to alter the developmental rates of 

amphibians. Generally, developmental rate increases with increasing temperature, up to a threshold 

which may be species- or population- specific [66]. Thermal tolerances can vary by life history stage, 

but the trend towards faster development with higher temperatures is common across species and life 

history stages [66]. 

Thermal environments in the embryonic stage can affect survival and development. For many 

species, the “tolerance band” of acceptable developmental temperature during the embryonic stage can 

span 10−20 ˚C. For example, Volpe [67] showed that normal development of Bufo valliceps embryos 

can occur between 20 and 33 ˚C; however, survival drops steeply on either side of this tolerance band, 

such that no gastrulation occurs at 36 ˚C. Thus, shifts in temperature that push a population past the 

tolerance band of normal development may result in years with extremely low or zero survival rates 

for embryos. Although survival of embryonic life history stages contributes very little to population 

dynamics in any given year [68,69], repeated years of complete reproductive failure due to changing 

temperatures may result in population declines. The effects of embryonic developmental temperature 

can carry over to later life history stages [70], suggesting that thermal environments in the embryonic 

life history stages can influence population dynamics indirectly.  

Survival and developmental rates of larvae are also influenced by temperature. The effects of 

temperature on survival of larvae are likely to be complex. For example, survival of Pacific treefrog 

(Pseudacris regilla) larvae under high temperatures is dependent on tadpole density. When tadpole 

density is low, higher temperatures increase survival rates [71]. However, when tadpole density is 

high, higher temperatures result in reduced survival [71]. Survival of larvae can influence population 

dynamics to a larger degree than embryonic survival [68].  

The effects of increasing temperature on larval amphibians may include a reduction in time to 

metamorphosis, a decrease in size at metamorphosis, or both. Moreover, the effects of temperature on 

development may interact with other factors such as food availability [72] and hydroperiod [73]. 

Exposure to higher temperatures shortens the larval period in many species [74]. For example, 

Scaphiopus couchii and Spea multiplicata are desert toads that show accelerated time to 

metamorphosis with increasing temperature [75]. This pattern of accelerated development has been 

observed in both anurans [72,76-78] and urodels [79,80]. Shorter larval periods can increase chances 

of survival in environments such as ephemeral ponds and streams by increasing the chance of 

successful emergence from a pond that is drying. For many species, however, a reduction in larval 

period also results in metamorphosis at a smaller size [66,74,81,82]. This pattern suggests a likely 

trade-off between rate of development and growth, which might be exacerbated by climate change. 
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Trade-offs between development and other important factors related to fitness such as post-

metamorphic performance [83-85] and immune function [86] have also been observed. As with 

embryonic development, crossing thermal tolerance thresholds can lead to negative effects of high 

temperatures. For example, exposure to extremely high temperatures (>32 ˚C) can paradoxically 

reduce the number of individuals successfully completing metamorphosis [87]. These effects of 

increasing temperature can influence survival and reproduction, thereby influencing  

population dynamics. 

  

2.2.6. Effects of climate change on behavior 

 

Climate change may also influence behaviors such as foraging and dispersal. Under stressful 

conditions (high temperatures and/or low humidity), amphibians may seek refugia and reduce  

activity [88]. Amphibians may alter their dispersal, migration, or other movements under increased 

temperatures and reduced humidity. For example, Rana aurora adults avoided clear cut areas when 

precipitation was low [89], suggesting that low humidity in the clear cuts made these areas 

impermeable for adult amphibians. Adult and juvenile red-spotted newts (Notophthalmus viridescens) 

avoid leaving refuge during hot and dry climatic conditions, and those individuals that left refuge 

traveled shorter distances after dry days [90]. These responses are species-specific, where individuals 

and species from drier habitats are more resistant to desiccation [91]. Small bodied amphibians are 

more vulnerable to desiccation in hot or dry environments [91], suggesting that newly metamorphosed 

individuals and adults of smaller body size may be more susceptible to mortality from changes in 

climate. A reduction in time spent foraging may in turn reduce the available resources for growth and 

reproduction and thus may reduce the chances of survival. Similarly, changes in migration or dispersal 

distances may reduce gene flow between populations and reduce the likelihood of rescue by 

immigration after local population crashes. 

 

2.3. Indirect Effects of Climate Change on Amphibians 

 

Long-term changes in temperature and precipitation will likely affect amphibians through a variety 

of indirect pathways (Figure 3). Potential changes include impacts on terrestrial and aquatic habitats, 

food webs and other community-level interactions (e.g., competition), the spread of diseases, and the 

interplay among these factors. These changes can influence the dynamics of species occurrence across 

a landscape and can ultimately lead to range shifts of entire assemblages [37]. 
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Figure 3. Conceptual model of pathways through which changes in temperature and 

precipitation may impact amphibian populations, using a generalized freshwater ecosystem 

as an example. Changes in temperature and precipitation affect amphibians via the effects 

of climate on terrestrial and aquatic habitats, the biological community in which 

amphibians are embedded and other factors such as disease agents, UV-B radiation and 

pollution. Factors that influence the availability of water, such as the hydroperiod of 

aquatic habitats, are likely the most important constraints on the reproductive success and 

persistence of amphibians (indicated by heavier arrow). Dashed arrows indicate 

interactions among meteorological variables, and their effects on biological communities 

and the environments in which they occur. Heavy solid arrows indicate relationships 

among compartments; light solid arrows indicate relationships within compartments. 

 

 

2.3.1. Habitat change 

 

 All amphibians, including species with nonaquatic eggs, depend to some extent on the availability 

of freshwater for successful reproduction [92]. For terrestrial-breeding species with direct 

development, the risk of evaporative water loss is likely the most important constraint on embryonic 

survival [93]. Because of their diverse reproductive modes that can involve metamorphosis from an 

aquatic larva to a terrestrial juvenile/adult for many species [66], amphibians are particularly 

vulnerable to degradation and change that affect both terrestrial and aquatic environments. 
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Amphibians that breed in ephemeral and often isolated bodies of water (e.g., vernal pools and 

intermittent headwater streams) are especially vulnerable to changes in temperature and  

precipitation [46]. Precipitation has increased by about 10% since 1910 across the contiguous United 

States [93] and is expected to continue to increase in many areas during the next century [93]. Yet, 

evapotranspiration losses from freshwater wetlands [95] and headwater streams [48,96] could possibly 

exceed precipitation during cyclical droughts, resulting in drying of aquatic sites (Figure 3). In turn, 

shortened wetland hydroperiods and disrupted stream flow will likely lead to an increased frequency of 

reproductive failure for many amphibians that breed in these habitats (Figure 3). Insufficient rainfall 

and shortened hydroperiods cause catastrophic reproductive failure in pond-breeding  

amphibians [97-102] and are likely contributors to population declines in several species ([31,54] but 

see [103]), some of which are federally threatened or endangered.  

For coastal freshwater wetlands, global climate change is expected to affect the rate of rising sea 

level, along with the intensity and pattern of hurricanes and tropical storms [104]. Sea level rise 

contributes to the loss of coastal wetlands, and storm surge and its associated salt water intrusion 

during hurricanes can affect the abundance and species richness of amphibians in these habitats [105]. 

Moreover, storm surge and freshwater sheet flooding can introduce fishes (important amphibian 

predators) into normally isolated, fishless wetlands [106]. In the Coastal Plain of the southeastern U.S., 

these coastal freshwater wetlands are important breeding sites for a highly species-rich and abundant 

assemblage of amphibians [107].  

Change that affects terrestrial habitats (e.g., changes in soil moisture and vegetation) can directly 

impact post-metamorphic adults and juvenile amphibians, as well as developing embryos of fully 

terrestrial species. Changes in temperature and precipitation can alter the frequency, intensity, duration 

and timing of fire, rates of evapotranspiration, and groundwater levels (Figure 3). Many terrestrial 

amphibians (e.g., salamanders of the family Plethodontidae) are desiccation-prone [108] and are well 

adapted to moist forest floors and cool, highly oxygenated streams that especially characterize 

montane regions. Warming may be a stressor for organisms that inhabit cool climates [109]; thus, 

these species may be particularly vulnerable to global warming and reductions in soil moisture. 

The composition of the plant community in and around wetlands is a consequence of soil type and 

climate. Decreases in wetland hydroperiod and water depth during droughts can lead to an increase in 

grass, upland, and woody species, especially in shallower margins of wetlands, whereas prolonged 

hydroperiods promote the persistence of aquatic and emergent species [110]. The structure and 

composition of vegetation in the terrestrial environment can have an important influence on the 

successful reproduction and recruitment of amphibians in the aquatic habitat (Figure 3). Canopy 

openings and shifts in species composition of vegetation can alter microclimatic factors such as the 

duration and intensity of light, levels of temperature and moisture, as well as the accumulation, quality 

and decomposition of leaf litter [111]. In turn, the extent of canopy cover over wetlands [112-114] and 

the composition of leaf litter in the pond basin [115,116] may play a strong role in the reproductive 

success of some aquatic-breeding amphibians.  

In fire-dependent ecosystems (e.g., habitats in the western and southeastern U.S.), variation in 

temperature and precipitation influence the frequency, intensity, duration and timing of fire. Fire 

suppression in pine savannas of the southeastern U.S. can lead to the establishment of hardwood and 

shrub species in otherwise historically pine-dominated (Pinus spp.) communities [117]. The presence 
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of these invasive broad-leaved species in or near wetlands may increase the rate of  

evapotranspiration [118], thus potentially shortening wetland hydroperiod and compromising 

successful metamorphosis of larval amphibians. 

 

2.3.2. Food availability 

 

Tadpoles (larval anurans) are found in a wide array of freshwater microhabitats where they may 

function as “ecosystem engineers” by altering resources and influencing other consumers [119]. 

Tadpoles display a diversity of trophic modes, including herbivory (as grazers and scrapers of 

epilithon [often less accurately referred to as “periphyton”], as well as filter and suspension feeders), 

detritivory, carnivory (as cannibals, predators, and scavengers), and oophagy [119]. Global warming 

may influence the availability of autotrophic organisms that contribute to the diet of many tadpoles, as 

higher water temperatures are expected to increase rates of primary production and nutrient  

cycling [120]. Higher water temperatures can exacerbate many forms of water pollution and their 

associated blooms of filamentous cyanobacteria and green algae, bacteria, protozoans and small 

metazoans [121,122]. Such changes in the relative abundances of food items are known to influence 

tadpole feeding behavior and growth responses for some species [119]. 

Larval salamanders are gape-limited carnivores that prey on aquatic invertebrates [123]. Changes in 

temperature and precipitation, through their influence on wetland hydrology, can impact population 

densities, biomass and production of temporary wetland invertebrates ([124] Figure 3). In the northeast 

and other regions of the U.S., salamanders are the dominant vertebrate in intermittent, headwater forest 

streams [48]. In the UK, future projections suggest that spring macroinvertebrate abundance in 

headwater streams might decline by 21% for every 1 °C rise in water temperature, illustrating the 

sensitivity of headwater stream ecosystems to climate change [125]. Hydrologic variation is an 

important contributor to the biomass and assemblage structure of aquatic insects, benthic 

macroinvertebrates and macrozooplankton [126,127]. 

Because abundances and species richness of cladocerans and other wetland invertebrates increase 

seasonally [128] longer hydroperiods in a given year may translate into a larger density of 

microcrustaceans that enter dormancy in the soil when the pond dries. When the pond refills with 

winter rains in the subsequent season, calanoid, cyclopoid, and harpacticoid copepods, as well as 

cladocerans, hatch from resting eggs contained in the soil within hours [128], thus potentially 

producing a greater biomass of prey for larval salamanders. It is unclear, however, whether 

populations and communities of larval salamanders are limited by prey abundance ([123], but see 

references in [124]). 

For terrestrial amphibians, higher amounts of precipitation increase humidity on the forest floor and 

underneath moisture-retaining cover (assuming this is not counteracted by increased temperatures), 

thus facilitating more opportunities to forage [129-131]. Above average rainfall in one year may 

increase the terrestrial prey base for adult females, which may then translate into greater reproductive 

success (through more “fit” offspring) in the subsequent year. For instance, Milanovich et al. [132] 

documented that, in the western slimy salamander (Plethodon albagula), the amount of precipitation 

one year prior to oviposition was correlated with average clutch size in the subsequent year. Food 
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availability has been shown to affect traits related to individual fitness in other species of salamanders 

as well (Figure 3; [133,134]). 

 

2.3.3. Community changes 

 

On a regional scale, climate has a strong influence on the geographic distributions of species. For 

parapatric populations of competing species, climate-driven extensions and contractions in range 

boundaries can influence the dynamics of competitive interactions in contact zones [135].  

Climate-induced variation in breeding phenology provides insight into the potential consequences that 

climate change may have on the structure of amphibian communities (Figure 3). For aquatic-breeding 

species, changes in the timing of reproduction can alter temporal overlap between competitors, 

predators and their prey [136-140]. 

Climate change is predicted to have a significant effect on the persistence and spread of non-

indigenous species which, in turn, could have profound consequences for the structure and stability of 

natural ecosystems [141]. As alien predators, various introduced species are known to be contributing 

to amphibian population declines around the world [142]. Examples of introduced species of 

amphibians that are of particular concern include the Cuban treefrog (Osteopilus septentrionalis), the 

American bullfrog (Lithobates catesbeianus), and the cane toad (Rhinella marina), all of which prey 

upon, and compete with, native amphibians. Projections of various climate change scenarios indicate 

the likelihood of expansion of the current distribution of Cuban treefrogs in North America [143], cane 

toads in Australia [144], and American bullfrogs in various parts of the world [145].  

Climate-induced changes that influence the occurrence of keystone species within communities will 

potentially affect the other members of the community as well. Important examples of amphibian 

species that function as keystone predators include the mole salamander (Ambystoma talpoideum) and 

the eastern newt (Notophthalmus viridescens) [146-148]. Interestingly, the presence of the predatory 

eastern newt can reduce or eliminate the negative, competitive impact that introduced Cuban treefrog 

tadpoles have on tadpoles of native species [149]. Although mole salamanders and eastern newts are 

not yet considered species of conservation concern, they have declined significantly over 28 yr in some 

areas of the Coastal Plain of the southeastern U.S. [107]. Both of these species require intermediate to 

long hydroperiod wetlands for successful reproduction. If future climate change shortens the 

hydrology of breeding sites used by these species, there may be cascading impacts on the structure of 

amphibian communities in some freshwater wetlands. 

 

2.4. Interactions with Other Stressors 

 

2.4.1. Emerging diseases 

 

Overall, the effects of climate change on amphibian diseases are hard to predict, because many 

mechanisms are involved. While some pathogens may increase in prevalence and severity, others may 

decline. Understanding the processes and trends of climate change and disease will be essential in 

preventing epidemics in wildlife and humans.  
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Climate change has the potential to alter species interactions in many ways. Of particular concern 

are the effects of changing climate on host-pathogen interactions which could dramatically alter 

disease dynamics. While some host-pathogen systems may experience a decrease in disease severity, it 

is predicted that most will observe an increase in epidemics [150].  

 

2.4.2. Immunity 

 

Intimately tied with disease is immune function and certain climate changes may affect immune 

systems. For example, temperature may have profound direct effects on amphibian immune  

function [151]. Ectotherms may use thermoregulatory behavior to modulate immune function and 

reduce the risk of infection [152]. Several key aspects of immunity are suppressed at low temperatures 

(<20 °C) in ectotherms. For example, serum complement level [153,154], activity of anti-microbial 

peptides [155], T and B-lymphocyte numbers and proliferation activity [154,156-158], esosinophil 

numbers [154], and antibody production [157,159,160] are reduced at low temperatures in ectotherms. 

However some aspects of immune activity appear to be robust to low temperature. Phagocytic activity 

and respiratory burst [161,162] as well as numbers of circulating neutrophils [154,163], and activity of 

nonspecific cytotoxic cells [160] may be relatively stable or even enhanced at low temperatures in 

some species. Maintenance of non-specific innate responses at low temperatures may function to offset 

suppression of other immune parameters, and may be especially important in a seasonal context. Few 

studies have addressed how various immune components are affected by elevated temperature. 

Increases in ambient temperature or water temperature potentially may have implications for both 

post-metamorphic and larval amphibians. For example, in some fish species, at high temperatures  

(>30 °C) there is suppression of phagocytic activity and serum killing ability [164].  

Recovery of some aspects of immune responsiveness may be rapid when temperatures are raised. 

For example, serum complement levels may increase rapidly (as quickly as 48h) after animals are 

restored to warmer temperatures after being held at low temperatures [153,154]. It is unclear whether 

all aspects of immunity recuperate in this manner, but it is possible that cellular processes (e.g., 

maturation and proliferation of T and B lymphocytes) require slightly longer time to rebound from 

abrupt changes in temperature [158]. Therefore, to some extent, a lag exists between changes in 

temperature, and subsequent changes in immune parameters [163].  

Clearly, there is an urgent need for studies that examine the potential for immunological changes 

occurring over more incremental temperatures shifts of several degree. However, the robust body of 

literature available on temperature-dependent immunity in ectotherms provides a springboard for 

initial hypothesis testing based on climate change models. In addition to directional changes in 

temperature predicted with climate change, it may be important to consider how variability in 

temperature regimes affects immunocompetence in amphibians. If amphibians modulate immune 

responses based on more subtle temperature differences then the energetic cost of constantly 

upregulating and downregulating immunological parameters based on minor but frequent temperature 

fluctuations may be substantial. It is also unclear if lag time between temperature-dependent aspects of 

immunity may serve as more vulnerable periods of time for amphibians [154]. Finally, it is unclear 

how temperature-dependent changes in immunity may be affected when individuals are 

simultaneously dealing with other physiological demands and environmental stressors. 
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Depending upon the model, a specific region may have more or less precipitation in the future than 

present and may be colder or warmer than present [17,44]. Such changes could significantly affect 

hydroperiods critical to amphibian life cycles. Thus, Gervasi and Foufopoulos [86] showed that wood 

frog (Rana sylvatica) tadpoles exposed to desiccation had shorter development times, weaker cellular 

immune system responses and lower total leukocyte numbers than animals from control groups. 

Measures of immune response showed a decrease with increasing severity of the desiccation treatment. 

It was unclear whether the observed depression in immune response was transient or permanent. 

However, even temporary periods of immune system suppression shortly after metamorphosis could 

lead to greater susceptibility to pathogens. 

 

2.4.3. Emerging amphibian diseases 

 

Amphibians are susceptible to many types of pathogens including trematodes, copepods, fungi, 

oomycetes, bacteria and viruses. In amphibians, infectious diseases have been implicated in numerous 

population declines [7,165-167]. Climate change has the potential to alter the dynamics of these 

pathogens in both direct and indirect ways to either the benefit or detriment of the amphibian host. 

Climate change could alter host-pathogen interactions through changes in temperature. As global 

temperatures increase, most pathogens will experience faster growth and reproduction which could 

potentially increase the severity of infectious diseases [31,150]. Additionally, warmer winters and 

nighttime temperatures may reduce the cycle of pathogen die-offs that naturally occur during these 

colder times [168,169]. As stated above, higher water temperatures can induce eutrophication with 

blooms of algae, bacteria, protozoans and small metazoans [121,122]. The trematode parasite 

Ribeiroia ondatrae sequentially infects birds, snails, and amphibian larvae, frequently causing severe 

limb deformities and mortality [170]. Johnson et al. [171] showed how eutrophication promoted 

amphibian disease by increasing the density of infected snail hosts and by enhancing per-snail 

production of infectious parasites. 

Climate change could also alter the host-pathogen relationship through changes in precipitation or 

hydrology. For example, many amphibian pathogens are aquatically transmitted (e.g., oomycetes, 

trematodes and certain fungi) so increased rainfall that leads to more standing water could increase 

rates of transmission. Also, aquatically-transmitted pathogens can be sensitive to water conditions. For 

example, the pathogenic “chytrid” fungus Batrachochytrium dendrobatidis (BD) dies after 3 hours 

desiccation [172], so loss of moisture or precipitation could affect the survival of this pathogen.  

Kriger [173] argues that droughts should reduce the severity of BD epidemics, but there is also some 

evidence that droughts actually increase outbreaks [53,174]. High temperatures impede growth and can 

kill BD in the laboratory [175,176]. 

Changes in climate could also shift the ranges the pathogen, the hosts, or the pathogen vector. As 

climate change alters local habitats, new areas may appear that are suitable for the host or pathogen 

while others disappear. Seimon et al. [177] documented upward range expansion of both amphibian 

hosts and BD in the Andes. As high elevation sites experience loss of glaciers, this opens up new 

habitat for anurans in the area. BD has been detected on amphibians at these new sites, demonstrating 

a shift in both host and pathogen ranges. In other scenarios, the pathogen or host could potentially shift 

ranges without the other following. 
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On a local scale, an experimental field study in Oregon by Kiesecker et al. [20] illustrates a 

complex interrelationship among climate change, UV-B radiation and amphibian population declines 

and parallels a tropical study by Pounds et al. [178]. Kiesecker et al. [20] linked ENSO events with 

decreased winter precipitation in the Oregon USA Cascade Range. They suggested that less winter 

snow pack resulted in lower water levels when western toads (Bufo boreas) breed in early spring. Toad 

embryos developing in shallower water are exposed to higher levels of UV-B radiation, which results 

in increased mortality from the pathogenic oomycete, Saprolegnia ferax.  

Another example of changing hydrology affecting amphibian diseases on a local level is that of 

Kupferberg et al. [179]. The authors found that outbreaks of a pathogenic copepod, Lernaea 

cyprinacea, are more severe following unusually warm summers in northern California. The authors 

speculate that this could be partly caused by changes in hydrology. During the warm summer of the 

outbreak, water levels were reduced, forcing amphibian larvae into high densities. Reduced discharge 

slowed river velocities which could have allowed for easier transmission of the copepod parasite.  

Pounds et al. [178] identified two dynamics that are global in nature: climate change and the 

potential spread of a highly virulent pathogen (discussed in Blaustein and Dobson [180]). BD is 

implicated as the proximate cause for Atelopus population crashes and species extinctions in tropical 

America. Pounds et al. [178] presented a mechanistic explanation for how climate change may 

influence outbreaks of BD by modifying conditions in montane areas of Central and South America 

where nighttime temperatures are shifting closer to the thermal optimum for BD, while increased 

daytime cloudiness prevents frogs from finding thermal refuges from the pathogen. Climate change 

and outbreaks of chytridiomycosis have been reported in several other studies. Bosch et al. [181] 

showed a significant association between rising temperatures and outbreaks of chytridiomycosis in 

Spain. D’Amen and Bombi [182] showed the emergence of BD after a climatic shift or extreme 

weather event in Italy. Increases in chydriomycosis were correlated with low summer temperatures in 

Australia [183].  

Lips et al. [184] tested the robustness of the climate-linked epidemic hypothesis by reanalyzing data 

on declines and extinctions of Atelopus species in the same region where Pounds et al. [178] 

performed their research. The Lips et al. [185] analysis did not support the climate-linked epidemic 

hypothesis. They suggest that BD is an introduced pathogen that has been spreading throughout the 

American tropics since the 1970s. This spatiotemporal hypothesis suggests that BD spreads 

independent of climate shifts.  

The assertions of Pounds et al. [178] and Lips et al. [184] have been questioned in several recent 

papers. Lampo et al. [185] demonstrated that some of the assumptions of the spatiotemporal 

hypothesis are inconsistent with data on extinctions and declines and population crashes may not be 

due to the arrival of BD. Parmesan and Singer [186] questioned the statistical analysis of  

Lips et al. [184] and suggest that both hypotheses are supported by numerous studies, are not mutually 

exclusive and may be interactive. Rohr et al. [187] examined the climate-linked epidemic hypothesis 

and the spatiotemporal spread hypothesis. Rohr et al. [187] found no support for the “chytrid-thermal 

optimum hypothesis” [178,180]. However, they suggest that climate change is likely to play an 

important role in amphibian population declines worldwide. 

Alford et al. [188] stated that during the decline of amphibians in New South Wales, Australia, very 

few moribund specimens examined were positive for BD. Alford et al. [188] suggested that stress 
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during growth and development may contribute to limb asymmetries in amphibians. They suggested 

that unusual climate conditions may be a significant stressor on amphibian growth and development. 

In Australia, they attributed the greater frequency of limb asymmetries in “pre-declining populations” 

compared with non-declining “control” populations to stress from “dramatic regional warming”. They 

suggest that BD may not be the only factor involved in amphibian population declines in this region 

and that climate conditions alone may be an important factor in declines. 

Di Rosa et al. [189] provide evidence that BD may be present without causing chytridiomycosis in 

frogs in Italy and that other pathogens may also contribute to frog declines in this region. In agreement 

with Pounds et al. [190] they suggest that climate conditions may make amphibians more susceptible 

to a number of pathogens. 

Evidence from long-term studies at the Savannah River site in South Carolina, USA, illustrates that 

populations of several amphibian species have been in decline [54]. At this site, the presence of BD 

was rare and there was no evidence of chytridiomycosis. The investigators concluded that the 

population declines in this region were more likely due to extreme weather such as low rainfall and 

shortened hydroperiod for breeding rather than a BD epidemic.  

 

2.4.4. UV-B radiation  

 

Changes in precipitation which affect hydroperiods and habitat alteration such as deforestation, can 

expose amphibians to levels of solar radiation that they have not previously experienced.  

A number of investigators at various sites around the world have shown via experiments that 

exposure to ambient levels of UV-B radiation decreases the hatching success of many (but not all) 

amphibian species at natural oviposition sites in the field [35,191,192]. These studies have 

demonstrated that the embryos of some species are less resistant to UV-B radiation than  

others [191,192]. 

Importantly, even though hatching rates of some species may appear unaffected by ambient UV-B 

radiation in field experiments, an increasing number of studies illustrate a variety of sublethal effects 

due to UV exposure. Depending on the species, these effects have been observed in all life  

stages [191]. For example, when exposed to UV-B radiation, amphibians may change their  

behavior [193-195], growth and development may be slowed [196-198], or a number of developmental 

and physiological malformations may occur [199-204]. Sublethal effects may become evident even in 

species whose embryos appeared to be resistant in field experiments. Moreover, numerous field and 

laboratory experiments have also shown that UV-B radiation interacts synergistically with a variety of 

chemicals, low pH and pathogens [191,205-207].  

The experimental field study in Oregon USA by Kiesecker et al. [20] discussed above illustrates the 

interrelationships among precipitation, climate change and UV radiation and how they may interact to 

harm amphibians and supports the tropical study by Pounds et al. [9]. Merilä et al. [208] present an 

interesting scenario combining climate change, UV radiation and amphibian breeding. They suggest 

that if amphibians are breeding earlier in northern ecosystems, then their annual life cycle will not only 

start earlier relative to the calendar date but also with regard to maximum UV-B exposure. UV-B 

exposure would be lower than if amphibians bred later in the spring. Thus, they suggest that global 
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warming, which may induce amphibians to breed earlier may counteract the effects of increasing  

UV-B levels generated by a thinning ozone layer. 

Temperature and UV-B radiation may also interact synergistically. Two recent studies [209,210] 

demonstrate reduced survival of amphibian larvae when cold temperatures and UV-B radiation are 

combined. There are several possible mechanisms by which this could occur. For example, DNA 

repair enzymes, such as photolyase, are essential in mitigating the damage to DNA caused by exposure 

to UV-B radiation. Cold temperatures can reduce the activity of photolyase and slow repair of 

damaged DNA. Additionally, cold temperatures could indirectly increase the threat of UV-B by 

altering the behavior of larval amphibians such that they are exposed to higher levels of UV-B. Any 

amphibian inhabiting cold habitats with high levels of UV-B could be particularly at risk. Global 

warming is likely to change temperatures in many habitats, which will alter the threat of UV-B for 

amphibians and make the risk of negative effects from UV-B exposure difficult to predict. 

 

2.4.5. Air-borne contaminants  

 

Besides global environmental changes, numerous agents, including air-borne pollutants, may be 

toxic to amphibians by themselves or interact with warming trends and UV radiation in a synergistic 

fashion. As worldwide agricultural demands rise there will be significant increases in pesticide  

use [211]. Pesticides have the potential for atmospheric transport [212,213] and deposition where they 

may be available for uptake by biota, especially by amphibians through their permeable skin, and may 

alter nutrient dynamics or increase water clarity allowing for greater penetration of ultraviolet  

radiation [214]. Contaminants transported atmospherically are potentially harmful to  

amphibians [215-218] and they may interact with UV-B radiation, other contaminants and changes in 

climate [190]. For example, acid deposition from the atmosphere to aquatic systems has been linked to 

both lethal and sublethal effects on developing amphibians, particularly those that breed in temporary 

ponds [218]. However, the effects of other atmospheric contaminants on amphibians have not been 

well documented.  

Pounds and Crump [220] suggested that atmospheric scavenging of contaminants by clouds might 

concentrate them and release them in remote areas such as Monteverde, Costa Rica where many 

populations of amphibians have declined. This effect may be particularly important under unusually 

hot, dry conditions [9,220]. In California, atmospheric deposition of organophosphate pesticides from 

the highly agricultural Central Valley may be contributing to declines in frog populations [221]. 

Pesticides may adhere to foliage where they may threaten native species [221]. Activity of the enzyme 

cholinesterase in treefrogs (Hyla regilla) was impaired in areas where populations of ranid frogs were 

declining [221]. Cholinesterase impairment might be linked to the presence of organophosphate 

pesticides [221]. Using GIS analysis, Davidson et al. [212] concluded that pesticides carried upwind 

from the Central Valley of California may be contributing to declines in red-legged (Rana aurora) 

frogs in California. 
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3. Conclusions 

 

Our review suggests that climate change may have both direct and indirect effects on amphibians at 

the individual, population and community level. Shifts in amphibian ranges are predicted under certain 

climate model scenarios. Changes in climate may affect survival, growth, reproduction and dispersal 

capabilities. Moreover, climate change can alter amphibian habitats including vegetation, soil, and 

hydrology. Climate change can influence food availability and overall predator-prey and competitive 

interactions which can alter community structure. Climate change can also alter pathogen-host 

dynamics and greatly influence how diseases are manifested. Changes in climate can interact with 

other stressors such as UV-B radiation and contaminants. The interactions between all these factors are 

complex and are probably driving some amphibian population declines and extinctions.  

We suggest that a multidisplinary approach is essential for understanding the direct and indirect 

effects of climate change on amphibians. Climate modeling should be fortified with both laboratory 

and field experiments. Experimental studies should be bolstered with molecular work, especially using 

molecular tools that can provide clues as to how amphibians are affected at the physiological  

level [222]. Molecular biologists, ecologists and modelers working together may be able to help us 

understand the broad impacts of climate change on amphibians.  
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