FINAL REPORT

Verification Monitoring for In Situ Chemical Reduction Using Zero-Valent Zinc, A Novel Technology for Remediation of Chlorinated Alkanes

ESTCP Project ER-201628

JUNE 2020

Lea Z. Kane, P.G. Eric J. Suchomel, Ph.D., P.E. Rula A. Deeb, Ph.D., BCEEM Geosyntec Consultants

Distribution Statement AThis document has been cleared for public release

This report was prepared under contract to the Department of Defense Environmental Security Technology Certification Program (ESTCP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE ESTCP Final Report	3. DATES COVERED (From - To)	
05-05-2020	11/30/2016 - 06/30/2020		
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER W912HQ-16-C-0024		
	Verification Monitoring for In Situ Chemical Reduction Using Zero-Valent Zinc, A Novel Technology for Remediation of		
Chlorinated Alkanes	<i>3</i> -	5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)		5d. PROJECT NUMBER ER-201628	
Rula Deeb, Eric Suchomel,	Lea Kane	5e. TASK NUMBER N/A	
	5f. WORK UNIT NUMBER N/A		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
Geosyntec Consultants 1111 Broadway, 6 th FL			
Oakland, California 94607	ER-201628		
9. SPONSORING / MONITORING AGENCY Environmental Security Tec Program		10. SPONSOR/MONITOR'S ACRONYM(S) ESTCP	
4800 Mark Center Drive, Suite 17D03 Alexandria, VA 22350-3605		11. SPONSOR/MONITOR'S REPORT NUMBER(S) ER-201628	

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release

13. SUPPLEMENTARY NOTES

None

14. ABSTRACT

The reactivity profile of "lesser chlorinated" aliphatic hydrocarbons such as 1,2,3-trichloropropane (TCP) is understood less well relative to highly chlorinated aliphatic compounds and is not systematically considered when developing remedial approaches for these compounds. TCP was identified as number three in a list of primary emerging contaminants at a recent SERDP/ESTCP workshop on long-term management of contaminated sites. To date, TCP has been observed at more than 45 installations. The median detected concentrations (approximately 1 μ g/L) have been low but are nonetheless high relative to regulatory levels for TCP.

Remediation options for TCP are limited, particularly at current and anticipated future regulatory levels. One treatment process that produces promising rates of TCP degradation is in situ chemical reduction (ISCR) with zero-valent zinc (ZVZ). In 2014, the Navy implemented a pilot study to evaluate the feasibility and performance of in situ ZVZ remediation of TCP in groundwater. The pilot study results showed evidence of TCP degradation, but the pilot study monitoring was not designed to evaluate efficacy of the ZVZ injections or long-term performance of the zinc media with respect to degradation of TCP.

This study included follow-on monitoring within the pilot study area designed to collect data to demonstrate and validate the use of ZVZ to promote abiotic ISCR of TCP in groundwater. Key findings suggest that TCP reductions continue to be maintained within and down-gradients of the pilot study area 5 years after ZVZ emplacement. However, ZVZ delivery performance was variable and should be optimized for future injections to improve the distribution of ZVZ within the subsurface.

In Situ Chemical Reduction, Zero-Valent Zinc, Remediation of Chlorinated Alkanes, 1,2,3trichloropropane, TCP, groundwater, pilot study 16. SECURITY CLASSIFICATION OF: a. REPORT U b. ABSTRACT U c. THIS PAGE U U 17. LIMITATION OF ABSTRACT OF PAGES Fig. 19a. NAME OF RESPONSIBLE PERSON Rula Deeb 19b. TELEPHONE NUMBER (include area code) 510-285-2676

15. SUBJECT TERMS

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

FINAL REPORT

Project: ER-201628

TABLE OF CONTENTS

		Pag	ge
ABS	TRA	CTI	X
EXE	CUT	IVE SUMMARY ES-	-1
1.0	INT	RODUCTION	. 1
	1.1	BACKGROUND	. 1
	1.2	OBJECTIVE OF THE DEMONSTRATION	. 1
	1.3	REGULATORY DRIVERS	. 2
2.0	TEC	HNOLOGY	. 3
	2.1	TECHNOLOGY DESCRIPTION	. 3
	2.2	ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY	6
3.0	PER	FORMANCE OBJECTIVES	. 8
	3.1	PERFORMANCE OBJECTIVE: EVALUATE TCP CONCENTRATIO	
		REDUCTIONS IN GROUNDWATER	8
		3.1.1 Data Requirements	
		3.1.2 Success Criteria	. 9
		3.1.3 Evaluation of Objective	
	3.2	PERFORMANCE OBJECTIVE: EVALUATE ZVZ LONGEVITY 1	10
		3.2.1 Data Requirements	
		3.2.2 Success Criteria	
		3.2.3 Evaluation of Objective	
	3.3	PERFORMANCE OBJECTIVE: EVALUATE ZVZ DISTRIBUTION IN SOIL 1	
		3.3.1 Data Requirements	
		3.3.2 Success Criteria	
		3.3.3 Evaluation of Objective	
4.0	SITI	E DESCRIPTION	
	4.1	SITE SELECTION	
	4.2	SITE LOCATION AND HISTORY	
	4.3	SITE GEOLOGY/HYDROGEOLOGY	
		4.3.1 Geology	
		4.3.2 Hydrogeology	
	4.4	CONTAMINANT DISTRIBUTION	
	4.5	OVERVIEW OF PILOT SCALE ZVZ INJECTIONS	15
5.0	TES	T DESIGN 1	18
	5.1	CONCEPTUAL EXPERIMENTAL DESIGN	18
	5.2	BASELINE CHARACTERIZATION	18

TABLE OF CONTENTS (Continued)

			Page
	5.3	DESIGN AND LAYOUT OF T	ECHNOLOGY COMPONENTS 18
			ng
		•	20
	5.4	1 0	20
			21
		5.4.2 Groundwater Sample Colle	ction22
		•	23
		5.4.4 Demobilization	26
		5.4.5 Investigation-Derived Was	e Management and Disposal26
	5.5	SAMPLING METHODS	27
		5.5.1 Samples Collected	27
		5.5.2 Quality Assurance Protoco	s31
	5.6	SAMPLING RESULTS	
		5.6.1 Groundwater Results	34
		5.6.2 Soil Results	34
6.0	PER	FORMANCE ASSESSMENT	35
	6.1	PERFORMANCE OBJECTIVE	E 1: TCP CONCENTRATION REDUCTIONS 35
	6.2		E 2: ZVZ LONGEVITY36
	6.3		E 3: ZVZ DISTRIBUTION
	6.4		OF ZVZ EFFICACY38
	6.5		S
	0.5		Study ZVZ Injection Dosage Estimates40
			Fraction with Injection Volumes
		_	ore Volumes of the Amendments
			chiometry
		-	
	6.6	CIDALADA	42
7.0			44
7.0	7.1		
	/.1		Study
		•	aracterization
			ent
			sal
		_	ad Maintenance Costs
			Monitoring
	7.2		47
	7.2		48
	1.5		
		7.5.1 Design Assumptions	

TABLE OF CONTENTS (Continued)

		Page
7.3.2	Life-Cycle Cost Estimate	49
7.3.3	Comparison to ZVI	50
	ENTATION ISSUES	
9.0 REFEREN	ICES	53
TABLES		56
FIGURES		1
APPENDIX A	MONITORING WELL SAMPLING LOGS	A-1
APPENDIX B	BORING LOGS	B-1
APPENDIX C	X-RAY FLUORESCENT ANALYZER OPERATING PROCEI	OURES C-1
APPENDIX D	ANALYTICAL LABORATORY REPORTS	D-1
APPENDIX E	QUALITY ASSURANCE/QUALITY CONTROL REVIEW	E-1

LIST OF FIGURES

	Page
Figure 1.	Reaction Pathway for Conversion of TCP to Propene via Dihaloelimination Reaction
Figure 2.	Conceptual Diagram of Permeable Treatment Zones
Figure 3.	Changes in TCP Reduction over Time
Figure 4.	Site Location Map(in Figures Section)
Figure 5.	1,2,3-Trichloropropane Analytical Results Summary – 2014 Pilot Study
	(in Figures Section)
Figure 6.	Groundwater Sample Locations(in Figures Section)
Figure 7.	Soil Sample Locations(in Figures Section)
Figure 8a.	September 2017 Groundwater Sampling Results – 1,2,3-Trichloropropane
	(in Figures Section)
Figure 8b.	September 2017 Groundwater Sampling Results – Propene
	(in Figures Section)
Figure 8c.	September 2017 Groundwater Sampling Results – Zinc(in Figures Section)
Figure 9a.	January 2018 Groundwater Sampling Results – 1,2,3-Trichloropropane
	(in Figures Section)
Figure 9b.	January 2018 Groundwater Sampling Results – Propene(in Figures Section)
Figure 10a.	September 2018 Groundwater Sampling Results – 1,2,3-Trichloropropane
	(in Figures Section)
Figure 10b.	
Figure 11.	TCP Concentrations over Time – Selected Monitoring Wells
Figure 12.	Conceptual Layout – ZVZ Injection Program(in Figures Section)

LIST OF TABLES

	Page
Table 1.	Advantages and Limitations of ZVZ Relative to Alternative Technologies
Table 2.	Performance Objectives
Table 3.	Observed Changes in TCP Concentration – 2014 Pilot Study
Table 4.	Observed Changes in TCP Concentration – 2017/2018 Verification Monitoring 9
Table 5.	Overview of Pilot Scale ZVZ Injections(in Tables Section)
Table 6.	Field Implementation Schedule. 21
Table 7.	Grab-Groundwater Sample Locations and Intervals
Table 8a.	Total Number and Types of Samples Collected – Groundwater
Table 8b.	Total Number and Types of Samples Collected – Soil and IDW
Table 9.	Analytical Methods for Sample Analysis
Table 10.	Groundwater Sampling Results – Field Parameters(in Tables Section)
Table 11.	Groundwater Analytical Results – Chlorinated Propanes (in Tables Section)
Table 12.	Groundwater Analytical Results – Geochemical Parameters (in Tables Section)
Table 13.	Soil XRF Results – Zinc(in Tables Section)
Table 14.	Soil Analytical Results – Zinc(in Tables Section)
Table 15.	Cost Model for In Situ ZVZ Applications
Table 16a.	Life-Cycle Cost Estimate – Zero Valent Zinc Injections (in Tables Section)
Table 16b.	Life-Cycle Cost Estimate – Zero Valent Iron Injections(in Tables Section)

ACRONYMS AND ABBREVIATIONS

°F degrees Fahrenheit μg/L micrograms per liter 1,2-DCP 1,2-dichloropropane 1,3-DCP 1,3-dichloropropane

AC/S ES Assistant Chief of Staff, Environmental Security

AIS American Integrated Services, Inc.

bgs below ground surface
Blaine Tech Blaine Tech Services, Inc.

Calscience Eurofins Calscience, Inc.
CCL 4 Contaminant Candidate List 4

CDPH California Department of Public Health

DO dissolved oxygen
DoD Department of Defense

DOT Department of Transportation

DPT direct-push technology

ELAP Environmental Laboratory Accreditation Program

ESTCP Environmental Security Technology Certification Program

ft/day foot per day ft/ft feet per foot ft² square feet ft³ cubic feet

GAC granular activated carbon Geosyntec Geosyntec Consultants, Inc.

HASP health and safety plan
HDPE high-density polyethylene

IDW investigation-derived waste

IPR In-Progress Review
IR Installation Restoration
ISCO in situ chemical oxidation
ISCR in situ chemical reduction

ITRC Interstate Technology and Regulatory Council

Kehoe Testing & Engineering, Inc.

LODs limits of detection

MCBCP Marine Corps Base Camp Pendleton MCL Maximum Contaminant Level mg/kg milligrams per kilogram

mg/L milligrams per liter

mL milliliters

ml/min milliliters per minute

msl mean sea level mV millivolts

NESDI Navy Environmental Sustainability Development to Integration

NTU Nephelometric turbidity units

OHSU Oregon Health and Science University

ORP oxidation-reduction potential

PID portable photoionization detector
PPE personal protective equipment
ppmv parts per million by volume
PRBs permeable reactive barriers
PSLs project-specific screening levels

PVC polyvinyl chloride

QA/QC quality assurance/quality control

RBA Richard Brady & Associates

ROI radius of influence

RPM Remedial Project Manager

SDWA Safe Drinking Water Act

SERDP Strategic Environmental Research and Development Program

TCP 1,2,3-trichloropropane

TPH total petroleum hydrocarbons

UCMR 4 Fourth Unregulated Contaminant Monitoring Rule

USCS Unified Soil Classification System

USEPA United States Environmental Protection Agency

VOAs volatile organic analytes VOCs volatile organic compounds

XRF x-ray fluorescent

ZVI zero-valent iron
ZVM zero-valent metals
ZVZ zero-valent zinc

ACKNOWLEDGEMENTS

This project was funded by the Environmental Security Technology Certification Program (ESTCP). We are grateful for Dr. Andrea Leeson's input and support throughout the project. We would like to acknowledge the technical contributions of the project's technical advisors and 1,2-3-trichloropropane subject matter experts, Professor Paul Tratnyek (Oregon Health & Science University) and Dr. Nancy Ruiz (Naval Facilities Engineering and Expeditionary Warfare Center). We also wish to thank and recognize the input and support provided by Theresa Morley (U.S. Navy) and site representatives Luis Ledesma, Ralph Pearce and Steve Griswold of Marine Corps (Camp Pendleton). Finally we would like to thank Brian Rockwell of Geosyntec for his efforts overseeing implementation of project fieldwork.

ABSTRACT

INTRODUCTION AND OBJECTIVES

The reactivity profile of "lesser chlorinated" aliphatic hydrocarbons such as 1,2-dichloroethane and 1,2-dichloropropane is relatively less understood and has not been systematically considered when developing remedial approaches for these compounds. The lesser chlorinated hydrocarbon 1,2,3-trichloropropane (TCP) has been identified as an emerging contaminant at more than 45 Department of Defense (DoD) facilities to date. The median detected concentrations have been low but are nonetheless high relative to regulatory levels for TCP.

One treatment process that produces promising rates of TCP degradation is in situ chemical reduction (ISCR) with zero-valent zinc (ZVZ). In 2014, the Navy implemented a pilot study to evaluate the feasibility and performance of in situ ZVZ remediation of TCP in groundwater. The pilot study results showed evidence of TCP degradation, but the pilot study monitoring was not designed to evaluate ZVZ distribution following injections or long-term performance of the zinc media with respect to degradation of TCP. The objective of this project was to collect data to further demonstrate and validate ZVZ, including providing supporting information for engineering design and performance assessment.

TECHNOLOGY DESCRIPTION

Evaluation of ZVZ as a remedial technology for TCP has been ongoing for several years. Proof-of-concept bench-scale testing and field-scale column testing demonstrated that chemical reduction using ZVZ is relatively promising for remediation of TCP. The first field application of ZVZ to remediate TCP in groundwater included pilot-scale injections completed at Marine Corps Base Camp Pendleton (MCBCP) in 2014 to create a permeable treatment zone. The pilot-scale injections included the direct injection of ZVZ into the subsurface via pneumatic fracturing, followed by monitoring for TCP, dissolved zinc, and geochemical parameters in intergrid and downgradient performance monitoring wells. Post-injection results showed evidence of TCP degradation of up to 97% within the pilot study area with no impacts to secondary groundwater quality.

PERFORMANCE AND COST ASSESSMENT

This project was designed to complement and leverage previous Navy-funded ZVZ injection work at MCBCP and provide information to guide the use of this technology at other DoD sites. The project included the collection of soil and groundwater samples within the pilot study area to evaluate the distribution of ZVZ achieved by the pilot study injections and the long-term efficacy of the ZVZ. Major findings include the following:

- Post-treatment groundwater monitoring results from within and downgradient of the ZVZ injection area indicate that TCP reductions exceeding 90% were achieved and maintained for at least four years post-injection.
- Reduced geochemical conditions favorable to ISCR of TCP, including low dissolved oxygen, negative oxidation reduction potential, and decreased sulfate concentrations relative to baseline conditions were secondary indicators of the continued efficacy of the pilot study injections.

• Injected zinc was present in some soil samples at high mass loadings (greater than 0.5%) but not in other samples, suggesting that ZVZ can be delivered to the subsurface but was not delivered in a predictable manner during the pilot study.

Most costs to implement this technology are comparable to implementing a zero valent iron (ZVI) remedy. The primary difference is the higher cost of ZVZ relative to ZVI. Use of ZVZ is most favorable when a stronger reductant is required, either due to the recalcitrant nature of the compound being treated or site-specific conditions which may limit residence time within the treatment area.

IMPLEMENTATION ISSUES AND LESSONS LEARNED

The limited number of soil samples within the injection area with elevated zinc concentrations suggest that the ZVZ was not delivered to the subsurface in a predictable manner during the July 2014 pilot study. This is consistent with observed surfacing of ZVZ material during the injections. As such, the project team has developed recommendations for optimizing ZVZ delivery for future injections, including the following:

- Selecting ZVZ material more amenable to subsurface injections; and
- Optimizing injection approaches to improve predictability of material delivery.

While optimal ZVZ delivery may not have been achieved during the pilot study, the observed trends in TCP concentration within and downgradient of the ZVZ injection area during post-injection performance monitoring and as part of this verification project demonstrate that the pilot study was successful in terms of achieving targeted TCP concentration reductions. Based on the TCP concentration trends and the findings of this verification project, the pilot study was considered a success by the Navy and the Navy elected to move forward with optimized ZVZ injections at two areas of MCBCP. Follow-on injections implementing these recommendations were implemented at MCBCP in early 2019. Preliminary results suggest that the optimized injections more predictably distributed ZVZ within the subsurface and that reductions in TCP concentrations are being achieved.

The primary objective of this project was to conduct verification monitoring of the previously-funded ISCR pilot study using ZVZ, a novel technology for the remediation of chlorinated alkanes. Verification monitoring results clearly demonstrate the importance of verification monitoring in assessing long term viability and performance of the technology. Lessons learned from this work were used to inform the design and implementation of two ongoing full-scale applications of this technology at MCBCP.

PUBLICATIONS

19-01 Merrill, J.P., E. Suchomel, S. Varadhan, M. Asher, L. Kane, E. Hawley, and R. Deeb, 2019. Development and Validation of Technologies for Remediation of 1,2,3-Trichloropropane in Groundwater. Current Pollution Reports (5):228–237. https://doi.org/10.1007/s40726-019-00122-7

EXECUTIVE SUMMARY

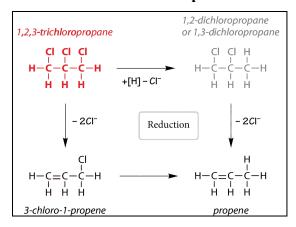
INTRODUCTION

The reactivity profile of "lesser chlorinated" aliphatic hydrocarbons such as 1,2-dichloroethane and 1,2-dichloropropane is relatively less understood and has not been systematically considered when developing remedial approaches for these compounds. The lesser chlorinated hydrocarbon 1,2,3-trichloropropane (TCP) has been identified as an emerging contaminant at more than 45 Department of Defense (DoD) facilities to date. The median detected concentrations have been low but are nonetheless high relative to regulatory levels for TCP.

Remediation options for TCP in groundwater are still being developed, particularly those that may be able to achieve current and anticipated future regulatory levels for the compound. Efficient in situ degradation of TCP is difficult to achieve with many natural and engineered remediation processes, including biodegradation at low TCP concentrations, hydrolysis, and reduction by common reductants including sulfide, ferrous iron adsorbed to iron oxides, zero-valent iron (ZVI), and nano-ZVI. TCP is less volatile than other chlorinated solvents, making it less amenable to air stripping. In situ treatment with activated persulfate is effective but has been rejected by at least one regulatory agency in the State of California due to concerns over potential secondary water quality impacts from the addition of sulfate to the groundwater at concentrations exceeding the secondary Maximum Contaminant Level (MCL) of 250 milligrams per liter (mg/L). TCP extraction and treatment with granular activated carbon (GAC) is feasible; however, TCP has a low to moderate adsorption capacity for GAC, making treatment expensive.

One treatment process that produces promising rates of TCP degradation is in situ chemical reduction (ISCR) with zero-valent zinc (ZVZ). Evaluation of ZVZ as a remediation technology for TCP has been ongoing for several years, including a pilot-scale ZVZ injection program that was completed in July 2014 at Marine Corps Base Camp Pendleton (MCBCP), California.

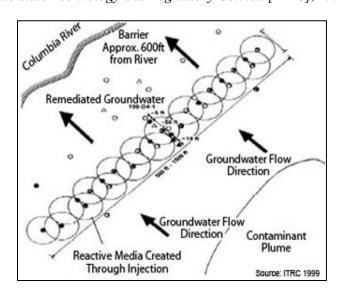
OBJECTIVES


The objective of this demonstration was to collect data to further demonstrate and validate the use of ZVZ to promote abiotic in situ chemical reduction of TCP in groundwater. TCP is both a primary emerging contaminant at DoD facilities as well as a potential model compound for assessing ZVZ as a technology for remediating other lesser chlorinated aliphatic hydrocarbons. Pilot-scale ZVZ injections have been completed at a Navy installation (MCBCP), representing the first field implementation of this technology. The scope of work described in this report was designed to complement and leverage previous DoD-funded work on this technology and provide information to guide use of this technology at other DoD sites.

TECHNOLOGY DESCRIPTION

Similar to other zero-valent metals (ZVMs), ZVZ chemically reduces organic contaminants. When TCP in groundwater contacts ZVZ, it is predominantly reduced via a dihaloelimination reaction to 3-chloro-1-propene, which is subsequently converted to propene through hydrogenolysis (see figure below). As described by Salter-Blanc et al. (2011), propene has been identified as the main product of TCP reduction by ZVZ. During bench-scale testing by Salter-Blanc et al. (2011),

detected concentrations of 3-chloro-1-propene were low relative to initial TCP concentration and transient, and analysis of overall reaction rates of TCP conversion to propene suggest that 3-chloro-1-propene is the only reaction intermediate reduced quickly enough to produce the observed rates of TCP reduction by ZVZ.


Reaction Pathway for Conversion of TCP to Propene via Dihaloelimination Reaction

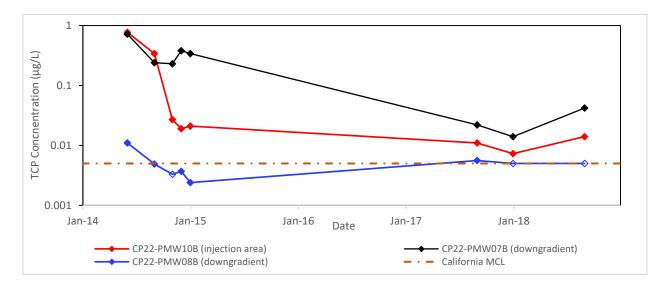
Evaluation of ZVZ as a remedial technology for TCP has been ongoing for several years. Proof-of-concept batch and column testing demonstrated that chemical reduction using ZVZ is relatively promising for remediation of TCP. The first field application of ZVZ to remediate TCP in groundwater was completed at MCBCP in 2014 and included pilot-scale injections to create a permeable treatment zone (see figure below).

Conceptual Diagram of Permeable Treatment Zones

(Interstate Technology and Regulatory Council [ITRC], 1999).

The pilot study included direct injection of ZVZ into the subsurface, followed by monitoring for TCP, dissolved zinc, and geochemical parameters in intergrid and downgradient performance monitoring wells. Post-injection monitoring showed evidence of TCP degradation of up to 97% within the pilot study area with no impacts to secondary groundwater quality.

PERFORMANCE ASSESSMENT


This project included collection of soil and groundwater samples within the 2014 pilot study area to evaluate the distribution of ZVZ achieved by the pilot study injections and the long-term efficacy of the ZVZ. Performance objectives for this project and data collected to evaluate the performance objectives are as follows:

Performance Objective	Data Collected
Evaluate long-term TCP concentrations and ZVZ longevity.	TCP concentrations in groundwater pre-treatment (collected during previously completed pilot study) and post-treatment (collected during previously completed pilot study and as part of this project). Groundwater geochemistry data to evaluate secondary
	indicators of pilot study injection efficacy.
Evaluate ZVZ distribution in soil.	Zinc concentrations in bulk soil samples from soil cores collected post-treatment.

Long Term TCP Concentrations and ZVZ Longevity

Groundwater samples collected as part of the 2014 pilot study and in 2017 and 2018 as part of this demonstration indicate the following:

- The pilot study was effective in decreasing TCP concentrations within and downgradient of the injection area by up to 99% (see figure below).
- Samples collected in 2017 and 2018 indicate that TCP reductions were maintained, and in some cases, reductions increased over time.
- Localized TCP concentration increases were observed in 2018, potentially due to seasonal or other temporal changes in groundwater quality or groundwater flow direction. Additional assessment of groundwater flow and sampling may be appropriate to further assess short- and long-term temporal trends.
- Propene was detected in multiple samples, consistent with the abiotic degradation pathway for TCP, but the higher concentrations of propene relative to TCP may indicate potential secondary sources of propene in groundwater (e.g., biological degradation of organic carbon).
- Reducing conditions (e.g., low sulfate concentrations, low dissolved oxygen, and negative oxidation reduction potential) were observed in locations throughout the treatment area, suggesting that the ZVZ continues to effectively reduce groundwater.

TCP Concentrations over Time – Selected Monitoring Wells

Note: Open symbols represent the laboratory reporting limit for non-detect samples.

ZVZ Distribution

The distribution of ZVZ in soil was evaluated based on zinc concentration in bulk soil samples collected from borings advanced radially at approximately 2-foot intervals from selected injection locations.

Zinc was observed at concentrations as high as 2% (20,000 mg/kg) in one soil boring but was either not observed above background levels or was only modestly above background in the other borings. These observations suggest that ZVZ can be delivered to the subsurface but was not delivered in a predictable manner during the pilot study.

Although the soil sampling results suggest that ZVZ delivery may have been limited and variable within the pilot study injection zone, observed trends in TCP concentration within and downgradient of the ZVZ injection area and secondary geochemical lines of evidence for reduced groundwater within the injection area demonstrate that the pilot study was nonetheless successful in terms of reducing TCP concentrations in groundwater.

Advantages and Limitations of ZVZ Relative to Alternative Remedial Technologies

The potential advantages and limitations of ZVZ as a remedial technology for TCP and other lesser chlorinated hydrocarbons are summarized below, along with a comparison to alternative technologies. In general, the key advantages of ZVZ are its ability to effectively degrade TCP at low concentrations and higher reaction rates relative to ZVI. Key limitations include higher cost relative to ZVI and current knowledge gaps with respect to the ability to distribute ZVZ in the subsurface.

Advantages and Limitations of ZVZ Relative to Alternative Technologies

Technology	Advantages	Limitations
ZVZ	 Demonstrated ability to degrade TCP at relatively high and low concentrations. Fast reaction rates relative to ZVI. Material is readily available. 	 Higher cost relative to ZVI. Ability to distribute ZVZ in situ to target ROIs is still being evaluated.
Groundwater Extraction and Treatment	 Ability to more cost-effectively capture and treat large, dilute groundwater plumes relative to <i>in situ</i> technologies. Well understood and widely applied technology. 	 Requires construction of aboveground treatment infrastructure. TCP treatment by typical technologies (e.g., GAC) may be expensive due to treatment inefficiencies.
ZVI	 Demonstrated ability to degrade TCP at relatively high and low concentrations. Lower cost relative to ZVZ. Material is readily available. 	 Lower reactivity relative to ZVZ may require higher ZVI mass loadings or thicker PRBs for in situ applications.
In Situ Chemical Oxidation (ISCO)	 Demonstrated ability to degrade TCP at relatively high and low concentrations. Approaches to distribute amendments <i>in situ</i> are well understood. Materials are readily available. 	 Most effective oxidants (e.g., base- or heat-activated persulfate) are relatively complex to implement. Generation of secondary water quality impacts (e.g., high pH, sulfate, hexavalent chromium) may limit ability to implement.
In Situ Bioremediation	 Demonstrated ability to degrade TCP at moderate to high concentrations. Approaches to distribute amendments <i>in situ</i> are well understood. Materials are readily available and inexpensive. 	 Ability to degrade TCP at very low concentrations relevant to regulatory compliance levels is still being evaluated. Slower reaction rates relative to ZVZ and ISCO.

COST ASSESSMENT

Broader applications of ZVZ as a remedial technology are expected to be similar to those of other widely applied ZVMs, such as ZVI. Applications may include the following:

- Use in permeable reactive barriers (PRBs) or permeable treatment zones for *in situ* treatment of groundwater plumes, either by trench-style installation or injection/fracturing techniques;
- Direct injection into relatively high concentration contaminant source areas for *in situ* treatment of soil and groundwater sources; and
- Ex situ use in reactors to treat contaminated groundwater following extraction.

Most costs to implement ZVZ as a remedial technology are comparable to implementing a ZVI remedy. The primary difference is the higher cost of ZVZ (\$1.85 to \$3.00 per pound) relative to ZVI (\$0.60 per pound). Based on this cost different, use of ZVZ would be most favorable when a stronger reductant is required, either due to the recalcitrant nature of the compound being treated or site-specific conditions which may limit residence time within the treatment area and therefore necessitate a prohibitively wide ZVI treatment area.

IMPLEMENTATION ISSUES AND LESSONS LEARNED

The limited number of soil samples with elevated zinc concentrations within the injection area suggests that the ZVZ was not delivered to the subsurface in a predictable manner during the pilot study. This is consistent with observed surfacing of ZVZ material during the injections. As such, the project team developed recommendations for optimizing ZVZ delivery for future injections, including the following:

- Selecting ZVZ material more amenable to subsurface injections; and
- Optimizing injection approach to improve predictability of material delivery.

While optimal ZVZ delivery may not have been achieved during the 2014 pilot study, the observed trends in TCP concentration within and downgradient of the ZVZ injection area during post-injection performance monitoring and as part of this verification project demonstrate that the pilot study was successful in terms of achieving targeted TCP concentration reductions. Based on the TCP concentration trends and the findings of this verification project, the pilot study was considered a success by the Navy and the Navy elected to move forward with optimized ZVZ injections at two areas of MCBCP. Follow-on injections implementing these recommendations were implemented at MCBCP in early 2019. Preliminary results suggest that the optimized injections more predictably distributed ZVZ within the subsurface and that reductions in TCP concentrations are being achieved.

1.0 INTRODUCTION

Geosyntec Consultants, Inc. (Geosyntec) has prepared this Final Report for Environmental Security Technology Certification Program (ESTCP) project number ER-201628, "Verification Monitoring for In Situ Chemical Reduction Using Zero-Valent Zinc, A Novel Technology for Remediation of Chlorinated Alkanes."

1.1 BACKGROUND

The reactivity profile of highly halogenated aliphatic hydrocarbons such as tetrachloroethene and trichloroethene is widely understood and informs the selection of successful remedies for these compounds in groundwater. In contrast, the reactivity profile of "lesser chlorinated" aliphatic hydrocarbons such as 1,2-dichloroethane and 1,2-dichloropropane is understood less well and to date has not been systematically considered when developing remedial approaches for these compounds.

One lesser chlorinated hydrocarbon, 1,2,3-trichloropropane (TCP), was identified as number three in a list of primary emerging contaminants at a recent Strategic Environmental Research and Development Program (SERDP)/ESTCP workshop on long-term management of contaminated sites (SERDP/ESTCP, 2013). Due to its historical uses, TCP occurs as both point and non-point source contamination in soil and groundwater. As a result, the 2013 SERDP/ESTCP workshop characterized potential TCP impacts at Department of Defense (DoD) facilities by stating that "while 1,2,3-TCP is not a contaminant of concern at a large number of DoD sites, the intensity of contamination at a small number of sites is of significant concern." To date, TCP has been observed at more than 45 DoD installations. The median detected concentrations (approximately 1 microgram per liter [µg/L]) have been low but are nonetheless high relative to regulatory levels for TCP (Section 1.3).

Remediation options for TCP in groundwater are still being developed, particularly those that may be able to achieve current and anticipated future regulatory levels for the compound. Efficient *in situ* degradation of TCP is difficult to achieve with many natural and engineered remediation processes, including biodegradation at low TCP concentrations; hydrolysis; and reduction by common reductants including sulfide, ferrous iron adsorbed to iron oxides, zero-valent iron (ZVI), and nano-ZVI. TCP is less volatile than other chlorinated solvents, making it less amenable to air stripping. *In situ* treatment with activated persulfate is effective but has been rejected by at least one regulatory agency in the State of California due to concerns over potential secondary water quality impacts from the addition of sulfate to the groundwater at concentrations exceeding the secondary Maximum Contaminant Level (MCL) of 250 milligrams per liter (mg/L). Some work has been done using extraction and treatment with granular activated carbon (GAC); however, TCP has a low to moderate adsorption capacity for GAC, making treatment expensive.

One treatment process that produces promising rates of TCP degradation is reduction with zero-valent zinc (ZVZ). As discussed in Section 2, evaluation of ZVZ as a remediation technology for TCP has been ongoing for several years, culminating in a pilot-scale ZVZ injection program that was completed in July 2014 at Marine Corps Base Camp Pendleton (MCBCP), Oceanside, California.

1.2 OBJECTIVE OF THE DEMONSTRATION

The objective of this demonstration was to collect data to further demonstrate and validate the use of ZVZ to promote abiotic *in situ* chemical reduction (ISCR) of TCP in groundwater.

TCP is both a primary emerging contaminant at DoD facilities and a potential model compound for assessing ZVZ as a technology for remediating other lesser chlorinated aliphatic hydrocarbons. Pilot-scale ZVZ injections have been completed at a Navy installation (MCBCP), representing the first field implementation of this technology. The scope of work described in this report was designed to complement and leverage previous DoD-funded work on this technology and provide information to guide use of this technology at other DoD sites.

1.3 REGULATORY DRIVERS

TCP has been used in a variety of chemical production processes, in agricultural chemicals, and as a solvent. Because its toxicity to humans appears to be high relative to other chlorinated solvents, even low-level exposures to TCP may pose a significant human health risk. TCP is currently designated as "reasonably anticipated to be a human carcinogen." Federal and state regulatory drivers include the following:

- Federal: TCP was previously listed on the United States Environmental Protection Agency's (USEPA) drinking water Contaminant Candidate List 4 (CCL 4), which may result in future federal regulation of the compound under the Safe Drinking Water Act (SDWA). More information on the CCL 4 is available at: https://www.epa.gov/ccl/contaminant-candidate-list-4-ccl-4-0. Despite its listing on the CCL 4, TCP was not included in the assessment monitoring program for the Fourth Unregulated Contaminant Monitoring Rule (UCMR 4), which began in March 2018. The UCMR program is intended to provide a basis for future regulatory actions to protect public health. Development of CCL 5 began in late 2018; it is currently unknown whether TCP will again be listed.
- <u>Alaska</u>: A groundwater cleanup standard of 0.0075 μg/L has been established (Alaska Department of Environmental Conservation, 2016).
- <u>California</u>: California adopted an MCL of 0.005 μg/L for TCP on 18 July 2017 based on technical and economic feasibility considerations (California State Water Resources Control Board, 2017).
- <u>Florida</u>: A target cleanup level of 0.02 μg/L has been established (Florida Administrative Code, 2018).
- Hawaii: An MCL of 0.6 μg/L has been established (Hawaii Department of Health, 2009).
- <u>Minnesota</u>: A guidance value of 0.003 μg/L has been established (Minnesota Department of Health, 2011).
- <u>Missouri:</u> A health advisory level of 40 μg/L has been established (Missouri Code of State Regulations, 2018).
- New Jersey: An MCL of 0.03 μg/L has been established (New Jersey Department of Environmental Protection, 2018).

The regulation of TCP is expected to continue evolving in the future; however, it is probable that established regulatory drivers will be low relative to other contaminants. Thus, validation of ZVZ as a technology capable of effectively treating TCP and other lesser chlorinated aliphatic hydrocarbons at low concentrations is beneficial to DoD remedial practitioners and related DoD contractors.

2.0 TECHNOLOGY

The following section provides an overview of prior work conducted to evaluate ZVZ as a remediation technology for TCP.

2.1 TECHNOLOGY DESCRIPTION

Overview and Application of Technology. Similar to other zero-valent metals (ZVMs), ZVZ chemically reduces organic contaminants. When TCP in groundwater contacts ZVZ, it is predominantly reduced via a dihaloelimination reaction to 3-chloro-1-propene, which is subsequently converted to propene through hydrogenolysis (Figure 1). As described by Salter-Blanc et al. (2011), propene has been identified as the main product of TCP reduction by ZVZ. During bench-scale testing by Salter-Blanc et al. (2011), detections of 3-chloro-1-propene were low in concentration (relative to initial TCP concentration) and transient, and analysis of overall reaction rates of TCP conversion to propene suggest that 3-chloro-1-propene is the only reaction intermediate reduced quickly enough to produce the observed rates of TCP reduction by ZVZ.

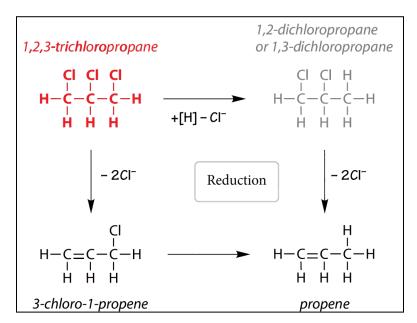


Figure 1. Reaction Pathway for Conversion of TCP to Propene via Dihaloelimination Reaction.

As described below and in Section 4, field application of ZVZ to date has been limited to pilot-scale injections at MCBCP to create a permeable treatment zone. **Figure 2** presents a conceptual diagram of an injection-based permeable treatment zone.

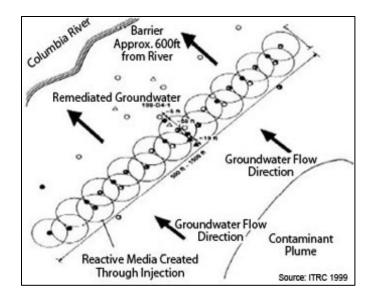


Figure 2. Conceptual Diagram of Permeable Treatment Zones

(Interstate Technology and Regulatory Council [ITRC], 1999).

Broader applications of ZVZ as a remedial technology are expected to be similar to those of other widely-applied ZVMs, such as ZVI. Applications may include:

- Use in permeable reactive barriers (PRBs) or permeable treatment zones for *in situ* treatment of groundwater plumes, either by trench-style installation or injection/fracturing techniques;
- Direct injection into relatively high concentration contaminant source areas for *in situ* treatment of soil and groundwater sources; and
- Ex situ use in reactors to treat contaminated groundwater following extraction.

General information on these applications is available from the Contaminated Site Clean-Up Information website maintained by the USEPA (https://clu-in.org/).

<u>Chronology of Technology Development.</u> Initial work to develop ZVZ as a remedial technology for TCP was conducted under the lead of Dr. Paul Tratnyek at Oregon Health and Science University (OHSU) as part of SERDP Project No. ER-1457, which assessed the potential for TCP remediation by a range of chemical oxidation and reduction processes. Many of the results of this study have been reported in the literature (e.g., Tratnyek et al., 2010; Sarathy et al., 2010).

The scope of ER-1457 included bench-scale proof-of-concept testing to evaluate the following:

- TCP degradation reaction rates for ZVI, other iron species, and ZVZ;
- TCP degradation rates for typical *in situ* chemical oxidation (ISCO) amendments, including peroxide, ozone, persulfate, and permanganate;
- Optimization of ZVZ material selection for remedial applications; and
- Optimization of the ZVZ degradation process for TCP.

A key conclusion of the bench-scale testing conducted as part of ER-1457 was that TCP is considerably more recalcitrant than most chlorinated solvents, although both highly aggressive types of chemical oxidation as well as chemical reduction using ZVMs (particularly ZVZ) were identified as relatively promising for remediation of TCP. The promising results for TCP degradation by ZVZ observed during implementation of ER-1457 further suggested that this technology may have merit for the broader suite of lesser chlorinated hydrocarbons.

Based on the findings of ER-1457, field-scale column testing of ZVZ for remediation of TCP was completed under Navy Environmental Sustainability Development to Integration (NESDI) Program Project 434. The 22/23 Area of MCBCP was selected as a test site for this work due to the presence of TCP in installation groundwater at concentrations of up to $10 \mu g/L$, which is significantly higher than the California MCL of $0.005 \mu g/L$. Specific objectives of the project included:

- Assess the ability of ZVMs (ZVI and/or ZVZ) to effectively degrade TCP in 22/23 Area groundwater;
- Evaluate potential impacts to secondary water quality (e.g., changes in pH or dissolved zinc concentration) that could affect future implementation of a ZVZ or ZVI remedy;
- Identify potential factors that may impact performance of ZVI or ZVZ as a remedy for TCP in groundwater; and
- Conduct a preliminary evaluation of full-scale applicability of ZVI or ZVZ for treatment of TCP in 22/23 Area groundwater.

The scope of NESDI Project 434 included the following:

- Baseline sampling of 22/23 Area groundwater to establish geochemical conditions;
- Laboratory studies to optimize ZVZ material selection for groundwater geochemical conditions at MCBCP, to determine TCP degradation rates in MCBCP groundwater, and to identify factors that could affect field-scale column design; and
- Field-scale column testing to evaluate long-term TCP degradation performance by ZVZ and to generate design parameters for potential scale up of ZVZ as either an *in situ* or *ex situ* treatment technology.

Laboratory and field testing used TCP-impacted groundwater from monitoring wells at the 22/23 Area. Results of the laboratory studies indicated that two types of commercially-available zinc (Zn64 and Zn1210, available from Horsehead Corporation at the time of project implementation)¹ were particularly effective at TCP degradation, without significant impacts to water quality. Field-scale columns were subsequently constructed using these media at mass loadings ranging from 33% zinc mixed with sand to 100% zinc to simulate potential application in a PRB. Results of the field-scale column testing validated the laboratory-scale results, with TCP degradation of up to 95% maintained after 12 weeks of column operation. Although Zn64 was observed to have a very high reactivity with TCP, results over the 12-week study duration suggested that Zn1210 was more suitable for use in a PRB application due to material handling characteristics and TCP removal efficiency. A major outcome of the laboratory- and field-scale column testing was development of site-specific degradation rate constants for TCP and the tested media.

5

¹ Horsehead Corporation declared bankruptcy in February 2016. It has since been acquired by a capital management company and rebranded as American Zinc Recycling.

NESDI Project 434 was completed in 2010; a final report was submitted to NESDI in 2011 (Geosyntec, 2011) and the results published elsewhere (e.g., Salter-Blanc and Tratnyek, 2011; Salter-Blanc et al., 2012). The final report concluded that ZVZ can effectively treat groundwater impacted by TCP. Ex situ application was determined to be economically infeasible at the flow rates evaluated due to the large reactor volumes and corresponding mass of ZVZ that would be required for treatment (although ex situ treatment could be viable at lower extraction rates). In situ applications were determined to be feasible provided that the aerial extent of TCP is limited and that groundwater flow velocities are relatively low.

Based on the results reported in ER-1457 and the subsequent findings of NESDI Project 434, the Navy elected to move forward with a pilot study to evaluate the feasibility and performance of *in situ* ZVZ remediation of TCP in groundwater. The pilot study was completed at MCBCP 22/23 Area in 2014 and included the following elements:

- Installation and baseline sampling of pilot study performance monitoring wells;
- Direct injection of ZVZ into the subsurface; and
- Periodic monitoring of TCP, dissolved zinc, and geochemical parameters to evaluate pilot study performance using a network of 10 monitoring well clusters.

Details on the ZVZ injection program and results from the post-injection monitoring were reported in a Pilot Study Report (Richard Brady & Associates [RBA] and Geosyntec, 2015) and are summarized in Section 4.5 of this report. The Pilot Study Report concluded that the Navy met the objectives of the pilot study as specified in the pilot study work plan that was submitted to the regulatory agencies overseeing work at MCBCP, and the approved scope of work has been completed. As a result, there was no requirement for MCBCP to continue work on the pilot study.

Although the pilot study was deemed effective with respect to meeting its project-specific objectives, the monitoring approach for the pilot study was not designed to evaluate efficacy of the ZVZ injections or long-term performance of the zinc media with respect to degradation of lesser chlorinated hydrocarbons such as TCP. This report describes a scope of work that was implemented in 2017 and 2018 to leverage the previously completed pilot study work and collect additional information necessary to further validate ZVZ as a remedial technology for TCP and other lesser chlorinated hydrocarbons.

2.2 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY

The potential advantages and limitations of ZVZ as a remedial technology for TCP and other lesser chlorinated hydrocarbons are summarized in **Table 1** below, along with a comparison to alternative technologies. In general, the key advantages of ZVZ are its ability to effectively degrade TCP at low concentrations and higher reaction rates relative to ZVI. Its key limitations are higher cost relative to ZVI and current knowledge gaps with respect to the ability to distribute ZVZ in the subsurface and material longevity once emplaced.

Table 1. Advantages and Limitations of ZVZ Relative to Alternative Technologies.

Technology	Advantages	Limitations
ZVZ	 Demonstrated ability to degrade TCP at relatively high and low concentrations. Fast reaction rates relative to ZVI. Material is readily available. 	 Ability to distribute ZVZ in situ and in situ longevity has not been fully demonstrated to date. Higher cost relative to ZVI.
Groundwater Extraction and Treatment	 Ability to more cost-effectively capture and treat large, dilute groundwater plumes relative to <i>in situ</i> technologies. Well understood and widely applied technology. 	 Requires construction of aboveground treatment infrastructure. TCP treatment by typical technologies (e.g., GAC) may be expensive due to treatment inefficiencies.
ZVI	 Demonstrated ability to degrade TCP at relatively high and low concentrations. Lower cost relative to ZVZ. Material is readily available. 	• Lower reactivity relative to ZVZ may require higher ZVI mass loadings or thicker PRBs for <i>in situ</i> applications.
ISCO	 Demonstrated ability to degrade TCP at relatively high and low concentrations. Approaches to distribute amendments <i>in situ</i> are well understood. Materials are readily available. 	 Most effective oxidants (e.g., base- or heat-activated persulfate) are relatively complex to implement. Generation of secondary water quality impacts (e.g., high pH, sulfate, hexavalent chromium) may limit ability to implement.
In Situ Bioremediation	 Demonstrated ability to degrade TCP at moderate to high concentrations. Approaches to distribute amendments <i>in situ</i> are well understood. Materials are readily available and inexpensive. 	 Ability to degrade TCP at very low concentrations relevant to regulatory compliance levels is still being evaluated. Slower reaction rates relative to ZVZ and ISCO.

3.0 PERFORMANCE OBJECTIVES

Performance objectives for this project were developed as part of the approved Demonstration Plan (Geosyntec, 2017). The performance objectives are described in this section and summarized in **Table 2**, along with a brief statement as to whether the performance metrics were achieved. Additional details on the evaluation of the performance objectives is presented in Section 6.

Table 2. Performance Objectives.

Performance Objective	Data Requirements	Success Criteria
Quantitative Performance	Objectives	
Evaluate TCP concentration reductions in groundwater.	Pre-treatment (collected during previously completed pilot study) and post-treatment (collected during previously completed pilot study and as part of Demonstration Plan) TCP concentrations in groundwater.	 >90% concentration reduction of TCP in source area is maintained. >90% reduction of TCP concentration downgradient – treatment will be considered fully effective. 50-80% reduction of TCP concentration downgradient – treatment will be considered partly effective.
Evaluate ZVZ longevity.	Pre-treatment (collected during previously completed pilot study) and post-treatment (collected during previously completed pilot study and as part of Demonstration Plan) TCP concentrations in groundwater.	 A downward trend in concentration reduction of TCP in the source area is not observed at an 80% confidence level. A downward trend in concentration reduction of TCP downgradient of the source area is not observed at an 80% confidence level.
Evaluate ZVZ distribution in soil.	ZVZ concentration in bulk soil samples from soil cores collected post-treatment.	• >0.5% concentration of zinc by mass is observed at the pilot study target radius of influence of 5 feet.

3.1 PERFORMANCE OBJECTIVE: EVALUATE TCP CONCENTRATION REDUCTIONS IN GROUNDWATER

The objective of groundwater sampling conducted as part of this project was to collect long-term post-injection groundwater data for comparison to baseline sampling data and data from four groundwater sampling events conducted immediately following implementation of the July 2014 ZVZ injection program (RBA and Geosyntec, 2015). The sampling results were compared to previously collected data using the quantitative metrics below to evaluate the efficacy of TCP treatment with ZVZ.

3.1.1 Data Requirements

The efficacy of TCP treatment with ZVZ has been evaluated based on contaminant concentration reductions in groundwater within and downgradient of the zone of treatment. Data collected to assess the remedial effectiveness included pre- and post-treatment contaminant concentrations in groundwater. Groundwater samples were collected prior to and immediately following ZVZ injections and analyzed for TCP as part of the previously implemented pilot study (RBA and Geosyntec, 2015). Additional post-treatment samples were collected as part of this project and compared with initial concentrations to evaluate the extent of TCP degradation and whether TCP treatment was maintained in the three years between pilot study implementation and long-term sample collection.

3.1.2 Success Criteria

TCP concentration reductions were observed in samples collected from monitoring wells located within and downgradient of the ZVZ injection area during the Navy-funded pilot study:

Table 3. Observed Changes in TCP Concentration – 2014 Pilot Study.

Well ID	Location Relative to ZVZ Injection Area	Baseline TCP (µg/L)	Post-Injection TCP (µg/L)	Percent Reduction
CP22-PMW10B	Within	0.77	0.021	97%
CP22-PMW08B	Downgradient	0.011	0.0024	78%
CP22-PMW07B	Downgradient	0.72	0.34	53%

The design objective of the pilot study was a 90% reduction in TCP concentration within the injection area. The design objective was met within the injection area and concentration reductions were noted in the predominant downgradient flow direction immediately following the pilot study. The performance metrics for verification monitoring completed as part of this project were developed based on this design objective and are as follows:

- Injection area treatment of TCP with ZVZ is considered effective if post-treatment groundwater monitoring results indicate that TCP reductions exceeding 90% are maintained.
- Downgradient treatment of TCP with ZVZ is considered most effective if post-treatment groundwater monitoring results indicate that TCP reductions exceeding 90% are achieved. If reductions on the order of the 50% to 80% observed at the conclusion of the pilot study have been maintained over the three years since implementation, downgradient treatment of TCP with ZVZ is considered partially effective.

3.1.3 Evaluation of Objective

The range of TCP concentrations observed at intergrid well CP22-PMW10B and downgradient wells CP22-PMW07B and CP22-PMW08B during sampling conducted as part of this project are summarized in the table below, along with reductions in TCP concentration from baseline levels.

Table 4. Observed Changes in TCP Concentration – 2017/2018 Verification Monitoring.

Well ID	CP22- PMW10B	CP22- PMW07B	CP22- PMW08B
Location Relative to ZVZ Injection Area	Intergrid	Downgradient	Downgradient
Baseline TCP (μg/L)	0.77	0.72	0.011
2014 Post-Injection TCP (μg/L)	0.021	0.34	0.0024
2014 Percent Reduction	97%	53%	78%
2017-2018 Post-Injection TCP Range (μg/L)	0.0073-0.014	0.014-0.042	< 0.005-0.0056
2017-2018 Percent Reduction Range	98% - 99%	94% - 98%	49%+ (see below)

Note: TCP was not detected above laboratory reporting limits (0.005 μ g/L) in two of the three samples collected between 2017 and 2018 at well CP22-PMW08B.

As shown in the above table, post-treatment groundwater monitoring results from within the ZVZ injection area indicate that TCP reductions exceeding 90% have been maintained and that source treatment of TCP with ZVZ is effective. Downgradient treatment of TCP with ZVZ was effective at well CP22-PMW07B (i.e., a percent reduction over 90%), where baseline concentrations were comparable to those within the ZVZ injection area. At downgradient well CP22-PMW08B, where baseline TCP concentrations were low, TCP concentrations following the pilot study were reduced to close to or below the laboratory reporting limit and California MCL of $0.005~\mu g/L$.

3.2 PERFORMANCE OBJECTIVE: EVALUATE ZVZ LONGEVITY

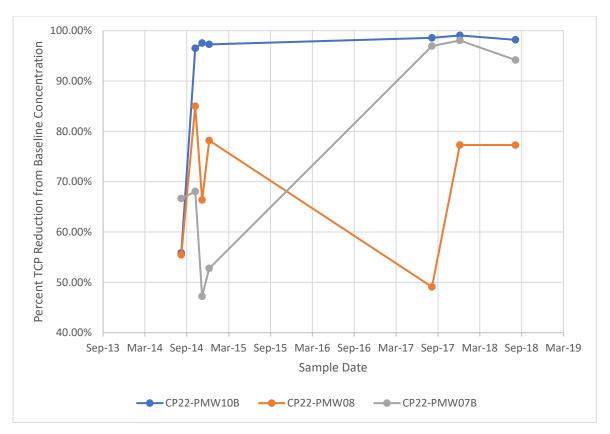
An additional objective of groundwater sampling conducted as part of this project was to collect long-term post-injection groundwater data to use in conjunction with previously collected data to evaluate the longevity of ZVZ.

3.2.1 Data Requirements

The ZVZ longevity has been evaluated based on changes in TCP concentration reductions within and downgradient of the zone of treatment over time. Data required for the ZVZ longevity assessment include:

- Pre-treatment contaminant concentration in groundwater (RBA and Geosyntec, 2015).
- Short-term post-treatment contaminant concentrations in groundwater (RBA and Geosyntec, 2015).
- Long-term post-treatment samples collected as part of this project.

Post-treatment sampling results have been compared to initial concentrations to assess trends in ZVZ treatment efficacy over the approximately four years since pilot study injections were implemented.


3.2.2 Success Criteria

The performance metrics for the verification monitoring are as follows:

- ZVZ longevity within the source zone is considered adequate if post-treatment groundwater monitoring results indicate that TCP concentrations reductions do not exhibit a decreasing trend at an 80% confidence level.
- ZVZ longevity for treatment of the downgradient plume is considered adequate if post-treatment groundwater monitoring results indicate that TCP concentrations reductions do not exhibit a decreasing trend at an 80% confidence level.

3.2.3 Evaluation of Objective

Reductions in TCP concentrations from baseline levels as a function of time are plotted below for wells CP22-PMW07B, CP22-PMW08B, and CP22-PMW10B.

Note: Concentration reduction for non-detect results estimated using half the detection limit.

Figure 3. Changes in TCP Reduction over Time.

Review of the above chart indicates that observed TCP concentration reductions have not decreased within the ZVZ injection area (i.e., concentrations reductions significantly greater than 90% have been maintained since the injections were completed in 2014). In downgradient well CP22-PMW07B, observed reductions in TCP concentration have increased substantially since 2014 to over 90%, suggesting that the ZVZ continues to effectively degrade TCP. At well CP22-PMW08B where baseline concentrations were low, observed TCP concentration reductions are more variable, but have remained between 50% and 80% since 2014.

3.3 PERFORMANCE OBJECTIVE: EVALUATE ZVZ DISTRIBUTION IN SOIL

The objective of soil sampling conducted as part of this project was to collect post-injection soil data for comparison to the design objective for ZVZ mass loading within the pilot study injection area.

3.3.1 Data Requirements

The distribution of ZVZ in soil has been evaluated based on zinc concentration in bulk soil samples from soil cores collected post-treatment. Since direct injection technologies can result in variable material distribution, ZVZ mass loading data from borings located radially at approximately 2-foot intervals from selected injection locations (multiple borings per interval) were evaluated for comparison to the performance metric.

3.3.2 Success Criteria

The design objective for ZVZ mass loading within the pilot study area was 0.5% zinc mass loading on average, based on site-specific conditions and mass loadings typically achievable using direct injection technology. The performance metrics for the verification monitoring conducted as part of this project have been developed based on this design objective and are as follows:

• The ZVZ delivery approach is considered effective if ZVZ mass loading exceeding 0.5% extends to the target minimum radius of influence for direct injections of 5 feet.

3.3.3 Evaluation of Objective

The distribution of ZVZ in soil is discussed in Section 6 of this report. In general, detection of ZVZ at concentrations significantly exceeding background levels was limited to one soil boring advanced 3 feet from injection point IP-08. The detected zinc concentrations (18,100 milligrams per kilogram [mg/kg] to 20,000 mg/kg) are equivalent to 1.8 to 2.0% zinc mass loading, suggesting that ZVZ injections can achieve localized mass loadings in excess of 0.5% where ZVZ is successfully delivered to the subsurface.

The limited number of zinc detections, however, suggests that the ZVZ was not delivered to the subsurface in a predictable manner during the July 2014 pilot study. This is consistent with (1) observed surfacing of ZVZ material during the July 2014 ZVZ injections; and (2) observed concentrations in samples collected radially from IP-08, where ZVZ was not detected in a sample collected 1 foot from the injection point but was detected at high concentrations 3 free from the injection point along the same transect.

Although the soil sampling results suggest that ZVZ delivery may have been limited, the observed trends in TCP concentration within and downgradient of the ZVZ injection area demonstrate that the pilot study was nonetheless successful in terms of achieving targeted TCP concentration reductions. As such, the project team has developed recommendations for optimizing ZVZ delivery for future injections, including:

- Selecting ZVZ material more amenable to subsurface injections; and
- Optimizing injection approach to improve predictability of material delivery.

Additional discussion of process optimization is provided in Section 8 of this report.

4.0 SITE DESCRIPTION

The following section presents a brief overview of MCBCP 22/23 Area. Information in this section is presented in additional detail in the Pilot Study Report for the ZVZ injection program (RBA and Geosyntec, 2015).

4.1 SITE SELECTION

A pilot-scale ZVZ injection program was previously completed on behalf of the Navy at MCBCP 22/23 Area (RBA and Geosyntec, 2015) due to the presence of TCP in installation groundwater at concentrations of up to 10 μ g/L. As this project was intended to complement the previously completed pilot study, it was also completed within the pilot study area.

4.2 SITE LOCATION AND HISTORY

MCBCP is located along the coast of southern California, between San Clemente and Oceanside, with the 22/23 Area located near the southern boundary of the base (**Figure 4**). Land use within the 22/23 Area consists mainly of industrial buildings, an air station complex, and warehouses. Most of the 22/23 Area is covered by buildings, asphalt roads, or asphalt parking lots. Future land use is expected to remain largely the same with the possible addition of more troop housing.

The location of previously completed ZVZ pilot study is south of, and adjacent to, a large paved warehouse and parking area, with smaller paved parking, vehicle maintenance facilities and office trailers located northwest and northeast of the study site. Located within the study area, and immediately east of well 220505-MWX, is a below-grade sewer pump station that services a barrack facilities south of the study area.

<u>Topography.</u> The regional topography at MCBCP is varied and includes sandy coastal beaches and dunes, sea cliffs, coastal plains, marine and river terraces, hills, canyons, river valleys, and mountains rising to nearly 2,700 feet above mean sea level (msl). The ground surface in developed portions of the 22/23 Area is generally flat and includes various buildings, roads, drainage swales, and unpaved areas. The ground surface generally slopes toward the west, with an average elevation of approximately 60 feet above msl, although ground surface elevations vary from about 50 to 70 feet above msl.

<u>Climate.</u> MCBCP is characterized by warm, dry summers and mild, wet winters typical of a Mediterranean climate. Rainfall averages 10 to 17 inches per year, the majority of which falls between November and March. Rainfall amounts increase inland at higher elevations. Coastal valley temperatures generally range from 35 to 95 degrees Fahrenheit (°F).

4.3 SITE GEOLOGY/HYDROGEOLOGY

The following section summarizes geology and hydrogeology in the vicinity of the ZVZ pilot study area.

4.3.1 Geology

MCBCP is located within the Peninsular Range Geomorphic Province of southern California and lies within the lower Santa Margarita River basin, which extends southward from the confluence of the Santa Margarita River and De Luz Creek. The site lies within the Chappo subbasin. In general, shallow subsurface geology at the site consists primarily of Holocene stream deposited alluvium overlying Santiago Formation bedrock. The Santiago Formation broadly consists of interbedded sandstone, siltstone, and mudstone.

<u>Pilot Study Area Geologic Setting.</u> Geologic logging of discrete soil samples and continuous soil cores collected during the pilot study implementation indicated the presence of interbedded finegrained sands, silts, and sand-silt mixtures to depth throughout the pilot study area.

Shallow soils identified in approximately the upper 20 feet of the soil column were generally more variable and showed more sand-silt mixtures and evidence of plant materials down to as much as 11 feet below ground surface (bgs). Beneath these surficial materials was the following sequence of sandy, more permeable soils (depth intervals are approximate):

- "A" zone 20 to 30 feet bgs;
- "B" zone -35 to as much as 48 feet bgs; and
- "C" zone 52 to 60 feet bgs.

Each of these permeable zones were separated by lower permeability silt and sandy silt mixtures that tended to differentiate each water-bearing zone from the distinct units above and below. Beneath the "C" zone sands was a more massive silty zone from 60 feet to 65 feet bgs that isolated the "C" zone from sandy materials identified below to a final investigated depth of 70 feet bgs.

4.3.2 Hydrogeology

MCBCP is located within the Lower Santa Margarita River Ground Water Basin. Groundwater within the Lower Santa Margarita River Basin generally flows southwest down the valley toward the ocean and closely follows the path of the Santa Margarita River. The regional groundwater flow direction is generally consistent from season to season, although seasonal variations in groundwater elevation of as much as 5 feet have been reported.

The regional gradient from northeast to southwest across the 22/23 Area is approximately 0.002 feet per foot (ft/ft). Calculated groundwater flow rates across the 22/23 Area vary from 0.27 to 0.54 foot per day (ft/d) (Parsons, 2011).

<u>Pilot Study Area Hydrogeology.</u> Based on historical water level data, the depth to groundwater in the 22/23 Area is approximately 5 to 15 feet bgs. Within the pilot study area, the depth to groundwater ranged from approximately 6 to 9 feet bgs during pilot study baseline and performance monitoring conducted in 2014 and 2015. A review of groundwater elevation data collected during the pilot study indicated the following (RBA and Geosyntec, 2015):

• Groundwater elevations within the pilot study area can vary as much as several feet from season to season.

- Horizontal gradient directions in the "B" zone (the zone targeted by the ZVZ injection program, Section 4.5) vary depending on the season.
- Horizontal groundwater gradients measured in the pilot study area suggest that the three water-bearing zones monitored for the pilot study are likely independent and possibly recharge at differing rates from diverse sources.
- Vertical gradients measured in the pilot study monitoring wells tended to be upward during the drier months of the pilot study monitoring. Vertical gradients gradually shifted in the downward direction during the rainy season due to stormwater recharge.
- The observed variability in groundwater flow directions and gradients could not be correlated to the ZVZ injection program and the pilot study results do not suggest that the presence of ZVZ restricted or redirected groundwater flow.

In general, groundwater elevation data collected during the pilot study are consistent with alluvial stream bed deposits. However, the observed spatial and temporal variations in groundwater elevations indicate that groundwater regime in the study area contains some local elements that should be considered when evaluating pilot study performance.

4.4 CONTAMINANT DISTRIBUTION

Groundwater samples have been collected and analyzed for TCP from various wells within the 22/23 Area since 1996. Historically, TCP has been detected above $0.005~\mu g/L$ in 23 groundwater monitoring wells within the 22/23 Area. The highest concentration of TCP historically detected in the 22/23 Area was $18~\mu g/L$ in November 1997.

<u>Pilot Study Area.</u> The distribution of TCP within the pilot study area during baseline sampling (June 2014) and four performance monitoring events (September 2014, November 2014, December 2014, January 2015) conducted following completion of ZVZ injections in July 2014 are shown in **Figure 5**.

Groundwater samples were collected from 16 monitoring wells within the pilot study area to establish baseline TCP concentrations prior to injections. Baseline concentrations measured in the "A" zone ranged from 0.0032 μ g/L to 0.10 μ g/L; baseline concentrations measured in the "B" zone ranged from 0.0053 μ g/L to 6.5 μ g/L; and baseline concentrations measured in the "C" zone ranged from 0.85 μ g/L to 1.6 μ g/L. Detected concentrations of TCP within the pilot study area were highest in the "B" zone.

Groundwater samples were collected from 10 monitoring wells within the pilot study area during four performance monitoring events conducted immediately following implementation of the ZVZ injection program. Concentrations of TCP detected during the post injection monitoring events ranged from 0.0023 μ g/L to 7.4 μ g/L, with reductions in TCP noted in wells CP22-PMW10B (within treatment zone), CP22-PMW08B (downgradient of treatment zone), and PC22PMW-07B (downgradient of treatment zone).

4.5 OVERVIEW OF PILOT SCALE ZVZ INJECTIONS

Based on the findings of SERDP Project ER-1457 and NESDI Project 434 (Section 2.1), the Navy elected to fund a pilot-scale test at MCBCP to evaluate ZVZ as an *in situ* remedial technology for TCP.

The pilot study was implemented in 2014, representing the first field-scale implementation of the technology, and the results of the pilot study have been submitted to the regulatory agencies overseeing work at the installation (RBA and Geosyntec, 2015). The pilot study results based on the performance monitoring completed as part of the approved pilot study work plan were favorable, with observed degradation of TCP suggesting that further validation of the technology was warranted.

The 2014 pilot study ZVZ injections were completed at MCBCP using a direct-push drill rig to advance the injection tooling. The tooling was advanced to a depth of five feet below the target treatment zone to accommodate a lower packer assembly. The injection assembly, which consisted of an injection nozzle and straddle packers located above and below the nozzle on the drill string to isolate and focus the injection, was then lowered to the base of the borehole. Mechanical or inflatable packers were also placed in nearby groundwater monitoring wells mitigate potential surfacing of injected materials at those locations.

ZVZ was mixed with water and a small amount of guar gum, and then injected at a total of 13 injection points at depths ranging from approximately 35 to 45 feet bgs (**Figure 5**). The injected ZVZ was commercially available Zn1210 zinc powder purchased from Horsehead Corporation (formerly, now known as American Zinc Recycling). Equipment that was present onsite and used for the injections included a ZVZ slurry injection trailer, air injection module, and a nitrogen gas tube trailer. Water for preparing the ZVZ slurry was obtained from a nearby watering station and brought to the injection area in a water truck. Once the injection assembly and packers were in place and the injection solution was mixed in the injection trailer, pneumatic fracturing and/or injection activities were initiated.

Pneumatic fracturing was utilized at the first two injection locations (INJ-1 and INJ-2). Surveying equipment was used during pneumatic fracturing to monitor for surface heave at the injection locations. Fracturing initiation pressure, maintenance pressure, and surface heave data at each depth interval for each injection borehole are recorded in **Table 5**. During the injections at INJ-1 and INJ-2, surfacing of injection fluid and ZVZ were observed. The surfacing was attributed in part to the development of vertical flow pathways during the pneumatic fracturing. To decrease the likelihood of injectate surfacing at the remaining injection locations, hydraulic injection was employed at locations INJ-3 through INJ-13.

ZVZ was injected at each injection location at approximate depth intervals of 39-42 feet bgs and 42-45 feet bgs. The injections were completed in a bottom-up manner, with the lower injection interval completed first. Approximately 60 to 250 gallons of water were used at each injection interval, with the mass of injected ZVZ ranging from approximately 250 to 800 pounds at each interval. Approximately 12,300 pounds of ZVZ were injected during the pilot study. Quantities of water and ZVZ injected at each depth interval are presented in **Table 5**.

The pilot-scale ZVZ injections at MCBCP were completed in July 2014, and the ZVZ injections were monitored throughout the remainder of 2014 and into early 2015 using a network of 10 monitoring well clusters. Key findings of the pilot study included the following (RBA and Geosyntec, 2015):

ZVZ Injection Program

- Direction injection of ZVZ into the subsurface at the pilot study area for treatment of TCP could be achieved, although surfacing of ZVZ was observed during the injections through both desiccation cracks and old boring locations. Surfacing was observed to increase as injection depths became shallower.
- Limited soil borings advanced in the vicinity of one ZVZ injection point indicated that ZVZ was present approximately 1 to 3 feet radially from the injection point. Zinc was not evenly distributed directionally around the injection point, however, and additional detailed borings to evaluate ZVZ distribution were not conducted.
- Several grades of ZVZ material are commercially available. Optimization of the ZVZ material for subsurface distribution during injections (focused on grain size and uniformity) was recommended in advance of potential full-scale application.

Post-Injection Performance Monitoring

- Reductions in TCP concentration were observed within the pilot study injection area. One well showed a decrease in TCP from 0.77 μg/L to 0.021 μg/L following injections (**Figure 5**).
- Reductions in TCP concentrations were also noted in wells located predominantly downgradient of the injection area.
- Reductions in sulfate and the presence of sulfide were observed at several monitoring wells across the pilot study injection area. These findings are consistent with the highly reduced geochemical conditions that would be expected following injection of ZVZ and provide a secondary line of evidence that ZVZ was present and active in the subsurface following the injections.
- No secondary water quality impacts were noted. Even within the pilot study injection area
 where primary and secondary lines of evidence suggested ZVZ was present and effectively
 reducing TCP in groundwater, concentrations of dissolved zinc above baseline conditions
 were not observed. The absence of dissolved zinc above baseline conditions may be a
 function of variations in ZVZ delivery to the subsurface and/or the low solubility of ZVZ.

The Pilot Study Report concluded that the Navy had met the objectives of the pilot study, and no further work was conducted following submittal of the report. The remainder of this report describes and evaluates additional testing that was completed to further validate ZVZ as a remedial technology.

5.0 TEST DESIGN

The following section describes testing conducted as part of this demonstration to address the performance objectives described in Section 3.

5.1 CONCEPTUAL EXPERIMENTAL DESIGN

The demonstration included the following components:

- <u>Groundwater Plume Characterization:</u> Groundwater sampling was conducted to support detailed characterization of the groundwater plume in the vicinity of the ZVZ injection pilot study and evaluate the long-term efficacy of TCP treatment with ZVZ:
 - a. Samples were collected from existing monitoring wells screened within the injection zone.
 - b. Grab-groundwater samples were collected using direct-push technology (DPT) from 12 locations within and immediately downgradient of the injection zone, with samples collected from up to three depth intervals at each location.

Analytical results from the monitoring well groundwater samples were compared to baseline (i.e., pre-injection) conditions, as well as conditions observed in the first year following pilot study implementation. Analytical results from the grab groundwater samples were used to evaluate post-treatment conditions within the pilot study area and identify secondary indicators of ZVZ efficacy.

• Evaluation of ZVZ Distribution and Reactivity: Soil samples were collected for comparison to the design objective for ZVZ mass loading within the pilot study injection area. Soil samples were collected from borings extending radially away from two of the ZVZ pilot study injection locations (IP02 and IP08) at approximate distances of 1, 3, and 5 feet from the injection locations. The soil cores were sectioned into depth-discrete subsamples and field-screened for the presence of zinc using a hand-held x-ray fluorescent (XRF) analyzer. Several samples from each boring were also analyzed for the presence of zinc at an analytical testing laboratory.

5.2 BASELINE CHARACTERIZATION

The 2014 pilot study included baseline groundwater sampling and four groundwater sampling events that were conducted within the first year following injections. Data collected as part of this demonstration were compared to the baseline and post-injection pilot study sampling results to evaluate the performance objectives described in Section 3.

5.3 DESIGN AND LAYOUT OF TECHNOLOGY COMPONENTS

This section summarizes the demonstration sampling locations and describes the equipment used during field implementation. A detailed description of activities conducted during field implementation is provided in Section 5.4.

5.3.1 Monitoring Well Sampling

Three rounds of monitoring well sampling were conducted as part of this demonstration (September 2017, January 2018, and September 2018). Up to seven monitoring wells were sampled as part of each sampling event. Groundwater monitoring wells sampled during the demonstration are shown in **Figure 6** and included the following:

- 220205-MWX (upgradient of injection area);
- CP22-PMW04 (within injection area);
- CP22-PMW06B (cross-gradient to injection area);²
- CP22-PMW07B (downgradient of injection area);
- CP22-PMW08B (downgradient of injection area);
- CP22-PMW09B (cross-gradient to injection area);³ and
- CP22-PMW10B (within injection area).

With the exception of 220205-MWX (construction information unknown), the sampled wells were constructed with 10-foot screens located between approximately 35 to 45 feet bgs to 40 to 50 feet bgs (the "B" zone), consistent with the depth interval where 2014 pilot study injections were completed.

During sampling, depth to groundwater was measured in each well and groundwater samples were collected using low-flow sampling techniques and analyzed for the parameters listed in Section 5.5. Equipment decontamination, collection of duplicate samples and equipment blanks, and other quality assurance protocols were conducted as described in Section 5.5.

Investigation-derived waste (IDW) generated during monitoring well sampling was disposed of following the procedures described in Section 5.4.

5.3.2 Grab-Groundwater Sampling

Three rounds of grab-groundwater sampling were conducted as part of this demonstration (September 2017, January 2018, and September 2018). Grab-groundwater sampling was conducted concurrently with monitoring well sampling. Grab-groundwater samples were collected via DPT from 12 locations to supplement information collected from the groundwater monitoring well network. The samples were collected from three transect lines located upgradient, within, and downgradient of the 2014 pilot study injection area. Grab-groundwater sample locations are presented in **Figure 6**.

Grab-groundwater samples were collected using a Hydropunch® groundwater sampler. The groundwater sampler was equipped with a disposable polyvinyl chloride (PVC) screen and an expendable steel tip. The sampler operates by advancing small diameter hollow push rods with the PVC screen and steel tip installed in a closed configuration to the base of the desired sampling interval.

² Well CP22-PMW06B was sampled in September 2017 only.

³ Well CP22-PMW09B was sampled in September 2017 only.

Once at the desired sample depth, the push rods were retracted, exposing the filter screen (approximately 2 feet long) and allowing groundwater to infiltrate from the formation into the screen. Samples were collected from the screened interval using stainless steel check valves and 3/8-inch new polyethylene tubing. Grab-groundwater samples were analyzed for the parameters listed in Section 5.5. Equipment decontamination, collection of duplicate samples and equipment blanks, and other quality assurance protocols were conducted as described in Section 5.5.

IDW generated during monitoring well sampling was disposed of following the procedures described in Section 5.4.

5.3.3 Soil Sampling

Two rounds of soil sampling were conducted as part of this demonstration (January 2018 and September 2018). Continuous-core soil samples were collected via DPT from borings located radially at distances of approximately 1 foot, 3 feet, and 5 feet from two of the 2014 pilot study injection locations (IP02 and IP08).

- During the January 2018 event, soil borings were advanced along one radius for each injection location.
- During the September 2018 event, soil borings were advanced along two radii from IP02 and from three radii from IP08.

The cores were advanced using dual-tube hollow steel direct-push rods fitted with vinyl acetate sleeve liners. Soil sample locations are shown in **Figure 7**.

All soil borings were advanced to a minimum depth of 45 feet bgs, coinciding with the bottom of the 2014 pilot study injection interval. From 35 to 45 feet bgs, the soil cores were sectioned into depth-discrete subsamples at 1-foot intervals and analyzed in the field for the presence of zinc using a Thermo Scientific Niton XL2 GOLDD Series handheld XRF analyzer. Following field screening, depth-discrete soil subsamples were collected and analyzed at an offsite laboratory for the parameters listed in Section 5.5. Equipment decontamination and other quality assurance protocols were conducted as described in Section 5.5.

IDW generated during soil sampling was disposed of following the procedures described in Section 5.4.

5.4 FIELD TESTING

This section provides a detailed description of the field activities that were conducted as part of this demonstration. The field implementation schedule is summarized in **Table 6**. Field equipment calibration requirements and procedures and analytical methods used to evaluate samples collected during field implementation are detailed in Section 5.5.

⁴ As discussed in Section 5.4 IP08-3 was advanced to 49 feet bgs due to the presence of elevated zinc concentrations from approximately 40 to 45 feet bgs.

Table 6. Field Implementation Schedule.

Activity Description		2017			2018			
		Q2	Q3	Q4	Q1	Q2	Q3	Q4
Pre-Field								
Permitting and Site Access		X		X		X		
Utility Clearance			X		X		X	
Groundwater Plume Characterization								
Detailed Plume Characterization			X		X		X	
Evaluation of ZVZ Distribution and Reactivity								
Collect Core Samples					X		X	
Evaluation of ZVZ Distribution					X		X	

5.4.1 Pre-Field Activities

5.4.1.1 Access and Notifications

Prior to the start of field activities, notifications were made to the following:

- The Navy Remedial Project Manager (RPM) for the MCBCP 22/23 Area; and
- MCBCP Assistant Chief of Staff, Environmental Security (AC/S ES) Installation Restoration (IR) Branch Head.

5.4.1.2 Health and Safety

All field activities were performed in accordance with the site-specific health and safety plan (HASP) included in the Demonstration Plan (Geosyntec, 2017). The HASP contained procedures for hazard identification and mitigation; emergency response, including a map of the nearest hospital and emergency contact information; incident reporting; use of appropriate personal protective equipment (PPE); and air monitoring procedures using a portable photoionization detector (PID) instrument. The calibration procedure for the PID is described in Section 5.5.

Prior to the start of field activities each day, a safety tailgate meeting was conducted. Each meeting included a discussion of the field activities to be performed, safe work practices, identification of potential hazards, use of PPE, decontamination procedures, and emergency response protocols.

5.4.1.3 Utility Clearance

Prior to intrusive subsurface activities, boring locations were marked with white paint and/or wooden stakes. DigAlert of Southern California was notified of planned intrusive subsurface work a minimum of two working days prior to the start of field activities.

A private utility locator performed a subsurface location survey at the boring locations under the oversight of a Geosyntec field geologist. No subsurface or aboveground utilities were identified within the study area. Prior to advancing the borings, each location was cleared by hand-augering to a depth of approximately 5 feet bgs.

5.4.2 Groundwater Sample Collection

Consistent with the scope of work presented in the Demonstration Plan (Geosyntec, 2017), three groundwater sampling events were conducted in September 2017, January 2018, and September 2018. Groundwater samples were collected from existing monitoring wells and from grabgroundwater borings advanced within the 2014 pilot study injection area. The following sections describe groundwater sample collection procedures.

5.4.2.1 Monitoring Well Sample Collection

The groundwater monitoring wells were sampled using low-flow sampling techniques by Blaine Tech Services, Inc. (Blaine Tech) of Carson, California under the oversight of a Geosyntec field geologist.

Prior to purging and sampling each groundwater monitoring well, the static water level was recorded relative to the top of the well casing using a water level meter with 0.01-foot increments.

Groundwater samples were collected from each monitoring well using a submersible bladder pump and clean dedicated tubing. Wells were purged at a rate of 100 milliliters/minute (ml/min) to minimize turbidity and limit drawdown, with a maximum allowable drawdown of less than 0.33 feet during purging. While purging each monitoring well, water level measurements were recorded to monitor for potential excessive drawdown. Sustainable purge rates were maintained for all wells, and the drawdown, purge rate, and other relevant parameters were recorded by Blaine Tech. Water-quality parameters were also monitored and recorded during purging to assess the stabilization and quality of the water within the screened interval. pH, temperature, specific conductivity, oxidation-reduction potential (ORP), dissolved oxygen (DO), and turbidity were monitored and recorded using a YSI Professional Plus multi-parameter water quality meter. Stabilization of the sampling interval was determined based on indicator parameters having met the following criteria:

- pH: three successive readings within ± 0.1 pH units;
- Specific conductance: three successive readings within $\pm 3\%$;
- ORP: three successive readings within ± 10 millivolts (mV);
- DO: three successive readings within $\pm 10\%$; and
- Turbidity: less than 5 Nephelometric turbidity units (NTU).

Monitoring well sampling loges are provided in **Appendix A**.

Following stabilization, groundwater samples were collected into laboratory-supplied sample containers and labeled with project identification, sample location, analytical parameters, time and date of sampling, and any preservative added to the sample. Samples were stored in an ice-cooled chest for transport under standard chain-of-custody procedures to Eurofins Calscience, Inc. (Calscience) of Garden Grove, California, a California Department of Public Health (CDPH) Environmental Laboratory Accreditation Program (ELAP) certified analytical laboratory.

5.4.2.2 Grab-Groundwater Sample Collection

Direct-push borings for grab-groundwater sample collection were advanced by Kehoe Testing & Engineering, Inc. (Kehoe) of Huntington Beach, California under the oversight of a Geosyntec field geologist. Grab-groundwater samples were collected using DPT at 12 locations (**Figure 6**).

Up to three depth-discrete samples were collected from each boring location at depths ranging from 31 to 45 feet bgs. A summary of the intervals sampled during each monitoring event is provided in **Table 7**; sample intervals for the second and third events were selected based on analytical results from the prior events.

At each location, grab-groundwater samples were collected using the methodology describe in Section 5.3. Following Hydropunch® deployment, field personnel waited a minimum of 15 minutes to allow for groundwater to infiltrate from the formation into the inlet screen before collecting a sample. If groundwater had not filled the sampling device within 30 minutes of exposing the screen, the sample interval was considered dry and sampling device was advanced to the next deeper interval.⁵

Prior to collecting samples for laboratory analysis, water-quality parameters (pH, temperature, specific conductivity, ORP, and DO) were recorded using a multi-parameter water quality meter. Calibration procedures for the meter are described in Section 5.5. Groundwater samples were then collected into laboratory-supplied sample containers and labeled with project identification, sample location, analytical parameters, time and date of sampling, and any preservative added to the sample. Samples were stored in an ice-cooled chest for transport under standard chain-of-custody procedures to Calscience for analytical testing.

5.4.3 Soil Sample Collection

Direct-push borings for soil sample collection were advanced by Kehoe under the oversight of a Geosyntec field geologist. Soil samples were collected concurrently with the second and third rounds of groundwater sampling (January and September 2018, **Table 6**). As described in Section 5.3, soil samples were collected along transects located radially from two of the 2014 ZVZ pilot study injection locations (IP-02 and IP-08, **Figure 7**).

To document the subsurface lithology near injection points IP-02 and IP-08, continuous soil cores were collected from ground surface to an approximate total depth of 50 feet bgs at one boring for each injection location during each soil sampling event (four borings total):

- January 2018: IP02-1' and IP08-1'; and
- September 2018: IP02E-3' and IP08E-1'.

The four continuous soil cores were visually logged using the Unified Soil Classification System (USCS) by Geosyntec field staff under oversight of a California Professional Geologist. The soil descriptions were recorded in boring logs prepared for each boring (**Appendix B**). At the remaining 17 soil sampling locations, samples were collected via continuous cores advanced within the ZVZ injection interval (approximately 35 to 45 feet bgs). Boring IP08-3 was advanced an additional 4 feet (to approximately 49 feet bgs) due to the presence of elevated zinc concentrations in samples collected from 40 to 45 feet bgs.

-

⁵ If the sampling device did not fill, Geosyntec also worked with Kehoe to confirm that the screen had been properly exposed before determining the sample interval to be dry. When only a partial sample volume could be collected, sample analyses were prioritized in the order listed in Section 5.5.

At each soil sampling location, the core collected from 35 to 45 feet bgs was sectioned into 1-foot depth-discrete subsamples and field screened for the presence of zinc using a pre-calibrated handheld XRF. As described above, due to the presence of elevated zinc concentrations at 45 feet bgs, additional samples were collected down to 49 feet bgs at location IP08-3 to delineate the vertical extent of the maximum zinc detections. Additionally, soil samples were collected from 20 feet bgs at the four continuously cored borings and analyzed for zinc with the XRF to establish background zinc concentrations outside of the 2014 pilot study injection interval. Operating procedures for the XRF are included in **Appendix C**.

Based on the results of the field screening, a minimum of three samples from each boring location were collected for additional laboratory analysis. Samples selected for laboratory analysis were generally collected from locations with the highest concentrations of zinc recorded by the XRF. Where zinc was not detected above background levels by the XRF in any of the samples for a given boring, laboratory samples were collected from variable depths along the injection interval. Soil samples were collected into laboratory-supplied sample containers and labeled with project identification, sample location, analytical parameters, time and date of sampling, and any preservative added to the sample. Samples were stored in an ice-cooled chest for transport under standard chain-of-custody procedures to Calscience for analytical testing.

Table 7. Grab-Groundwater Sample Locations and Intervals.

Location	Sampling Date	Interval 1 (feet bgs)	Interval 2 (feet bgs)	Interval 3 (feet bgs)
CP22-HP01	September 2017	35-37	39-41	43-451
CP22-HP02	September 2017	35-37	39-412	43-452
CP22-HP03	September 2017	35-37	39-41 ²	43-45
CP22-HP04	September 2017	35-37 ²	39-412	43-45
CP22-HP05	September 2017	35-371	39-41	43-45 ²
CP22-HP06	September 2017	35-37	39-412	43-45
CP22-HP07	September 2017	35-37	39-41	43-45
CP22-HP08	September 2017	35-37	39-412	43-45
CP22-HP09	September 2017	35-37	39-41 ²	43-45
CP22-HP10	September 2017	35-37	39-41	43-45
CP22-HP11	September 2017	35-37	39-41	43-45
CP22-HP12	September 2017	35-37	39-41	43-451
CP22-HP01	January 2018	35-37	39-41	NS
CP22-HP02	January 2018	35-37	39-41	NS
CP22-HP03	January 2018	35-37	39-41	NS
CP22-HP04	January 2018	35-37	39-41	43-45
CP22-HP05	January 2018	35-37	39-41	43-45
CP22-HP06	January 2018	35-37	39-41	NS
CP22-HP07	January 2018	35-37	39-41	NS
CP22-HP08	January 2018	35-37	39-41	NS
CP22-HP09	January 2018	35-37	39-41	43-452
CP22-HP10	January 2018	35-37	39-41	43-45
CP22-HP11	January 2018	35-37	39-41	NS
CP22-HP12	January 2018	35-37	39-41	NS
CP22-HP01	September 2018	31-33	35-37 ²	39-41
CP22-HP02	September 2018	31-33	35-37	39-41
CP22-HP03	September 2018	31-33	35-37	39-41 ²
CP22-HP04	September 2018	31-33	35-37	39-41
CP22-HP05	September 2018	31-33	35-37	39-41
CP22-HP06	September 2018	31-33 ²	35-37	39-41
CP22-HP07	September 2018	31-33	35-37	39-41
CP22-HP08	September 2018	31-33	35-37	39-41
CP22-HP09	September 2018	31-33 ²	35-37	39-411
CP22-HP10	September 2018	31-33 ²	35-37	39-41
CP22-HP11	September 2018	31-331	35-37	39-41
CP22-HP12	September 2018	31-33	35-371	39-41

Note 1 – Sample attempted but not collected due to insufficient water quantity.

Note 2 – Sample collected but analyzed for subset of target analytes due to limited water quantity. See Section 5.5 for discussion of target analytes and sampling order.

NS – Based on the results of the September 2017 sampling event, the 43-45 feet bgs interval was not sampled at this location in January 2018.

5.4.4 Demobilization

Following completion of sampling activities, borings were grouted to ground surface with cement-bentonite grout. Demobilization consisted of decontamination and removal of drilling equipment, cleaning the project site, and inspection. Equipment was decontaminated using heavy brushes to remove soil and dirt attached to the equipment surfaces. Decontamination wastewater and disposable equipment were collected into 55-gallon drums for transport and disposal, along with waste soil cuttings and groundwater generated during sampling activities.

5.4.5 Investigation-Derived Waste Management and Disposal

Waste generated during field testing was sampled and analyzed for classification purposes prior to transport offsite. The waste profiling (waste classification determination) was based on the results of the soil and water sample analyses as appropriate.

5.4.5.1 Waste Streams

The following waste streams resulted from the field investigation:

- Decontamination wastewater from drilling and sampling equipment;
- Wastewater from groundwater sampling;
- Waste soil cuttings from soil boring advancement;
- Used disposable sampling equipment and PPE; and
- Inert or non-hazardous solid waste (refuse).

The waste streams were handled, characterized, and disposed of as described below. Manifests and final disposal decisions were conducted at the direction of MCBCP Environmental Security.

5.4.5.2 Waste Storage

Soil cuttings, water, and disposable equipment generated during fieldwork was separated by material type and placed in temporary storage containers (Department of Transportation [DOT] 17H 55-gallon drums) pending analysis. Mixing regular trash and/or non-hazardous solid waste with potentially contaminated waste was avoided. Upon completion of field activities, the drums were labeled with respect to contents and were staged onsite.

5.4.5.3 Waste Containerization and Accumulation

At the time of generation, IDW containers were labeled using indelible ink with the following information:

- Source and location:
- Contents and quantity of material in the container;
- Potential health, safety, and environmental hazards;
- Accumulation start date and date container sampled;
- Contact information for the MCBCP AC/S ES IR Branch Head;
- Parameters used for analysis; and
- "ANALYSIS PENDING POTENTIALLY HAZARDOUS."

An inventory of the waste containers and quantities was maintained for future reporting and inspection.

5.4.5.4 Waste Sampling

Upon completion of field activities, the IDW was sampled for classification purposes. Based on the sampling results, the IDW was profiled prior to arrangements being made for disposal offsite. Waste streams were disposed by American Integrated Services, Inc. (AIS) of Wilmington, California, a licensed waste disposal vendor.

5.4.5.5 Waste Transportation and Disposal

Following waste profiling, the IDW was disposed in accordance with federal and state requirements at the appropriate offsite facility. No hazardous materials were generated during the investigation. Manifests were approved, completed by, and signed by the MCBCP Environmental Security department before the waste was transported offsite. Copies of all manifests were retained by Geosyntec and MCBCP Environmental Security; original copies were sent with the transporter.

5.5 SAMPLING METHODS

5.5.1 Samples Collected

Samples collected during each data collection event are summarized below. The number and type of samples collected are presented in **Tables 8a and 8b**, and the analytical methods used are presented in **Table 9.** As described in Section 5.4, sample locations and analyses during the second and third groundwater sampling events and the second soil sampling event were modified based on the results of prior events.

Table 8a. Total Number and Types of Samples Collected – Groundwater

Component	Matrix	Number of Samples	Analyte
•		September 2017	
Groundwater	Groundwater	7 Total	TCP
Monitoring Well Sampling		One per sampled well	3-chloro-1-propene, 1,2-DCP, 1,3-DCP
			Propene
			Dissolved zinc
			Anionic and cationic species
Direct-Push	Groundwater	33 Total	TCP
Groundwater		Up to 3 depths per	3-chloro-1-propene, 1,2-DCP, 1,3-DCP
Sampling		location from 12 grab	Propene
		sample locations	Dissolved zinc
			Anionic and cationic species
Quality	Groundwater (Field	See Section 5.5 for	TCP
Assurance/Quality	duplicate)	QA/QC sampling	3-chloro-1-propene, 1,2-DCP, 1,3-DCP
Control (QA/QC)	Deionized Water	frequency	Propene
	(Equipment, trip, and field blanks)		Dissolved zinc
	neid blanks)		Anionic and cationic species
	-	January 2018	-
Groundwater	Groundwater	5 Total One per sampled well	TCP
Monitoring Well			Propene
Sampling			Dissolved zinc
			Sulfate
Direct-Push	Groundwater	28 Total	TCP
Groundwater		Up to 3 depths per location from 12 grab	Propene
Sampling			Tropene
04/00	Curry drugter (Eight	sample locations	TCD
QA/QC	Groundwater (Field duplicate)	See Section 5.5 for QA/QC sampling	TCP
	Deionized Water	frequency	
	(Equipment, trip, and		Propene
	field blanks)		
	T	September 2018	
Groundwater	Groundwater	5 Total	TCP
Monitoring Well Sampling		One per sampled well	Propene
Sampling			Dissolved zinc
			Sulfate
Direct-Push	Groundwater	33 Total	TCP
Groundwater		Up to 3 depths per	Propene
Sampling		location from 12 grab sample locations	Dissolved zinc
QA/QC	Groundwater (Field	See Section 5.5 for	TCP
	duplicate)	QA/QC sampling frequency	Propene
	Deionized Water		Dissolved zinc
	(Equipment, trip, and field blanks)		

Table 8b. Total Number and Types of Samples Collected – Soil and IDW

Component	Matrix	Number of Samples	Analyte			
	January 2018					
Direct-Push Soil Sampling	Soil	18 Total 3 samples per boring from 6 soil borings	Total zinc			
		September 2018				
Direct-Push Soil Sampling	Soil	47 Total 3-4 samples per boring from 15 soil borings	Total zinc			
		All Sampling Events				
IDW	Water	1 composite sample per event	Volatile Organic Compounds (VOCs) Title 22 Metals Total Petroleum Hydrocarbons (TPH)			
	Soil	1 composite sample per event	VOCs Title 22 Metals TPH			

 Table 9.
 Analytical Methods for Sample Analysis

Matrix	Analyte	Method	Container	Preservative	Holding Time
Groundwater	ТСР	SRL 524M-TCP	40-milliliter (mL) volatile organic analytes (VOAs)	HCL	14 days
	3-chloro-1-propene, 1,2-DCP, 1,3-DCP	USEPA 8260B	40-mL VOAs	HCL	14 days
	Propene	RSK-175M	40-mL VOAs	HCL	14 days
	Field parameters (pH, DO, ORP, temperature, specific conductivity)	Field measurement using a multimeter	N/A	None	Immediate
	Anions	USEPA 300.0	125-mL high- density polyethylene (HDPE)	None	48 hours
	Cations species, including dissolved zinc	USEPA 200.7	250-mL HDPE	None; laboratory filtered	180 days
Soil	Total zinc	XRF handheld meter	Plastic Bag	None	Immediate
	Total zinc	USEPA 6010B	4-ounce jar	None	6 months

5.5.1.1 Groundwater Monitoring Well Samples

During groundwater monitoring well sampling, samples were collected in laboratory-provided containers and analyzed at Calscience for the following:

- TCP:
- TCP degradation products 3-chloro-1-propene, 1,2-dichloropropane (1,2-DCP), and 1,3-dichloropropane (1,3-DCP);⁶
- Propene;
- Dissolved zinc; and

Selected anionic and cationic species. Low-flow sampling and field parameters were also recorded during each sampling event. Field parameters measured included pH, DO, ORP, temperature, turbidity, and specific conductivity using a YSI Professional Plus multiparameter water quality meter. Sampling parameters included flow rates, pump depth, total water removed, and depth to water. Monitoring well sampling field sheets are provided in **Appendix A**.

5.5.1.2 Grab-Groundwater Samples

Grab-groundwater samples were collected from 12 locations per event, with sampled collected from up to three depth intervals per location (**Table 7**). Grab-groundwater samples were collected in laboratory-provided containers and analyzed at Calscience for the following:⁷

- September 2017 (33 total samples):
 - TCP;
 - TCP degradation products 3-chloro-1-propene, 1,2-DCP, and 1,3-DCP;
 - Propene;
 - Dissolved zinc; and
 - Selected anionic and cationic species.
- January 2018 (28 total samples):
 - TCP; and
 - Propene.
- September 2018 (33 total samples):
 - TCP;
 - Propene; and
 - Dissolved zinc.

Field parameters were measured prior to samples collection using a YSI ProDSS multi-meter. Field parameters measured included pH, DO, ORP, temperature, and specific conductivity.

⁶ September 2017 only.

⁷ When only a partial sample volume could be collected, sample analyses were prioritized in the following order: (1) TCP; (2) propene; (3) selected cationic species including dissolved zinc; (4) TCP degradation products; and (5) selected anionic species.

5.5.1.3 Soil Samples

A total of 21 borings were advanced to collect soil samples to evaluate ZVZ distribution in the subsurface (**Figure 7**). At each boring, soils were collected from approximately 35 to 45 feet bgs and were sectioned into depth-discrete subsamples and analyzed for the presence of zinc using a pre-calibrated hand-held XRF. Based on results from the XRF, a minimum of three samples from each boring were collected and shipped to Calscience for laboratory analysis of total zinc. A total of 65 samples were sent to Calscience for laboratory analysis of total zinc.

5.5.2 Quality Assurance Protocols

5.5.2.1 Calibration of Sampling Equipment

The calibration method for the XRF is included in **Appendix C**. Calibration was performed by the equipment rental company who supplied the instrument and was verified by field personnel prior to use.

The PID used by field personnel for air monitoring was a RAE Systems MiniRAE 3000, equipped with a 10.6-volt lamp. The PID was calibrated and set up at the beginning of each field day, following the procedure below:

- 1. Connection of a charcoal filter to the PID inlet to remove potential VOCs in ambient air;
- 2. Zero air calibration;
- 3. Removal of the charcoal filter and connection of the inlet port to a 100 parts per million by volume (ppmv) isobutylene calibration gas cylinder;
- 4. Span calibration; and
- 5. Validation of calibration, removal of the calibration gas connection to the inlet port, and connection of a dust filter to protect the inlet port of the PID during air monitoring.

The temperature, specific conductivity, pH, DO, and ORP probes on the YSI ProDSS multimeter were thoroughly rinsed with distilled water prior to each use. The manufacturers' instructions for calibration and use of the instruments were followed. The multi-meter was calibrated daily for specific conductivity and pH in accordance with the manufacturer's specifications. Other probes were factory calibrated, with a certificate of calibration provided with the device.

- The accuracy of the field thermometer was determined by checking the measured reading against other thermometers, if available.
- The specific conductivity probe was calibrated at the beginning of each field day using standard calibration solutions provided by the equipment rental company.
- The pH probe was calibrated at the beginning of each field day using pH 4 and pH 10 buffered solutions.
- A calibration check of the DO probe was performed by rinsing the probe in distilled water and taking an instrument reading in ambient air to confirm the measured value was approximately 10 mg/L when corrected for temperature and pressure.

5.5.2.2 Quality Assurance Sampling

QA/QC samples were collected as follows:

- One field duplicate sample was collected for every 10 groundwater samples collected during each sampling event. The purpose of the duplicate samples was to assess the precision of field sampling and laboratory analysis techniques. Field duplicate samples were collected as laboratory blind duplicates sent along with original samples to the primary laboratory. A false location identifier was assigned for the sample identifier and recorded on the sample label and chain-of-custody record along with a false sample collection time. The actual sample location, sample time, and corresponding false sample identifier and sample time was recorded in the project field notes.
- One equipment rinseate blank sample was collected for the Hydropunch® groundwater sampler each field day, or for every 10 samples collected, whichever was more frequent. The purpose of the equipment rinseate blank sampling was to confirm that equipment decontamination procedures were sufficient to prevent cross-contamination of samples.
- One field blank sample was collected each field day, or for every 10 samples collected, whichever was more frequent. The purpose of the field blanks was to identify possible contamination associated with sample collection and transport. Sampling personnel prepared the field blanks at a predetermined sample location using organic-free water obtained from the analytical laboratory.
- One trip blank sample containing reagent-free deionized water for analysis of TCP and TCP degradation products accompanied each ice chest that included samples collected for these analyses. The purpose of the trip blanks was to identify possible contamination associated with container preparation and sample transport. The trip blanks were prepared by the analytical laboratory using reagent-free deionized water.

Prior to the start of each sampling event, the project manager determined the sampling locations for field blank preparation and duplicate sample collection.

5.5.2.3 Decontamination Procedures

Non-dedicated downhole equipment was decontaminated between each sampling location using a non-phosphate detergent wash, followed by a potable water rinse and a final, distilled water rinse.

The transfer bottle, flow-through cell, and the probes used for measurement of field parameters were decontaminated before and after each measurement by rinsing with distilled water.

5.5.2.4 Sample Documentation

A record of sample identification numbers was maintained on standardized field data forms. Additional field data include a record of significant events, observations, measurements, personnel, site conditions, sampling procedures, measurement procedures, and calibration records.

All field data entries in the field log were signed, dated, and kept as a permanent record. Erroneous entries were corrected by crossing a line through the error and entering the correct information. Corrections were initialed by the person making the re-entry.

Sample identification documents were prepared so that sample identification and chain-of-custody were maintained and sample disposition is controlled. Standard sample identification labels and chain-of-custody records were used to record all information. Sample documentation forms and labels were completed with waterproof ink. The sample documentation forms accompanied the samples to the laboratory. Copies of the sample documentation forms were retained by the samplers and sent directly to the project manager.

The following information were recorded on the sample label:

- Sample location/identifier;
- Depth at which sample was collected, if applicable;
- Date and time sample was collected;
- Analyses to be performed;
- Preservation instructions;
- Project number;
- Sampler's initials;
- Any other pertinent information; and
- Any special instructions to laboratory personnel.

Official custody of samples was maintained and documented from the time of sample collection until the validation of analytical results. The chain-of-custody record is the document that records the transfer of sample custody. The chain-of-custody record also serves to cross reference the sample identifier assigned by the Project Manager with the sample identifier assigned by the laboratory. The chain-of-custody record includes the following information:

- Sample location/identifier;
- Project number;
- Sampling date;
- Sampling personnel;
- Shipping method;
- Sample description;
- Sample volume;
- Number of containers;
- Sample destination;
- Preservatives used;
- Analyses to be performed;
- Special handling and reporting procedures; and

• The identity of personnel relinquishing and accepting custody of the samples.

The sampling personnel were responsible for the samples and signed the chain-of-custody record to document sample transferal or transport. Samples were packaged in sealed containers for transport and dispatched to the appropriate laboratory for analysis with a separate chain-of-custody record accompanying each shipment. The method of transport, courier name(s), and other pertinent information was entered on the chain-of-custody record. During transport, samples were accompanied by the chain-of-custody record.

5.6 SAMPLING RESULTS

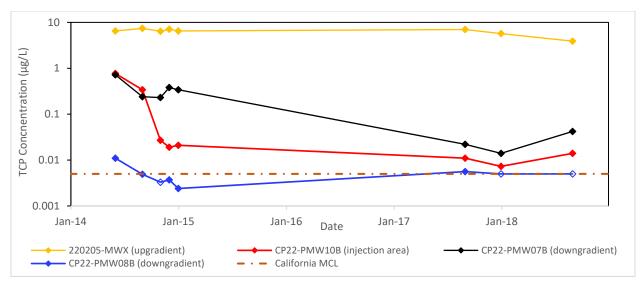
Sampling results for this demonstration plan are summarized in the following tables and figures. Analytical laboratory reports for sampling conducted as part of this demonstration are provided in **Appendix D**. A QA/QC review was completed following each demonstration sampling event; the reviews are summarized in **Appendix E**. The QA/QC reviews indicated that the sampling data were of acceptable quality.

5.6.1 Groundwater Results

- **Table 10** Groundwater Sampling Results Field Parameters;
- **Table 11** Groundwater Analytical Results Chlorinated Propanes (TCP, 3-chloro-1-propene, 1,2-DCP, 1,3-DCP, and propene);
- Table 12 Groundwater Analytical Results Geochemical Parameters;
- Figures 8a through 8c September 2017 Groundwater Sampling Results;
- Figures 9a and 9b January 2018 Groundwater Sampling Results; and
- Figures 10a and 10b September 2018 Groundwater Sampling Results.

5.6.2 Soil Results

- Table 13 Soil XRF Results Zinc; and
- **Table 14** Soil Analytical Results Zinc.


Sampling results are discussed further in the Performance Assessment section of this report (Section 6).

6.0 PERFORMANCE ASSESSMENT

The following section presents an assessment of the performance objectives developed for this demonstration, along with an evaluation of secondary indicators of ZVZ efficacy and additional analyses intended to supplement understanding of the 2014 pilot study injections.

6.1 PERFORMANCE OBJECTIVE 1: TCP CONCENTRATION REDUCTIONS

A summary of historical TCP data and results from demonstration monitoring of selected groundwater monitoring wells is summarized in **Table 11** and presented below. As illustrated below and summarized in **Table 4** (Section 3.1), monitoring well data indicate that the 2014 pilot study ZVZ injections reduced TCP concentrations throughout the injection area and in the predominant groundwater flow direction.

Note: Open symbols represent the laboratory reporting limit for non-detect samples.

Figure 11. TCP Concentrations over Time – Selected Monitoring Wells.

Review of **Table 11** and **Figure 11** indicates the following:

- TCP concentrations in upgradient source area well 220205-MWX have ranged from 3.9 to 7.4 μ g/L since 2012, with no significant trend over time. This is consistent with expectations since injections could not be implemented in this area in 2014 due to the presence of overhead and underground utilities.
- TCP concentrations measured in CP22-PMW10B, which is located within the 2014 pilot study injection area, ranged between 0.0073 µg/L and 0.014 µg/L during the 2017 and 2018 sampling events. These concentrations indicate a 98% to 99% concentration reduction from the 2014 baseline concentration of 0.77 µg/L.
- At downgradient well CP22-PMW07B, TCP concentrations during the demonstration ranged from 0.014 μg/L to 0.042 μg/L, indicating concentration reductions between 94% and 98% from the 2014 baseline concentration of 0.72 μg/L.

• At downgradient well CP22-PMW08B, TCP was detected at a concentration of 0.0056 μg/L in September 2017 and was not detected above laboratory reporting limits (0.005 μg/L) during the last two performance monitoring events of the demonstration in January and September 2018.

In addition to the monitoring well results, the depth-discrete groundwater samples (Figures 8a, 9a, and 10a) indicate the following:

- The deepest samples, collected from 43 to 45 feet bgs, were all non-detect for TCP except for a detection of 0.017 µg/L at CP22-HP10 in January 2018 (**Figure 8a**).
- Relatively higher concentrations of TCP were observed in the shallower grab-groundwater samples, notably at locations CP22-HP08, CP22-HP09, and CP22-HP10 (**Figures 8a** and **9a**).
- TCP concentrations generally decrease with distance downgradient from the 2014 ZVZ pilot study injection area, although this trend was less evident in September 2018 (**Figure 10a**).
- Although long-term decreasing concentration trends are apparent at the monitoring wells, trends in grab-groundwater samples collected between September 2017 and September 2018 were less clear (**Table 11**). In addition to changes in ZVZ efficacy, these observations may be related to the inherent variability of grab sampling relative to well sampling, variations in groundwater elevation, or variation in groundwater flow direction altering the transport of TCP or its ability to contact the injected ZVZ. Additional sampling may be appropriate to further assess short- and long-term temporal trends.

Overall, the demonstration monitoring results indicate that TCP reductions exceeding 90% have been maintained and that source treatment of TCP with ZVZ is effective. Downgradient treatment of TCP with ZVZ was effective at well CP22-PMW07B (i.e., a percent reduction over 90%), where baseline concentrations were comparable to those within the ZVZ injection area. At downgradient well CP22-PMW08B, where baseline TCP concentrations were low, TCP concentrations following the pilot study were reduced to close to or below the laboratory reporting limit and California MCL of 0.005 μ g/L.

The spatial and temporal variability of the grab groundwater samples suggest that ZVZ was distributed non-uniformly during pilot study injections, consistent with observations from soil sampling (see Section 6.3). The presence of higher concentrations in the shallowest samples further suggests that ZVZ may have been preferentially distributed within more permeable portions of the subsurface. While the apparent longevity of the injected ZVZ (see Section 6.2) indicates that untreated TCP will be effectively managed as it migrates from the shallower, less permeable portions of the aquifer, approaches to optimize ZVZ delivery to allow for material emplacement into lower permeability zones were also evaluated as part of this Final Report. Injection optimization is discussed further in Section 8.

6.2 PERFORMANCE OBJECTIVE 2: ZVZ LONGEVITY

ZVZ longevity was evaluated based on changes in TCP concentration reductions within and downgradient of the zone of treatment over time. Post-injection sampling results have been compared to initial concentrations to assess trends in ZVZ treatment efficacy over the approximately four years since pilot study injections were implemented.

Reductions in TCP post-injection concentrations from baseline levels as a function of time are plotted in **Figure 3** (Section 3.2) for wells CP22-PMW07B, CP22-PMW08B, and CP22-PMW10B. As shown in **Figure 3**, TCP concentration reductions have not decreased within the ZVZ injection area, with concentrations reductions significantly greater than 90% maintained since the injections were completed in 2014. In downgradient well CP22-PMW07B, observed reductions in TCP concentration have increased substantially since 2014 to over 90%, suggesting that the ZVZ continues to effectively degrade TCP. At well CP22-PMW08B, where baseline concentrations were low, observed TCP concentration reductions are more variable, but have remained between 50% and 80% since 2014.

These results indicate that the injected ZVZ has maintained efficacy with respect to TCP degradation over the four years since pilot study injections were completed. In addition, reduced geochemical conditions within the pilot study injection area have been maintained since 2014 (Section 6.4), providing a secondary line of evidence for long-term ZVZ efficacy. Additional sampling may be appropriate for future evaluation of ZVZ longevity.

6.3 PERFORMANCE OBJECTIVE 3: ZVZ DISTRIBUTION

The distribution of ZVZ in soil was evaluated based on zinc concentration in bulk soil samples collected from soil cores advanced radially at approximately 2-foot intervals from selected injection locations (IP-02 and IP-08). Results from soil core sampling for zinc are summarized in **Table 14**.

At IP-02, zinc concentrations in soil ranged from 36.4 to 122 mg/kg. In general, there were no notable changes in concentration with depth or distance from the injection location, although the shallowest sampled intervals at IP02-3 (38 feet bgs) and IP02E-3 (36 feet bgs) had the two highest concentrations of zinc observed in the vicinity of IP-02.

At IP-08, similar zinc concentrations were generally observed, with two exceptions:

- At location IP08N-3, 272 mg/kg of zinc were detected at 38 feet bgs, suggesting the sample may be in relatively close proximity to the injected ZVZ.
- At location IP08-3, high concentrations of zinc were measured at 43 feet bgs (18,100 mg/kg or 1.8% zinc in soil), at 44 feet bgs (20,000 mg/kg or 2% zinc in soil), and at 45 feet bgs (1,870 mg/kg or 0.02% zinc in soil).

The detected zinc concentrations at IP08-3 exceed the design objective for ZVZ mass loading during the pilot study, suggesting that ZVZ injections can achieve localized mass loadings in excess of 0.5% where ZVZ is successfully delivered to the subsurface.

Although the soil sampling results suggest that ZVZ delivery may have been limited and variable within the pilot study injection zone, the observed trends in TCP concentration within and downgradient of the ZVZ injection area (Sections 6.1 and 6.2) and secondary lines of evidence for ZVZ efficacy (Section 6.4) demonstrate that the pilot study was nonetheless successful in terms of achieving targeted TCP concentration reductions.

6.4 SECONDARY INDICATORS OF ZVZ EFFICACY

Secondary indicators of ZVZ efficacy include the following:

- Generation of TCP degradation products; and
- The presence of reduced geochemical conditions favorable to *in situ* chemical reduction of TCP. Specific indicators of reduced conditions include low DO concentrations, negative ORP measurements, and reductions in sulfate concentration relative to baseline conditions.

In addition, the absence of dissolved zinc or its presence below regulatory limits indicates that injections of ZVZ will not result in secondary impacts to groundwater quality.

<u>Propene</u> – Propene was the only TCP degradation product detected during demonstration sampling. Propene analytical results are shown in **Figure 8b** (September 2017), **Figure 9b** (January 2018), and **Figure10b** (September 2018), and are summarized in **Table 11**. Propene was detected in 32 of 116 samples collected in as part of the demonstration, with a maximum concentration of 13.6 μ g/L (September 2017 sample at CP22-HP03 from 39 to 41 feet bgs) and a median concentration of 1.80 μ g/L. Comparison of the propene and TCP analytical results do not indicate a clear correlation between the two compounds.

<u>pH</u> – Measured pH values were generally circumneutral (between 6.5 and 8.5) with the exception of well CP22-PMW10B, located within the 2014 pilot study injection area. pH values measured at that well ranged from 9.59 to 10.05 standard units. Elevated pH was observed during the ZVZ column studies conducted as part of NESDI project 434 (Section 2), suggesting that ZVZ is likely present near the monitoring well and acting to increase the pH of nearby groundwater.

<u>Dissolved Oxygen</u> – DO measurements were collected during monitoring well and grabgroundwater sampling (**Table 10**). DO concentrations below 0.5 mg/L are indicative of reduced geochemical conditions.

- September 2017 DO concentrations in grab-groundwater samples were generally high (greater than 1 mg/L) and did not correlate well with ORP measurements at many locations, suggesting that oxygen may have been entrained in the grab samples during measurement of field parameters. DO concentrations were generally much lower in the monitoring wells where a flow-through cell was used for measuring concentrations, with concentrations below 0.5 mg/L observed within and downgradient of the 2014 pilot study injection area.
- January 2018 DO concentrations in both grab-groundwater and monitoring well samples were generally low.
- September 2018 As in September 2017, DO concentrations in many of the grab-groundwater samples were generally high (greater than 1 mg/L) and did not correlate well with ORP measurements in some locations. DO concentrations were low (i.e., near or below 0.5 mg/L) in the monitoring wells.

_

⁸ Other potential TCP degradation products include 1,2-DCP, 1,3-DCP, and allyl chloride (3-chloro-1-propene).

<u>Oxidation-Reduction Potential</u> – ORP measurements were collected during monitoring well and grab-groundwater sampling (**Table 10**). Negative ORP measurements are indicative of reduced geochemical conditions.

- September 2017 ORP measurements were variable in the grab-groundwater samples, ranging from -585.1 mV to 150.5 mV, suggesting conditions within the 2014 pilot study injection area are variably reduced. ORP measurements were generally low in the groundwater monitoring wells located within and downgradient of 2014 pilot study injections.
- January 2018 ORP was generally lower in January 2018 than in September 2017, with most grab-groundwater and monitoring well samples suggesting highly reduced conditions.
- September 2018 Conditions in September 2018 were generally consistent with those observed in September 2017, with variable ORP measurements in the grab-groundwater samples (-140.4 mV to 65.4 mV). Groundwater in the vicinity of CP22-PMW10B was highly reduced (ORP measurement of -355.9 mV) but was more oxic at the downgradient monitoring wells CP22-PMW07B and CP22-PMW08B.

<u>Sulfate</u> – Reductions in sulfate concentration were evaluated as a secondary line of evidence for reduced conditions due to ZVZ injections. Sulfate concentrations measured since from 2012 in the vicinity of the 2014 pilot study injection area are summarized in **Table 12**. Historical sulfate concentrations in the upgradient source zone monitoring well 220205-MWX ranged from 88.5 to 103 mg/L. Sulfate concentrations measured as part of this demonstration were within this range (**Table 12**).

Sulfate trends in two wells showed strongly reducing geochemical conditions immediately following the 2014 ZVZ pilot study injections:

- Sulfate at CP22-PMW10B decreased from 119 mg/L to less than 1 mg/L sulfate; and
- Sulfate at CP22-PMW06B decreased from 70 to less than 10 mg/L.

Sulfate concentrations at both wells remained below baseline levels during demonstration monitoring in 2017 and 2018, suggesting that reduced groundwater conditions have been maintained.

In addition, sulfate concentrations at four depth-discrete samples (CP22-HP07 from 39 to 41 feet bgs; CP22-HP10 from 35 to 37 feet bgs; and CP22-HP12 from 35 to 37 feet bgs and 39 to 41 feet bgs) were also lower than background levels, suggesting locally reduced groundwater conditions.

<u>Dissolved Zinc</u> – During demonstration sampling, dissolved zinc was present at concentrations ranging from below the analytical method detection limit (0.01 mg/L) to 0.38 mg/L, well below the secondary MCL for zinc of 5 mg/L.

Zinc concentrations measured prior to and upgradient of the 2014 pilot study injection area ranged from non-detect (less than 0.01 mg/L) to 0.0267 mg/L. During the demonstration monitoring, the maximum zinc concentration measured at upgradient source area well 220205-MWX was 0.088 (September 2017). Several locations within the 2014 pilot study ZVZ injection area had zinc at concentrations greater than that measured at well 220205-MWX during the demonstration monitoring:

- CP22-PMW04;
- CP22-PMW09B;
- CP22-HP01 from 31 to 33 feet bgs;
- CP22-HP02 from 31 to 33 feet bgs;
- CP22-HP04 from 35 to 37 feet bgs, 39 to 41 feet bgs, and 43 to 45 feet bgs; and
- CP22-HP07 from 39 to 41 feet bgs.

The increased zinc relative to baseline levels at these locations is potentially due to dissolution from the ZVZ. As shown in **Figure 8c**, concentrations of dissolved zinc in groundwater in September 2017 were generally highest in the first transect of grab-groundwater samples collected within the treatment area and attenuated in the downgradient direction.

6.5 SUPPLEMENTAL ANALYSES

In addition to the performance assessment topics described above, several supplemental analyses were requested during the Fall 2017 In-Progress Review (IPR) for this demonstration. These analyses were previously provided as part of the memorandum titled *Analysis to Inform Go/No Go Decision for Additional Field Tasks* (Geosyntec, 2018) and are included here for completeness.

6.5.1 Explanation of 2014 Pilot Study ZVZ Injection Dosage Estimates

The 2014 pilot study injection dosage was determined based on a target average mass loading of 0.5% ZVZ in soils throughout the treatment zone. An assessment of results from column study tests conducted as part of NESDI project 434 were used to estimate the TCP degradation rate (0.030 hr⁻¹) that corresponded to 0.5% ZVZ mass loading and verify degradation rates at the target loading would be sufficient to reduce TCP concentrations to the pilot study objective concentration (RBA and Geosyntec, 2015).

Based on this target mass loading, the design ZVZ injection mass for the pilot study was approximately 14,000 pounds based on the following:

$$ZVZ\ Mass = ml_{zvz}\ x\ n_L\ x\ \pi\ x\ R_I^2\ x\ T\ x\ \rho_b$$

- Where:
- 1. $ml_{zvz} = ZVZ$ mass loading (0.005);
- 2. n_L = number of injection points (10);
- 3. R_I = assumed radius of influence (10 feet);
- 4. T = vertical treatment interval (9 feet); and
- 5. ρ_b = soil bulk density (100 pounds per cubic foot).

Additional design calculations are provided in Section 4.3 of the pilot study report (RBA and Geosyntec, 2015).

The design ZVZ mass loading was selected to correspond with mass loadings typically achieved using direct injection technology. Significantly higher mass loading rates may be difficult to achieve unless other emplacement methods (e.g., trenching, hydraulic fracturing) are employed. Sites with a significantly higher demand from natural electron acceptors (e.g., dissolved oxygen, nitrate, ferric iron, sulfate) may need to consider alternative ZVZ injection strategies (e.g., multiple injections, barrier configuration) or alternative emplacement methods. Site-specific column studies are recommended as a basis for estimating TCP degradation rates at other sites if groundwater geochemical conditions are substantially different from those at the MCBCP demonstration location.

6.5.2 Groundwater Displacement Fraction with Injection Volumes

During the Fall 2017 IPR, the demonstration team was asked whether groundwater displacement outside of the target treatment zone may have occurred during the July 2014 ZVZ injections. Water and amendments injected at INJ-3 through INJ-13 are tabulated in Table 3-1 of the pilot study implementation report (RBA and Geosyntec, 2015) and total approximately 4,900 gallons. The estimated pore volume of the target treatment zone is 63,400 gallons based on the following calculation:

Pore Volume =
$$n_L x \pi x R_I^2 x T x n_e x \frac{7.48 \text{ gal}}{ft^3}$$

- Where:
- 1. n_L = number of injection points (10);
- 2. $R_I = assumed radius of influence (10 feet);$
- 3. T = vertical treatment interval (9 feet); and
- 4. n_e = effective porosity (0.30).

Based on these assumptions, approximately 8% of one pore volume was injected into the target treatment zone, suggesting groundwater displacement was limited. In addition, concentrations of TCP in cross-gradient monitoring wells CP22-PMW06B and CP22-PMW09B did not increase following the 2014 injections, supporting a conclusion that significant groundwater displacement did not occur.

6.5.3 Estimates of the Injection Pore Volumes of the Amendments

The estimated pore volume of fluids injected during the 2014 ZVZ pilot study is summarized above. The fluid injected into the target treatment zone included ZVZ and other additives to promote distribution in the subsurface (e.g., guar gum). A total of 160 pounds of additives were injected during the 2014 pilot study.

Summing the estimated quantity of ZVZ injected into INJ-3 through INJ-13, as tabulated in Table 3-1 of the pilot study implementation report (RBA and Geosyntec, 2015), results in a total of 11,000 pounds of ZVZ injected during the pilot study. The estimated soil mass within the target treatment zone is 2,826,000 pounds based on the following calculation:

Soil Mass =
$$n_L x \pi x R_I^2 x T x \rho_b$$

- Where:
- 1. n_L = number of injection points (10);
- 2. R_I = assumed radius of influence (10 feet);
- 3. T = vertical treatment interval (9 feet); and
- 4. ρ_b = soil bulk density (100 pounds per cubic foot).

Based on the estimated mass of ZVZ injected and total soil mass, the estimated average mass loading of ZVZ in soil throughout the target treatment zone is 0.39%.

6.5.4 Propene Mass Balance Stoichiometry

As discussed in Section 2 and illustrated in **Figure 1**, TCP is degraded by ZVZ via dichloroelimination to form propene:

$$C_3H_5Cl_3(TCP) + H^+ + 4e^- \rightarrow C_3H_6(Propene) + 3Cl^-$$

Reaction stoichiometry predicts a 1:1 molar ratio of TCP degradation to propene production.

Where detected, propene concentrations ranging from 1.05 μ g/L to 13.6 μ g/L were observed during grab-groundwater sampling (**Table 11**), suggesting potential degradation of to up to 3.86 μ g/L to 47.7 μ g/L TCP. Observed TCP concentrations within the pilot study injection area are generally below that concentration range, suggesting that other sources may be contributing to some of the propene detections. Potential sources of propene in the environment include industrial sources as well as degradation of soil and forest debris (Morgott, 2018).

6.5.5 Limits of Detection

Project-specific screening levels (PSLs) were established for each analyte evaluated as part of the demonstration. Analytical limits of detection (LODs)⁹ were compared with PSLs to ensure that LODs were typically below PSLs. For TCP, a PSL of 0.5 μ g/L (California's drinking water response level at that time) was specified during the 2014 pilot study. The typical LOD is at or below 0.005 μ g/L, equivalent to the current California MCL and well below the PSL. Theoretically, LODs could be elevated for TCP due to sample dilution. However, during the demonstration sampling events, no TCP analytical results were reported with elevated LODs above the California MCL.

6.6 SUMMARY

Groundwater monitoring results collected as part of the 2014 ZVZ injection pilot study and in 2017 and 2018 as part of this demonstration indicate the following:

⁹ The LOD is defined as the smallest amount of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate is 1%.

- The pilot study was effective in decreasing TCP concentrations within and downgradient of the injection area by up to 99%.
- Samples collected in 2017 and 2018 indicate that TCP reductions are continuing, and in some cases increasing.
- Localized TCP concentration increases were observed in 2018, potentially due to seasonal or other short-term temporal changes in groundwater quality or groundwater flow direction. Additional sampling may be appropriate to further assess short- and long-term temporal trends.
- Propene was detected in multiple samples, consistent with the TCP transformation pathway of abiotic degradation via dichloroelimination, but the higher concentrations of propene relative to TCP may indicate potential secondary sources of propene in site groundwater.
- Reducing conditions (e.g., low sulfate concentrations, low DO, and negative ORP) were observed in several locations throughout the treatment area, suggesting that the ZVZ continues to effectively reduce site groundwater.

Zinc was observed at concentrations as high as 2% (20,000 mg/kg) in one of the soil borings advanced but either not observed above background levels or was only modestly above background in the other borings. These observations suggest that ZVZ can be delivered to the subsurface but was not delivered in a predictable manner during the July 2014 pilot study. As such, the project team has developed recommendations for optimizing ZVZ delivery for future injections, including:

- Selecting ZVZ material more amenable to subsurface injections; and
- Optimizing injection approach to improve predictability of material delivery.

Additional discussion of process optimization is provided in Section 8 of this report.

7.0 COST ASSESSMENT

The following section presents cost information for in situ applications of ZVZ.

7.1 COST MODEL

A simple cost model for *in situ* applications of ZVZ is presented in **Table 15**. Several cost elements were not part of this demonstration, but data for these elements was tracked and costs were developed from prior and ongoing studies on remediation of TCP by *in situ* ZVZ applications.

Table 15. Cost Model for In Situ ZVZ Applications.

Cost Element	Data Tracked	Costs	
Treatability Study ¹	 Personnel required and associated labor Materials Analytical laboratory costs 	Project 1	
Baseline Characterization ¹	Standard contaminant and hydrogeology assessment, no cost tracking	N/A	
ZVZ Cost ¹	Unit: \$ per pound for ZVZ Data tracked: • Mass of ZVZ required based on placement design (e.g., width and depth of PRB; average mass loading within injection area, etc.) • Estimated material longevity	\$1.85-\$3.00 per pound, plus s	hipping.
ZVZ Placement ¹	Unit: \$ per cross-sectional square foot (PRB), \$ per day (injections), or \$ per fracture (injections) Data requirements: • Installation method • Mobilization cost • Implementation approach unit cost	Pneumatic Fracturing Mobilization Unit Cost (\$/day) Jet Injections Mobilization Unit Cost (\$/fracture) Trenched PRB Unit Cost (\$/square foot)	\$12,500 \$9,500 \$10,000 \$1,500 \$25-50
Waste Disposal ¹	Standard soil disposal, no cost tracking	N/A	
Operation and Maintenance Costs ¹	No unique requirements	N/A	
Long-Term Monitoring	Standard groundwater monitoring, no cost tracking	N/A	

^{1 -} Not part of demonstration.

Additional discussion of the cost model elements is provided below.

7.1.1 Cost Element: Treatability Study

At most sites, a treatability study will be required to determine the site-specific requirements for implementation of the technology. Site-specific requirements may include, but are not limited to:

- ZVZ compatibility with site groundwater;
- Contaminant reaction rates with ZVZ and estimated mass loading requirements; and
- Assessment of ZVZ remediation end products.

The scope of a treatability study could range from simple laboratory batch tests to demonstrate contaminant reactivity with ZVZ to more complex column testing to estimate reaction rates and supply design parameters for *in situ* ZVZ application. Depending on the testing laboratory performing the treatability study, cost parameters associated with a study may include labor, materials, and analytical testing or a lump-sum cost to complete the study scope.

Although a treatability study was not performed as part of this demonstration, information on costs can be estimated from the following:

- Cost estimates obtained by Geosyntec for bench testing ZVM (ZVZ and ZVI) efficacy as part of prior projects.
 - Project 1: Laboratory batch and column evaluation of ZVM (ZVZ and ZVI) for treatment of TCP.
 - Project 2: Column-scale evaluation of ZVI of trichloroethene. Project 2 was included
 in this assessment because treatability study costs are expected to be relatively
 insensitive to contaminant and material selection.
- Information on costs associated with NESDI Project 434 (laboratory- and field-scale column testing of ZVZ as a remedial technology).

Based on these example projects, the cost of a treatability study can be very broad (\$16,500 to \$174,000). However, it is unlikely that most sites will require the detailed proof-of-concept testing completed as part of NESDI Project 434. The cost range of \$16,500 to \$30,000 indicated by Project 1 and Project 2 would be appropriate when estimating treatability study costs for most projects.

7.1.2 Cost Element: Baseline Characterization

Baseline characterization to support *in situ* ZVZ applications includes standard contaminant and hydrogeology assessment activities, including but not limited to:

- Monitoring well installations;
- Groundwater sampling and analysis;
- Soil logging to assess site hydrogeology;
- Collection and evaluation of groundwater elevation data; and
- Slug or aquifer testing to assess hydraulic conductivity.

These activities are not unique to ZVZ as a remediation technology and costs associated with the activities were not tracked as part of this demonstration. However, as with all *in situ* remedies, the success of *in situ* ZVZ applications depends on adequate characterization to support remedy design. Thus, while these costs are not unique to ZVZ, it is important to recognize that baseline characterization costs may increase significantly with site scale, complexity, or if prior characterization is inadequate for remedy design.

7.1.3 Cost Element: ZVZ Cost

The cost of ZVZ material depends on the bulk material cost (\$ per pound). Bulk ZVZ costs are available as part of ZVZ injection programs completed at MCBCP in July 2014 and February 2019:

- July 2014: \$3.00 per pound, plus shipping (14,000-pound order).
- February 2019: \$1.85 per pound, plus shipping (86,000-pound order).

Based on the above information, the bulk cost of ZVZ can vary substantially depending on the market rate for zinc (prices are set based on commodity prices for zinc) and quantity of material purchased.

In addition to the unit cost, ZVZ cost will depend on the total mass required based on the design of the *in situ* application and the expected longevity of the material once emplaced. Total mass requirements and expected material lifetime will be project specific; Section 7.3 includes a cost analysis based on an example site that incorporates these factors into a life-cycle cost for ZVZ as a remedial technology.

7.1.4 Cost Element: ZVZ Placement

The cost of ZVZ placement will depend on the technology selected (e.g., a traditional PRB configuration or placement by direct injection), mobilization costs, and the time required to implement the placement scope of work.

Costs for direction injection of ZVZ is available as part of ZVZ injection programs completed at MCBCP in July 2014 and February 2019:

- July 2014 (pneumatic fracturing injections): 10 injection points, three injection intervals per point (30 injection intervals total). Unit costs for the July 2014 scope were incurred on a daily rate, assuming an injection rate of one point with three injection intervals per day. The daily rate for injections includes drilling services, injection services, nitrogen supply, equipment rental, and consumable materials.
- February 2019 (jet injections): 12 injection points, eight injection intervals per point (96 injections intervals total). Unit costs for the February 2019 scope were incurred on a perinjection interval (fracture) rate. The unit rate for injections includes drilling services, injection services, equipment rental, and consumable materials.

Costs associated with a traditional PRB configuration are expected to be consistent with those for a ZVI application. A review of available literature suggests that PRB construction costs may range from \$25 to \$50 per cross-sectional square foot of barrier (Battelle Memorial Institute, 2012).

7.1.5 Cost Element: Waste Disposal

Waste soil, waste groundwater, and surfaced ZVZ material may be generated during ZVZ placement. Disposal of waste is not an activity unique to ZVZ as a remediation technology and costs associated with waste disposal were not tracked as part of this demonstration. However, waste material generation may be significant if ZVZ is being employed in certain configurations (e.g., as a PRB installed by trenching). Thus, disposal costs may be relevant when evaluating ZVZ PRBs against alternatives that generate less waste material.

7.1.6 Cost Element: Operation and Maintenance Costs

Operation and maintenance costs associated with *in situ* ZVZ applications are minimal (e.g., monitoring well maintenance, maintaining site access, etc.). These activities are not unique to ZVZ as a remediation technology and costs associated with the activities were not tracked as part of this demonstration.

7.1.7 Cost Element: Long-Term Monitoring

Monitoring costs associated with *in situ* ZVZ applications are consistent with those associated with other *in situ* ZVM applications. These activities are not unique to ZVZ as a remediation technology and costs associated with the activities were not tracked as part of this demonstration.

7.2 COST DRIVERS

The primary cost drivers for *in situ* applications of ZVZ relative to other remedial technologies are:

- 1. <u>Mass of ZVZ required.</u> The mass of ZVZ required for remedy implementation at a specific site may be influenced by the following factors:
 - a. Site-specific degradation rates.
 - b. Site-specific geochemical conditions that suggest ZVZ may passivate over time, potentially requiring multiple applications of ZVZ.

The mass of ZVZ required (and associated cost) for remedy implementation may become a significant cost driver relative to other technologies if site-specific treatability testing suggests that larger amounts of ZVZ mass are required to achieve desired degradation rates or that rapid passivation of ZVZ is likely to occur following implementation.

- 2. <u>Scope of ZVZ placement.</u> The scope of ZVZ placement activities may be influenced by the following factors:
 - a. Spatial extent of contamination.
 - b. Vertical extent of contamination.

- c. Ability to reach vertical extent of contamination using conventional drilling methods (for injection-based approaches) or trenching methods (for traditional PRB configurations).
- d. Achievable radius of influence (for injection-based approaches).
- e. Required PRB thickness and ZVZ mass loading based on groundwater and contaminant flux (for traditional PRB configurations).

The cost of ZVZ placement may increase and become less favorable relative to other technologies if:

- a. The spatial or vertical extent of contamination is large.
- b. Injection-based technologies would require unconventional drilling methods (e.g., rotosonic drilling) or are likely to only achieve a limited radius of influence given site-specific lithology.
- c. Flux of contaminated groundwater is sufficiently high that a traditional PRB application would require either very high ZVZ mass loading or PRB thickness to achieve remedial objectives.

7.3 COST ANALYSIS

An ongoing ZVZ injection program at MCBCP was used as the basis for estimating cost to implement this technology. A site description for MCBCP is provided in Section 4 of this report; assumptions used to scope the ongoing ZVZ injection program are provided below. A detailed description of the ongoing injection program is provided in the Final Work Plan, Zero-Valent Zinc Injections for 1,2,3-Trichloropropane, 12 Area Site 13 and 22/23 Area Groundwater (Brady-GCE II and Geosyntec, 2018).

7.3.1 Design Assumptions

The ZVZ injection design for 22/23 Area groundwater involves jet injection of ZVZ into the subsurface as a PRB configuration. A PRB was selected as the most effective configuration to degrade TCP mass as it migrates from the vicinity of well 220205-MWX and other wells with elevated TCP concentrations, thereby reducing or eliminating 1,2,3-TCP mass flux to the downgradient plume. ZVZ injections are assumed to occur along a 150-foot transect perpendicular to the estimated groundwater flow direction (**Figure 12**). The assumed achievable radius of influence (ROI) is 10 feet, resulting in a total of 14 planned injection locations along the length of the barrier.

Groundwater monitoring data collected from the 22/23 Area as part of this project and the July 2014 ZVZ pilot study indicate that TCP is present in groundwater from approximately 35 to 45 feet bgs and from 50 to 60 feet bgs. The vertical profile of ZVZ injections along the barrier was assumed to extend from 35 to 45 feet bgs and from 50 to 60 feet bgs. A total of eight injection intervals were assumed to occur over the 20-foot vertical profile.

The mass of ZVZ required for the injection program was estimated based on the proposed treatment volume and an assumed target ZVZ application rate of 0.5% by dry weight of soil within the target treatment zone.

- 1. Approximate treatment area: 160 feet x 30 feet (4,800 square feet [ft²]);
- 2. Vertical treatment interval: 35 to 45 feet bgs and 50 to 60 feet bgs (20 feet total);
 - a. Treatment volume: 96,000 cubic feet (ft³);
- 3. Assumed soil density: 110 pounds per ft³;
 - a. Estimated soil mass: 10,560,000 pounds;
- 4. ZVZ application rate: 0.005 pounds/pound soil;
- 5. ZVZ quantity: 52,800 pounds.

For this cost analysis, the injected ZVZ is assumed to passivate after 15 years, at which time a second maintenance injection will be required. The maintenance injection is assumed to be half the scope of the initial injection (7 points, 8 injection intervals per point, 26,400 pounds of ZVZ injected).

For the purpose of this evaluation, installation of 24 groundwater monitoring wells (12 screened from 35 to 45 feet bgs and 12 screened from 50 to 60 feet bgs) was assumed for baseline and long-term monitoring. An additional five existing monitoring wells were also included in the baseline and long-term monitoring program. The long-term monitoring program assumes annual sampling and analysis of:

- TCP;
- Anions (nitrate, nitrite, and sulfate);
- Dissolved metal cations (calcium, iron, manganese, zinc, cadmium, copper, and lead); and
- Propene.

7.3.2 Life-Cycle Cost Estimate

A life-cycle cost for ZVZ injections was developed in general accordance with USEPA guidelines for feasibility studies (EPA, 2000). The costs for ZVZ material and injections were estimated using the information presented in **Table 15**. The costs for other major components (e.g., monitoring well installation and sampling) were estimated based on previous experience and professional judgment, and information from technology vendors. Some items such as project management, remedial design, construction management, and contingencies were estimated on a percentage basis of expected contractor costs. Future costs were presented in net present value over the lifetime of the cleanup, up to a maximum of 30 years. The discount rate used for the net present value calculation was 3.6%, based on the 2018 30-year nominal interest rate on Treasury notes and bonds, published by the United States Office of Management and Budget (OMB Circular No. A-94, Appendix C).

Using the approach described above, an estimated life-cycle cost for ZVZ injections is presented in **Table 16a**. Under the assumptions described in Section 7.3.1, the estimated 30-year life-cycle cost for ZVZ injections is \$2,220,000.

7.3.3 Comparison to ZVI

For comparison purposes, a life-cycle cost for ZVI injections was also developed. The cost of ZVI was estimated at \$0.60 per pound based on discussions with vendors regarding current pricing. All quantities and other cost assumptions were held constant to the ZVZ life-cycle costs (see Section 7.3.2) to allow for a direct comparison of the two technologies. Using this approach, an estimated life-cycle cost for ZVI injections is presented in **Table 16b**. The estimated 30-year life-cycle cost for ZVI injections is \$2,080,000.

Use of ZVZ for remediation of TCP and potentially other lesser-chlorinated aliphatic compounds is an improvement on treatment of these compounds by traditional ZVMs (e.g., ZVI), due to the more favorable reactivity of ZVZ. In these cases, ZVI may not be reactive or may be reactive at a sufficiently low rate that the lower unit cost of ZVI is offset by the need to emplace a greater amount of ZVI relative to ZVZ. As such, the benefits of this technology are not related to cost avoidance or savings; instead, the primary benefit is improved remedy performance relative to existing technologies.

8.0 IMPLEMENTATION ISSUES

As described in Section 2, general guidance on implementation of ZVM remedies is available from the Contaminated Site Clean-Up Information website maintained by the USEPA (https://cluin.org/). Key guidance documents include, but are not limited to, the following:

- Permeable Reactive Barrier: Technology Update (ITRC, 2011).
- Best Practices for Injection and Distribution of Amendments (Battelle Memorial Institute and Naval Facilities Engineering Command Alternative Restoration Technology Team, 2013).
- Hydraulic Fracturing Technology Applications Analysis and Technology Evaluation Report (USEPA, 1993).

Information presented in these guidance documents is not repeated herein.

The key technology-specific lesson learned during implementation of the July 2014 pilot study ZVZ injections and subsequent validation monitoring conducted as part of this project is that ZVZ material selection should be made in consideration of implementation methodology. The Zn1210 injected during the July 2014 pilot study was selected primarily for its reactivity profile with TCP. However, significant ZVZ surfacing was noted during the injections, which was attributed in part to the injection method, and in part to the relatively large size (20 to 60 mesh, which equates to 250 to 850 microns) and irregular shape of the injected Zn1210.

While the observed surfacing resulted in limited and unpredictable distribution ZVZ, trends in TCP concentration within and downgradient of the ZVZ injection area observed during post-injection performance monitoring and as part of this verification project demonstrated that the pilot study was nonetheless successful in terms of achieving targeted TCP concentration reductions. Based on the TCP concentration trends and other findings of this verification project, the pilot study was considered a success by the Navy and the Navy elected to move forward with optimized ZVZ injections at two areas of MCBCP.

Additional ZVZ injections were completed at MCBCP in February and March 2019 (Brady-GCE II and Geosyntec, 2018). The scope of work for these injections was developed in consideration of the above lesson learned. Specific changes from the 2014 pilot study scope to optimize the 2019 injection program include the following:

- 1. Selection of an alternative ZVZ material. As described in Section 2.2, both Zn1210 and Zn64 were capable of effectively degrading TCP. Because Zn64 is smaller and has a more regular shape, it was initially selected for the 2019 injection program. However, Zn64 is no longer available, so a comparable product known as Ultra-Pure TF Granules® was selected for the ongoing injections based on feasibility of injection, similarity in mesh size to Zn64, anticipated product longevity, and cost.
- 2. Selection of an alternative injection approach. A specialized injection approach called jet injection was used for the 2019 injections. Jet injection combines high pressure jetting and controlled hydraulic fracturing for emplacement of amendments into geologic matrices

where remediation is limited by contact between remediation amendments and contaminants trapped in the matrix. Jet injection involves two primary steps:

- a. "Notching" of the formation at the point of injection; and
- b. Slurry injection under pressure to fracture the formation (USEPA, 1993).

The notching step serves to influence the orientation of the fracture and to reduce the pressure required to initiate the fracture. The high-pressure portion of the DPT jet injection method is limited to the notching step (USEPA, 1993) and does not represent an increased likelihood of surfacing or other injection issues relative to other injection approaches.

Performance monitoring data following implementation of the additional ZVZ injections is not available. However, minimal surfacing was observed during field implementation, suggesting that the process optimization was successful in improving reliability and predictability of ZVZ delivery to the subsurface.

The primary objective of this project was to conduct verification monitoring of the previously-funded ISCR pilot study using ZVZ, a novel technology for the remediation of chlorinated alkanes. Verification monitoring results clearly demonstrate the importance of verification monitoring in assessing long term viability and performance of the technology. Lessons learned from this work were used to inform the design and implementation of two ongoing full-scale applications of this technology at MCBCP.

9.0 REFERENCES

- Alaska Department of Environmental Conservation, 2016. 18 AAC 75, Oil and Other Hazardous Substances Pollution Control, Revised as of 6 November 2016.
- Battelle Memorial Institute, 2012. Permeable Reactive Barrier Cost and Performance Report. March.
- Battelle Memorial Institute and Naval Facilities Engineering Command Alternative Restoration Technology Team, 2013. Best Practices for Injection and Distribution of Amendments. March.
- Brady-GCE II and Geosyntec Consultants, Inc. (Geosyntec), 2018. Final Work Plan, Zero-Valent Zinc Injections for 1,2,3-Trichloropropane, 12 Area Site 13 and 22/23 Area Groundwater, Marine Corps Base Camp Pendleton, California. October.
- California State Water Resources Control Board, Division of Water Quality, GAMA Program, 2017. Groundwater Information Sheet, 1,2,3-Trichloropopane (TCP). Revised November 2017.
- Florida Administrative Code, 2018. Chapter 62-777.
- Geosyntec, 2011. Final Report: Abiotic Treatment of 1,2,3-Trichloropropane to Protect Drinking Water Resources. NESDI Project 434. 19 July.
- Geosyntec, 2017. Demonstration Plan, Verification Monitoring for In Situ Chemical Reduction Using Zero-Valent Zinc, A Novel Technology for Remediation of Chlorinated Alkanes, ESTCP Project Number: ER-201628. April.
- Geosyntec, 2018. Analysis to Inform Go/No Go Decision for Additional Field Tasks, Verification Monitoring for In Situ Chemical Reduction Using Zero-Valent Zinc, A Novel Technology for Remediation of Chlorinated Alkanes, ESTCP Project Number: ER-201628. 15 July.
- Hawaii Department of Health, 2009. Contaminants Regulated by Safe Drinking Water Branch (effective 4 March 2009).
- Interstate Technology and Regulatory Council (ITRC), 1999. Regulatory Guidance for Permeable Reactive Barriers Designed to Remediate Inorganic and Radionuclide Contamination. Available from: http://www.itrcweb.org/GuidanceDocuments/PRB-3.pdf
- ITRC, 2011. Permeable Reactive Barrier: Technology Update. June. Available from: https://www.itrcweb.org/GuidanceDocuments/PRB-5-1.pdf
- Minnesota Department of Health, 2011. 1,2,3-TCP in Drinking Water. September. Available from: http://www.health.state.mn.us/divs/eh/risk/guidance/dwec/123tcpinfo.pdf
- Missouri Code of State Regulations, 2018. Rules of Department of Natural Resources, Division 20 Clean Water Commission, Chapter 7 Water Quality.

- Morgott, 2018. The Human Exposure Potential from Propylene Releases to the Environment. *International Journal of Environmental Research and Public Health*, doi:10.3390/ijerph15010066.
- New Jersey Department of Environmental Protection, 2018. Maximum Contaminant Levels (MCLs) for Perfluorononanoic Acid and 1,2,3-Trichloropropane, Private Well Testing for Arsenic, Gross Alpha Particle Activity, and Certain Synthetic Organic Compounds. 4 September.
- Parsons, 2011. 22/23 Area Groundwater Remedial Investigation Report and Feasibility Study, Marine Corps Base Camp Pendleton. 10 January.
- Richard Brady & Associates (RBA) and Geosyntec, 2015. Final Pilot Study Report, Zero-Valent Zinc Injection for 1,2,3-Trichloropropane, 22/23 Area Groundwater, Camp Pendleton, California. 8 December.
- Salter-Blanc, A.J. and P.G. Tratnyek, 2011. Effects of Solution Chemistry on the Dechlorination of 1,2,3-Trichloropropane by Zero-Valent Zinc. Environ Sci Technol. 45(9):4073–4079.
- Salter-Blanc, A.J., P.G. Tratnyek, D.E. Meisenheimer, E.J. Suchomel, J.T. Nurmi, J. Fortuna, N. Ruiz, T. Morley, 2011. Effects of Solution Chemistry on the Dechlorination of 1,2,3-Trichloropropane by Zerovalent Zinc: Laboratory Assessment and Field Application. SERDP/ESTCP Partners in Environmental Technology Symposium, Washington, DC. 29 November-1 December.
- Salter-Blanc, A.J., E.J. Suchomel, J. Fortuna, J.T. Nurmi, C. Walker, T. Krug, S. O'Hara, N. Ruiz, T. Morley, P. Tratnyek, 2012. Evaluation of Zerovalent Zinc for Treatment of 1,2,3-Trichloropropane-Contaminated Groundwater: Laboratory and Field Assessment. Ground Water Monitoring and Remediation. 32(4):42-52.
- Sarathy V., A.J. Salter, J.T. Nurmi, G. O'Brien Johnson, R.L. Johnson, P.G. Tratnyek, 2010. Degradation of 1,2,3-Trichloropropane (TCP): Hydrolysis, Elimination, and Reduction by Iron and Zinc. Environ Sci Technol. 44:787–793.
- Strategic Environmental Research and Development Program (SERDP) and Environmental Security Technology Certification Program (ESTCP), 2013. Summary Report, SERDP and ESTCP Workshop on Long Term Management of Contaminated Groundwater Sites.

 November. Available from: https://www.serdpestcp.org/content/download/23758/240081/version/2/file/Vapor+Intrusion+Workshop+Report-Final.pdf.
- Tratnyek, P.G., V. Sarathy, A.J. Salter, J.T. Nurmi, G.O. Johnson, T. DeVoe, P. Lee, 2010. Final Report, Prospects for Remediation of 1,2,3-Trichloropropane and Engineered Abiotic Degradation Reactions, SERDP Project ER-1457. August. Available from: https://www.serdp-estcp.org/content/download/9291/110767/file/ER-1457-FR.pdf.

- United States Environmental Protection Agency (USEPA). 1993. Hydraulic Fracturing Technology Applications Analysis and Technology Evaluation Report. EPA/540/R-93/505. September. USEPA Office of Research and Development, Cincinnati, Ohio.
- USEPA. 2000. A Guide to Developing and Documenting Cost Estimates During the Feasibility Study. EPA/540/R-00/002. July.

TABLES

Table 5: Pilot Study Zero Valent Zinc Injection Summary

22/23 Area

Marine Corps Base Camp Pendleton, CA

		Depth	Initiation	Maintenance	Surface Heave		Quantity of	-	T	Injection	Injection	Injection	Total Volume	Estimated	Estimated	Estimated	
Date	Injection Location	Interval (ft bgs)	Pressure (psi)	Pressure (psi)	(Initial/Residual) (inches)	Quantity (lbs)	ZVZ (lbs)	Additive (lbs)	Type of Additive	Pressure (psi)	Flow Rate (gpm)	Duration (minutes)	Injected (gallons)	(gallons)	(gallons)	Injected (lbs)	Observed Pressures in Monitoring Wells
7/22/2014	INJ-1*	42-45	300	150	0/0	170	470	0.0	-	20	25	8	200	20	0	100	
	-	42-45	50	50	0.1/0	470	235	4.5	Guar	45	28	30	840	100	0	235	
7/23/2014	INJ-2	42-45	50	50	0/0	475	200	4.5	Guar	45	28	3	84	84	0	200	
7/24/2014	INJ-2	36-39	50	50	0.2/0	1,040	470	9.0	Guar	30	32	6	192	0	75	286	
7/24/2014	IINJ-Z	39-42	50	50	0.1/0	1,000	470	9.0	Guar	40	33	6	198	30	0	470	
7/24/2014	INJ-3	39-42	-	-	-	1,000	470	8.5	Guar	50	35	5	175	10	10	443	
7/24/2014	1113 3	42-45	-	-	-	1,000	470	8.5	Guar	60	30	5	150	5	5	454	
7/24/2014	INJ-4	39-42	-	-	-	1,500	705	12.7	Guar	40	30	8	240	0	15	661	6B = 2 psi
7/24/2014	1145 -	42-45	-	-	-	1,500	705	12.7	Guar	60	30	8	240	0	0	705	6A = 3 psi; 6B = 10psi; 2 = 2 psi
7/25/2014	INJ-5	39-42	-	-	-	1,500	705	9.0	Guar	45	30	10	300	0	40	611	
7/23/2014	1143-2	42-45	-	-	-	1,500	705	9.0	Guar	60	33	7	231	18	2	699	
7/25/2014	INJ-6	39-42	-	-	-	1,000	470	6.0	Guar	20	29	7	203	30	30	401	10B = 2 psi
7/23/2014	1143-0	42-45	-	-	-	1,500	705	9.0	Guar	45	33	10	330	9	1	703	10B = 1 psi
7/25/2014	INJ-7	39-42	-	-	-	1,000	470	6.0	Guar	25	32	6	192	0	40	372	9A = 2 psi; 9B = 1 psi
7/23/2014	IINJ-7	42-45	-	-	-	1,500	705	9.0	Guar	45	33	8	264	5	5	692	
7/26/2014	INJ-8	39-42	-	-	-	1,000	500	6.0	Guar	40	33	6	198	0	20	449	
7/20/2014	IINJ-O	42-45	-	-	-	1,000	500	6.0	Guar	50	35	6	210	5	0	500	
7/26/2014	INJ-9	39-42	-	-	-	1,000	500	6.0	Guar	45	34	6	204	0	15	463	10B = 6 psi
7/20/2014	1143-3	42-45	-	-	-	1,000	500	6.0	Guar	55	34	6	204	0	0	500	10B = 14 psi
7/26/2014	INJ-10	39-42	-	-	-	1,000	500	6.0	Guar	35	35	5	175	0	2	494	10B = 6 psi
//26/2014	IINJ-10	42-45	-	-	-	1,000	500	6.0	Guar	50	34	6	204	0	0	500	
7/20/2014	INII 11	39-42	-	-	-	1,000	500	6.0	Guar	35	35	7	245	2	0	500	
7/28/2014	INJ-11	42-45	-	-	-	1,000	500	6.0	Guar	65	36	6	216	5	0		2 = 1 psi; 4 = 1 psi
7/20/2014	INII 42	39-42	-	-	-	1,080	540	6.0	Veriflo	30	19	12	228	0	100	303	
7/28/2014	INJ-12	42-45	_	-	-	1,000	500	4/2	Guar/Veriflo	50	33	8	264	0	30	443	
7/28/2014	INJ-13	42-45	-	-	-	2,000	810	10.0	Veriflo	40	18	23	414	0	100		4 = 1 psi

^{*}Pump clogged 2 times with ZVZ during first injection attempt. Pulled string and installed larger (4.5") casing with larger packers to minimize surfacing. Pump clogged again during 3rd injection. Estimate 100 lbs of ZVZ injected into ground based on amount recovered from pump and hoses.

22/23 Area Marine Corps Base Camp Pendleton California

	Sample Depth		Fi	eld Parame	eters	
Location	(ft bgs/		DO	ORP	Temp	Sp. Cond.
	ft BTOC)	pН	(mg/L)	(mV)	(°C)	(mS/cm)
		Septemb	er 2017			
	Groui	ndwater Mo	onitoring We	ells		
220205-MWX	36	7.32	0.75	39.4	25.2	1.25
CP22-PMW04	42	7.30	0.27	-88.0	22.2	1.103
CP22-PMW06B	43	7.47	1.56	-111	26.1	1.002
CP22-PMW07B	41	7.44	0.35	5.3	24.5	1.19
CP22-PMW08B	45	7.32	0.41	-77.5	23.7	1.228
CP22-PMW09B	45	7.31	0.34	-96.1	27.3	1.22
CP22-PMW10B	41	9.73	0.29	-297.6	24.4	0.763
	I	Hydropuncl	n Samples			
	35-37	7.77	1.24	-131.2	21.9	1.15
CP22-HP01	39-41	7.67	4.55	3.0	23.5	1.146
	43-45	NM	NM	NM	NM	NM
	35-37	7.91	1.47	13.3	22.6	0.513
CP22-HP02	39-41	NM	NM	NM	NM	NM
	43-45	7.99	4.91	-17.2	24.1	1.17
	35-37	8.71	3.80	-114.8	20.3	1.049
CP22-HP03	39-41	7.99	0.70	-585.1	20.6	0.887
	43-45	7.73	2.12	-37.1	20.4	1.156
	35-37	7.62	7.83	152	30.5	0.014
CP22-HP04	39-41	8.01	2.16	124.2	28.2	0.938
	43-45	8.23	8.12	127.4	29.4	0.014
	35-37	NM	NM	NM	NM	NM
CP22-HP05	39-41	7.18	8.19	106.8	26.0	1.142
	43-45	7.98	7.74	150.5	30.2	0.025
	35-37	7.92	3.65	7.8	26.0	1.209
CP22-HP06	39-41	7.80	1.46	-191	26.4	1.168
	43-45	7.78	3.10	-45.4	25.1	1.097
	35-37	7.94	6.30	189.4	30.3	0.017
CP22-HP07	39-41	8.30	7.47	142	33.2	0.009
	43-45	7.73	7.63	151.2	31.2	0.016
	35-37	7.81	1.77	-71.2	21.3	1.196
CP22-HP08	39-41	NM	NM	NM	NM	NM
	43-45	7.65	1.30	-96.3	23.3	1.115
	35-37	7.67	1.13	-65.5	24.6	1.223
CP22-HP09	39-41	7.79	6.32	16.9	27.2	0.603
	43-45	7.63	0.77	-131.8	25.7	1.137
	35-37	7.68	3.33	37.2	28.3	1.157
CP22-HP10	39-41	7.61	2.48	-41.0	27.1	1.124
	43-45	7.63	3.21	-103	28.6	1.098

22/23 Area

Marine Corps Base Camp Pendleton California

	Sample Depth		Fi	eld Parame	ters	
Location	(ft bgs/ ft BTOC)	pН	DO (mg/L)	ORP (mV)	Temp (°C)	Sp. Cond. (mS/cm)
	35-37	7.84	2.68	-9.4	21.0	1.218
CP22-HP11	39-41	7.77	1.35	-62.1	20.9	1.132
	43-45	7.69	2.14	-79.2	21.5	1.104
	35-37	7.85	6.07	86.4	31.7	1.169
CP22-HP12	39-41	7.96	5.07	-89.4	21.5	1.004
	43-45	NM	NM	NM	NM	NM
		January	2018			
	Groui	ndwater Mo	nitoring W	ells		
220205-MWX	NA	7.19	0.39	-0.8	20.4	1.38
CP22-PMW04	NA	7.17	0.59	25.1	19.5	1.225
CP22-PMW07B	NA	7.30	0.55	-90.1	16.9	1.289
CP22-PMW08B	NA	7.27	0.50	-94.6	18.6	1.369
CP22-PMW10B	NA	10.05	0.25	-284.4	19.6	0.78
	J	Hydropunch	n Samples			
CP22-HP01	35-37	8.12	6.70	108.3	22.8	1.248
Cr22-nr01	39-41	7.72	0.76	-83.9	23.6	1.223
CP22-HP02	35-37	7.69	3.27	-30.6	24.6	1.245
CF22-HF02	39-41	7.75	0.39	-165.9	25.3	1.216
CP22-HP03	35-37	7.77	11.3	-100.1	24.1	1.158
CF22-HF03	39-41	7.63	0.29	-147.8	24.1	1.148
	35-37	7.29	1.46	-73.7	19.8	0.972
CP22-HP04	39-41	7.24	0.10	-188.2	19.3	0.88
	43-45	NM	NM	NM	NM	NM
	35-37	7.46	0.05	-185.8	21.9	1.195
CP22-HP05	39-41	7.37	1.31	-128.1	21.2	1.189
	43-45	7.44	4.00	-174.8	21.8	1.186
СР22-НР06	35-37	7.60	0.07	-278.9	21.6	1.171
C1 22-111 00	39-41	7.78	0.01	-321.9	16.5	1.102
CP22-HP07	35-37	7.66	0.04	-239.7	22.9	1.022
CF22-HFU/	39-41	7.76	0.75	-153.6	22.8	0.936
CP22-HP08	35-37	7.62	0.11	-239.6	19.8	1.143
CF22-HF00	39-41	7.71	0.22	-261.9	21.1	1.099
CP22-HP09	35-37	7.44	0.17	-183.9	22.3	1.232
Cr22-nr09	39-41	7.51	1.14	-112.4	21.9	1.033
	35-37	7.01	3.56	1.10	19.8	1.225
CP22-HP10	39-41	7.60	1.38	-112.2	17.4	1.175
	43-45	7.38	0.36	-170	17.6	1.111
CP22-HP11	35-37	7.91	0.52	-173.2	20.7	1.213
CF 22-HP11	39-41	7.66	0.22	-197.1	21.7	1.159
CD22 HD12	35-37	7.53	0.29	-156.2	18.5	1.152
CP22-HP12	39-41	7.81	0.42	-178.2	19.8	1.002

22/23 Area

Marine Corps Base Camp Pendleton California

	Sample Depth		Fi	eld Parame	ters	
Location	(ft bgs/	ъШ	DO	ORP	Temp	Sp. Cond.
	ft BTOC)	pН	(mg/L)	(mV)	(°C)	(mS/cm)
		Septemb	er 2018			
	Groun	ndwater Mo	onitoring Wo	ells		
220205-MWX	38	7.27	0.33	73.0	27.6	1.328
CP22-PMW04	42	7.31	0.40	37.1	25.7	1.193
CP22-PMW07B	41	7.31	0.59	119.7	25.4	1.233
CP22-PMW08B	45	7.14	0.42	59.3	25.2	1.238
CP22-PMW10B	41	9.59	0.24	-355.9	25.1	0.702
	I	Hydropunch	n Samples			
	31-33	7.97	2.72	60.5	27.8	1.38
CP22-HP01	35-37	NM	NM	NM	NM	NM
	39-41	7.73	2.91	56.7	26.4	1.322
	31-33	7.93	4.70	56.4	24.3	1.368
CP22-HP02	35-37	7.54	1.26	5.60	26.7	1.244
	39-41	7.51	0.79	-46.5	25.0	1.146
	31-33	7.25	2.11	-27.0	23.9	1.164
CP22-HP03	35-37	7.55	0.95	-31.3	24.3	1.169
	39-41	NM	NM	NM	NM	NM
	31-33	7.70	0.52	-42.9	21.7	1.118
CP22-HP04	35-37	7.60	1.22	-53.4	21.9	0.964
	39-41	7.47	2.38	-31.9	21.9	1.104
	31-33	7.48	1.40	-83.3	23.1	1.174
CP22-HP05	35-37	7.45	2.26	-34.4	24.3	1.194
	39-41	7.67	1.47	-21.3	27.0	1.192
	31-33	NM	NM	NM	NM	NM
CP22-HP06	35-37	7.45	0.86	-87.9	24.4	1.100
	39-41	7.48	5.06	21.0	25.5	1.142
	31-33	7.59	0.51	-103.3	23.8	0.669
CP22-HP07	35-37	7.65	14.0	30.1	24.8	0.826
	39-41	7.53	3.95	65.4	23.2	0.820
	31-33	7.49	2.21	-39.8	19.8	1.161
CP22-HP08	35-37	7.42	3.06	-21.9	19.7	0.957
	39-41	7.39	2.91	-14.7	19.9	0.948
	31-33	NM	NM	NM	NM	NM
CP22-HP09	35-37	7.68	0.76	-139.9	23.1	1.225
	39-41	NM	NM	NM	NM	NM
	31-33	NM	NM	NM	NM	NM
CP22-HP10	35-37	7.68	3.33	-63.7	23.3	1.256
	39-41	8.28	3.10	-74.1	28.3	0.971

22/23 Area

Marine Corps Base Camp Pendleton California

	Sample Depth	Field Parameters								
Location	(ft bgs/ ft BTOC)	pН	DO (mg/L)	ORP (mV)	Temp (°C)	Sp. Cond. (mS/cm)				
	31-33	NM	NM	NM	NM	NM				
CP22-HP11	35-37	7.65	0.51	-140.4	23.6	1.051				
	39-41	7.47	2.14	-36.5	26.0	1.028				
	31-33	NM	NM	NM	NM	NM				
CP22-HP12	35-37	NM	NM	NM	NM	NM				
	39-41	7.57	2.87	28.7	26.4	0.941				

Notes:

NM - Not measured due to insufficient sample quantity

DO - dissolved oxygen

ORP - oxidation-reduction potential

Temp - temperature

Sp Cond - specific conductivity mg/L - milligrams per liter

mV - millivolts

mS/cm - millisiemens per centimeter

ft bgs/ft bTOC - feet below ground surface (hydropunch samples) or feet below top of well casing

(groundwater monitor well samples)

22/23 Area

Marine Corps Base Camp Pendleton, California

	Sample		Concentration (µg/L)							
Sample Location	Depth (ft bgs)	Sample Date	1,2,3-TCP	Allyl Chloride	1,2-DCP	1,3-DCP	Propene			
•		Monito	oring Well Sa	mples	•	•				
220205-MWX	10-40	2/22/2012	4.6		0.42 J					
220205-MWX	10-40	6/17/2014	6.5		0.34 J					
220205-MWX	10-40	9/9/2014	7.4		0.34 J					
220205-MWX	10-40	11/6/2014	6.4		0.36 J					
220205-MWX	10-40	12/15/2014	7.1		0.37 J					
220205-MWX	10-40	1/6/2015	6.5		0.42 J					
220205-MWX	10-40	9/12/2017	7.0	<1.0	< 0.50	<1.0	<1.00			
220205-MWX	10-40	1/19/2018	5.7				<1.00			
220205-MWX	10-40	9/12/2018	3.9				<1.00			
CP22-PMW04	37-47	2/21/2012			<1.0					
CP22-PMW04	37-47	2/22/2012	1.3							
CP22-PMW04	37-47	6/18/2014	2.1		0.16 J					
CP22-PMW04	37-47	9/10/2014	1.5		0.13 J					
CP22-PMW04	37-47	11/6/2014	1.9		0.20 J					
CP22-PMW04	37-47	12/15/2014	2.8 J		0.28 J					
CP22-PMW04	37-47	1/6/2015	1.7		0.20 J					
CP22-PMW04	37-47	9/12/2017	0.054	<1.0	< 0.50	<1.0	<1.00			
CP22-PMW04-D	37-47	9/12/2017	0.054	<1.0	< 0.50	<1.0	<1.00			
CP22-PMW04	37-47	1/19/2018	0.037				<1.00			
CP22-PMW04	37-47	9/12/2018	0.72				<1.00			
CP22-PMW04-D	37-47	9/12/2018	0.60	-			<1.00			
CP22-PMW06B	38-48	6/18/2014	0.0053		< 0.20					
CP22-PMW06B	38-48	9/10/2014	0.0033 J		< 0.20					
CP22-PMW06B	38-48	11/6/2014	0.0023 J		< 0.20					
CP22-PMW06B	38-48	12/18/2014	0.013		< 0.20					
CP22-PMW06B	38-48	1/7/2015	0.0085		< 0.20					
CP22-PMW06B	38-48	9/12/2017	< 0.0050	<1.0	< 0.50	<1.0	<1.00			
CP22-PMW07B	36-46	6/18/2014	0.72		< 0.20					
CP22-PMW07B	36-46	9/10/2014	0.24		< 0.20					
CP22-PMW07B	36-46	11/6/2014	0.23		< 0.20					
CP22-PMW07B	36-46	12/16/2014	0.38		< 0.20					
CP22-PMW07B-D	36-46	12/16/2014	0.38		< 0.20					
CP22-PMW07B	36-46	1/7/2015	0.34		< 0.20					
CP22-PMW07B	36-46	9/12/2017	0.022	<1.0	< 0.50	<1.0	<1.00			
CP22-PMW07B	36-46	1/19/2018	0.014				<1.00			
CP22-PMW07B	36-46	9/12/2018	0.042				<1.00			
CP22-PMW08B	40-50	6/19/2014	0.011		< 0.20					
CP22-PMW08B	40-50	9/10/2014	0.0049 J		< 0.20					
CP22-PMW08B	40-50	11/7/2014	< 0.0033		< 0.20					
CP22-PMW08B	40-50	12/16/2014	0.0037 J		< 0.20					
CP22-PMW08B	40-50	1/7/2015	0.0024 J		< 0.20					
CP22-PMW08B	40-50	9/12/2017	0.0056	<1.0	< 0.50	<1.0	<1.00			

 $D: \label{local_condition} D: \label{local_con$

22/23 Area

Marine Corps Base Camp Pendleton, California

	Sample		Concentration (µg/L)							
Sample Location	Depth (ft bgs)	Sample Date	1,2,3-TCP	Allyl Chloride	1,2-DCP	1,3-DCP	Propene			
CP22-PMW08B	40-50	1/19/2018	< 0.0050				<1.00			
CP22-PMW08B	40-50	9/12/2018	< 0.0050				<1.00			
CP22-PMW09B	40-50	6/19/2014	0.0075		< 0.20					
CP22-PMW09B	40-50	9/11/2014	0.0053		< 0.20					
CP22-PMW09B	40-50	11/7/2014	< 0.0086		< 0.20					
CP22-PMW09B	40-50	12/16/2014	0.024		< 0.20					
CP22-PMW09B	40-50	1/7/2015	0.0050		< 0.20					
CP22-PMW09B	40-50	9/12/2017	< 0.0050	<1.0	< 0.50	<1.0	<1.00			
CP22-PMW10B	36-46	6/17/2014	0.77		< 0.20					
CP22-PMW10B	36-46	9/11/2014	0.34		< 0.20					
CP22-PMW10B	36-46	11/7/2014	0.027		0.11 J					
CP22-PMW10B	36-46	12/18/2014	0.019		< 0.20					
CP22-PMW10B	36-46	1/7/2015	0.021		< 0.20					
CP22-PMW10B	36-46	9/12/2017	0.011	<1.0	< 0.50	<1.0	<1.00			
CP22-PMW10B	36-46	1/19/2018	0.0073				<1.00			
CP22-PMW10B	36-46	9/12/2018	0.014				<1.00			
		Grab-G	roundwater S	amples		•				
CP22-HP01	31-33	9/12/2018	0.29				<1.00			
CP22-HP01-D	31-33	9/12/2018	0.27				<1.00			
CP22-HP01	35-37	9/14/2017	< 0.0050	<1.0	< 0.50	<1.0	<1.00			
CP22-HP01	35-37	1/17/2018	0.072				4.10			
CP22-HP01	35-37	9/12/2018	0.17							
CP22-HP01	39-41	9/14/2017	0.054	<1.0	< 0.50	<1.0	<1.00			
CP22-HP01	39-41	1/17/2018	0.27 J				<1.00			
CP22-HP01	39-41	9/12/2018	0.28 J				1.65			
CP22-HP02	31-33	9/12/2018	0.089				4.56			
CP22-HP02	35-37	9/12/2017	< 0.0050	<1.0	< 0.50	<1.0	<1.00			
CP22-HP02	35-37	1/17/2018	0.086				<1.00			
CP22-HP02	35-37	9/12/2018	0.36				2.36			
CP22-HP02	39-41	9/12/2017	0.12							
CP22-HP02	39-41	1/17/2018	0.24				<1.00			
CP22-HP02	39-41	9/12/2018	< 0.0050				1.57			
CP22-HP02	43-45	9/12/2017	< 0.0050	<1.0	< 0.50	<1.0	<1.00			
CP22-HP03	31-33	9/12/2018	0.17				<1.00			
CP22-HP03	35-37	9/14/2017	< 0.0050	<1.0	< 0.50	<1.0	1.63			
CP22-HP03	35-37	1/17/2018	0.096				<1.00			
CP22-HP03-D	35-37	1/17/2018	0.10				<1.00			
CP22-HP03	35-37	9/12/2018	0.027				2.14			
CP22-HP03	39-41	9/14/2017	0.041	<1.0	< 0.50	<1.0	13.6			
CP22-HP03	39-41	1/17/2018	0.036				<1.00			
CP22-HP03	39-41	9/12/2018	< 0.0050							
CP22-HP03	43-45	9/14/2017	< 0.0050	<1.0	< 0.50	<1.0	<1.00			

22/23 Area

Marine Corps Base Camp Pendleton, California

	Sample			Con	centration (µ	ıg/L)	
Sample Location	Depth (ft bgs)	Sample Date	1,2,3-TCP	Allyl Chloride	1,2-DCP	1,3-DCP	Propene
CP22-HP04	31-33	9/13/2018	< 0.0050				1.06
CP22-HP04	35-37	9/11/2017	0.057				1.60
CP22-HP04	35-37	1/19/2018	0.027				<1.00
CP22-HP04	35-37	9/13/2018	0.016				1.29 J
CP22-HP04-D	35-37	9/13/2018	0.017				<1.00 UJ
CP22-HP04	39-41	9/11/2017	0.043	<1.0	< 0.50	<1.0	1.55
CP22-HP04	39-41	1/19/2018	0.021				2.35
CP22-HP04	39-41	9/13/2018	< 0.0050				<1.00
CP22-HP04	43-45	9/11/2017	< 0.0050	<1.0	< 0.50	<1.0	1.40
CP22-HP04	43-45	1/19/2018	< 0.0050				<1.00
CP22-HP05	31-33	9/13/2018	0.057				<1.00
CP22-HP05	35-37	1/19/2018	0.20				<1.00
CP22-HP05	35-37	9/13/2018	0.20				1.44
CP22-HP05	39-41	9/11/2017	0.076	<1.0	< 0.50	<1.0	<1.00
CP22-HP05	39-41	1/19/2018	0.064				<1.00
CP22-HP05	39-41	9/13/2018	0.055				2.62
CP22-HP05	43-45	9/11/2017	< 0.0050				1.31
CP22-HP05	43-45	1/19/2018	< 0.0050				1.18
CP22-HP06	31-33	9/13/2018	0.024				6.12
CP22-HP06	35-37	9/13/2017	< 0.0050	<1.0	< 0.50	<1.0	<1.00
CP22-HP06	35-37	1/17/2018	0.23				<1.00
CP22-HP06	35-37	9/13/2018	0.32 J				<1.00
CP22-HP06	39-41	9/13/2017	0.12				1.94
CP22-HP06	39-41	1/18/2018	0.034				<1.00
CP22-HP06	39-41	9/13/2018	< 0.0050				9.98
CP22-HP06	43-45	9/13/2017	< 0.0050	<1.0	< 0.50	<1.0	<1.00
CP22-HP07	31-33	9/13/2018	0.062				<1.00
CP22-HP07	35-37	9/11/2017	0.16	<1.0	< 0.50	<1.0	<1.00
CP22-HP07	35-37	1/18/2018	0.20				<1.00
CP22-HP07	35-37	9/13/2018	0.17				<1.00
CP22-HP07	39-41	9/11/2017	0.068				2.96
CP22-HP07	39-41	9/12/2017		<1.0	< 0.50	<1.0	
CP22-HP07	39-41	1/18/2018	0.052				<1.00
CP22-HP07	39-41	9/13/2018	0.059				<1.00
CP22-HP07	43-45	9/11/2017	< 0.0050	<1.0	< 0.50	<1.0	<1.00
CP22-HP08	31-33	9/14/2018	0.081				2.28
CP22-HP08	35-37	9/13/2017	0.45	<1.0	< 0.50	<1.0	<1.00
CP22-HP08	35-37	1/18/2018	1.2	-			1.05
CP22-HP08	35-37	9/14/2018	0.43				<1.00
CP22-HP08-D	35-37	9/14/2018	0.55 J				<1.00
CP22-HP08	39-41	9/13/2017	< 0.0050	-			
CP22-HP08	39-41	1/18/2018	0.050				1.04 J
CP22-HP08-D	39-41	1/18/2018	0.056				2.64 J

Table 11: Groundwater Analytical Results - Chlorinated Propanes

22/23 Area

Marine Corps Base Camp Pendleton, California

	Sample			Con	centration (µ	ıg/L)	
Sample Location	Depth (ft bgs)	Sample Date	1,2,3-TCP	Allyl Chloride	1,2-DCP	1,3-DCP	Propene
CP22-HP08	39-41	9/14/2018	0.024				<1.00
CP22-HP08-D	39-41	9/14/2018	0.021				<1.00
CP22-HP08	43-45	9/13/2017	< 0.0050	<1.0	< 0.50	<1.0	<1.00
CP22-HP08-D	43-45	9/13/2017	< 0.0050	<1.0	< 0.50	<1.0	<1.00
CP22-HP09	31-33	9/14/2018	0.32				<1.00
CP22-HP09	35-37	9/12/2017	2.1	<1.0	< 0.50	<1.0	<1.00
CP22-HP09	35-37	1/18/2018	3.0				<1.00
CP22-HP09	35-37	9/14/2018	3.2				<1.00
CP22-HP09	39-41	9/12/2017	< 0.0050				<1.00
CP22-HP09	39-41	1/18/2018	0.14				1.63
CP22-HP09	43-45	9/12/2017	< 0.0050	<1.0	< 0.50	<1.0	2.01
CP22-HP09	43-45	1/18/2018	< 0.0050				
CP22-HP10	31-33	9/14/2018	0.037				2.04
CP22-HP10	35-37	9/12/2017	0.88	<1.0	< 0.50	<1.0	<1.00
CP22-HP10	35-37	1/18/2018	3.6				<1.00
CP22-HP10	35-37	9/14/2018	5.1				<1.00
CP22-HP10	39-41	9/12/2017	1.3	<1.0	< 0.50	<1.0	<1.00
CP22-HP10	39-41	1/19/2018	1.3				<1.00
CP22-HP10	39-41	9/14/2018	0.0095				<1.00
CP22-HP10	43-45	9/12/2017	< 0.0050	<1.0	< 0.50	<1.0	2.96 J
CP22-HP10-D	43-45	9/12/2017	< 0.0050	<1.0	< 0.50	<1.0	<1.00 UJ
CP22-HP10	43-45	1/19/2018	0.017				1.23
CP22-HP11	35-37	9/13/2017	< 0.0050	<1.0	< 0.50	<1.0	<1.00
CP22-HP11	35-37	1/18/2018	2.6				<1.00
CP22-HP11	35-37	9/14/2018	0.27 J				<1.00
CP22-HP11	39-41	9/13/2017	0.15	<1.0	< 0.50	<1.0	5.46
CP22-HP11	39-41	1/18/2018	0.35				<1.00
CP22-HP11	39-41	9/14/2018	0.092				<1.00
CP22-HP11	43-45	9/13/2017	< 0.0050	<1.0	< 0.50	<1.0	<1.00
CP22-HP12	31-33	9/14/2018	0.11				<1.00
CP22-HP12	35-37	9/12/2017	0.64	<1.0	< 0.50	<1.0	<1.00
CP22-HP12-D	35-37	9/13/2017	0.36	<1.0	< 0.50	<1.0	<1.00
CP22-HP12	35-37	1/19/2018	3.3				<1.00
CP22-HP12-D	35-37	1/19/2018	3.2	-			<1.00
CP22-HP12	39-41	9/13/2017	0.076	<1.0	< 0.50	<1.0	<1.00
CP22-HP12-D	39-41	9/13/2017	0.075	<1.0	< 0.50	<1.0	<1.00
CP22-HP12	39-41	1/19/2018	0.042				1.39
CP22-HP12	39-41	9/14/2018	0.030				<1.00

22/23 Area

Marine Corps Base Camp Pendleton, California

g ,	Sample	G 1	Concentration (µg/L)						
Sample Location	Depth (ft bgs)	Sample Date	1,2,3-TCP	Allyl Chloride	1,2-DCP	1,3-DCP	Propene		

Notes:

 $\mu g/L = micrograms per liter$

ft bgs = feet below ground surface

1,2,3-TCP = 1,2,3-Trichloropropane

1,2-DCP = 1,2-Dichloropropane

1,3-DCP = 1,3-Dichloropropane

Allyl Chloride = 3-chloro-1-propene

D = duplicate sample

<# - Analyte not detected above the laboratory reporting limit.

Sample depths for monitoring wells represent the length of the well screen.

J = Result is estimated based on data qualification

UJ = Analyte was not detected above the reported sample quantification limit. However, the reported quantification limit is approximate and may or may not represent the actual limit of quantification necessary to accurately and precisely measure the analyte in the sample.

22/23 Area Marine Corps Base Camp Pendleton, California

						Cor	ncentration (mg/L)			
Sample	Sample	Sample		Ani	ons				Cations		
Location	Depth (ft bgs)	Date	Nitrite	Nitrate	Sulfate	Chloride	Silicon	Calcium	Iron	Manganese	Zinc
•				Mo	nitoring Well	Samples				•	
220205-MWX	10-40	2/22/2012	< 0.100	0.0946 J	88.5			78.4	0.0472 J	1.32	< 0.0200
220205-MWX	10-40	6/17/2014	< 0.0250	0.0954 J	103			84.2	1.00	1.10	0.0152 J
220205-MWX	10-40	9/9/2014	< 0.0250	< 0.0435	95.5			79.2	0.497	1.32	< 0.0100
220205-MWX	10-40	11/6/2014	< 0.0250	0.0687 J	102			79.1	0.274	1.26	< 0.0100
220205-MWX	10-40	12/15/2014	< 0.0250	0.0700 J	93.4			79.0	0.0370 J	1.31	< 0.0100
220205-MWX	10-40	1/6/2015	< 0.0250	0.0707 J	92.6			81.2	< 0.0400	1.42	< 0.0100
220205-MWX	10-40	9/12/2017	< 0.10	< 0.10	98	170	16.9	72.7	< 0.100	1.45	0.0880
220205-MWX	10-40	1/19/2018			98						< 0.0100
220205-MWX	10-40	9/12/2018			96						< 0.0100
CP22-PMW04	37-47	2/22/2012	< 0.100	< 0.100	112			70.2	0.450 J	0.744	< 0.0200
CP22-PMW04	37-47	6/18/2014	< 0.0250	0.102	101			71.0	1.20	0.726	0.0207
CP22-PMW04	37-47	9/10/2014	< 0.0250	< 0.0250	102			68.2	0.453	1.21	< 0.0100
CP22-PMW04	37-47	11/6/2014	< 0.0250	0.0665 J	95.8			70.6	0.512	1.21	< 0.0100
CP22-PMW04	37-47	12/15/2014	< 0.0250	0.0605 J	94.5			70.1	0.400	1.24	< 0.0100
CP22-PMW04	37-47	1/6/2015	< 0.0250	0.0648 J	89.3			69.8	0.596	1.23	< 0.0100
CP22-PMW04	37-47	9/12/2017	< 0.10	< 0.10	87	150	16.0	63.7	< 0.100	1.48	0.181 J
CP22-PMW04-D	37-47	9/12/2017	< 0.10	< 0.10	88	180	16.5	64.0	< 0.100	1.49	0.0164 J
CP22-PMW04	37-47	1/19/2018			87						< 0.0100
CP22-PMW04	37-47	9/12/2018			86						< 0.0100
CP22-PMW04-D	37-47	9/12/2018			85						< 0.0100
CP22-PMW06B	38-48	6/18/2014	<0.025 J	0.0444 J	69.7			60.1	2.46	0.657	< 0.0100
CP22-PMW06B	38-48	9/10/2014	< 0.0250	< 0.0250	6.61		-	74.0	2.71	1.37	< 0.0100
CP22-PMW06B	38-48	11/6/2014	< 0.0250	0.0765 J	8.75			65.2	2.70	1.32	< 0.0100
CP22-PMW06B	38-48	12/18/2014	< 0.0250	0.0630 J	7.16			66.6	0.955	1.39	< 0.0100
CP22-PMW06B	38-48	1/7/2015	< 0.0250	0.0719 J	7.82			69.4	2.50	1.43	< 0.00790
CP22-PMW06B	38-48	9/12/2017	< 0.10	< 0.10	38	150	15.2	50.4	< 0.100	1.14	0.0459
CP22-PMW07B	36-46	6/18/2014	<0.025 J	0.0471 J	116			60.4	4.74	0.293	0.00994 J
CP22-PMW07B	36-46	9/10/2014	< 0.0250	< 0.0250	101			58.3	0.600	0.289	< 0.0100
CP22-PMW07B	36-46	11/6/2014	< 0.0250	0.0673 J	105			55.6	0.480	0.299	0.00719 J

22/23 Area Marine Corps Base Camp Pendleton, California

						Cor	centration (mg/L)			
Sample	Sample	Sample		Ani	ions				Cations		
Location	Depth (ft bgs)	Date	Nitrite	Nitrate	Sulfate	Chloride	Silicon	Calcium	Iron	Manganese	Zinc
CP22-PMW07B	36-46	12/16/2014	< 0.0250	0.0669 J	122			58.5	0.257	0.282	< 0.00707
CP22-PMW07B-D	36-46	12/16/2014	< 0.0250	0.0645 J	99.1		-	58.4	0.151 J	0.285	< 0.00796
CP22-PMW07B	36-46	1/7/2015	< 0.0250	0.0741 J	99.4			57.6	0.460	0.327	< 0.00956
CP22-PMW07B	36-46	9/12/2017	< 0.10	< 0.10	99	160	14.6	45.5	< 0.100	0.657	0.0248
CP22-PMW07B	36-46	1/19/2018			97						< 0.0100
CP22-PMW07B	36-46	9/12/2018			92						< 0.0100
CP22-PMW08B	40-50	6/19/2014	<0.025 J	0.0468 J	99.1			69.9	0.912	0.554	0.0113 J
CP22-PMW08B	40-50	9/10/2014	< 0.0250	< 0.0250	99.2			74.5	0.624	1.06	< 0.0100
CP22-PMW08B	40-50	11/7/2014	< 0.0250	0.100	96.4			74.4	0.335	1.02	< 0.0100
CP22-PMW08B	40-50	12/16/2014	< 0.0250	0.0613 J	101			73.1	0.456	0.886	< 0.00729
CP22-PMW08B	40-50	1/7/2015	< 0.0250	0.0776 J	90.3			73.2	0.600	1.13	< 0.0100
CP22-PMW08B	40-50	9/12/2017	< 0.10	< 0.10	100	170	15.9	64.0	< 0.100	1.49	0.0291
CP22-PMW08B	40-50	1/19/2018			110						< 0.0100
CP22-PMW08B	40-50	9/12/2018			99						< 0.0100
CP22-PMW09B	40-50	6/19/2014	<0.025 J	0.0486 J	97.5			75.6	5.79	0.923	0.012 J
CP22-PMW09B	40-50	9/11/2014	< 0.0250	< 0.0250	86.6			68.6	2.02	0.999	< 0.0100
CP22-PMW09B	40-50	11/7/2014	< 0.0250	0.0952 J	92.5			75.7	5.26	1.03	< 0.00787
CP22-PMW09B	40-50	12/16/2014	< 0.0250	0.0651 J	99.1			73.9	0.968	0.980	< 0.0602
CP22-PMW09B	40-50	1/7/2015	< 0.0250	0.0771 J	96.3			75.7	5.08	1.27	< 0.00954
CP22-PMW09B	40-50	9/12/2017	< 0.10	< 0.10	98	170	16.7	68.9	< 0.100	1.62	0.0909
CP22-PMW10B	36-46	6/17/2014	< 0.0250	0.0510 J	119			60.7	0.692	0.204	0.0110 J
CP22-PMW10B	36-46	9/11/2014	< 0.0250	< 0.0250	<1.06			126	2.12	1.87	0.169
CP22-PMW10B	36-46	11/7/2014	< 0.0250	0.134	0.649			73.4	0.807	0.496	< 0.0227
CP22-PMW10B	36-46	12/18/2014	< 0.0250	0.0585 J	< 0.695			65.5	0.706	0.563	< 0.0151
CP22-PMW10B	36-46	1/7/2015	< 0.0250	0.0663 J	< 0.605			63.9	1.51	0.554	< 0.0137
CP22-PMW10B	36-46	9/12/2017	< 0.10	< 0.10	3.3	160	4.12	17.9	< 0.100	0.0423	0.0514
CP22-PMW10B	36-46	1/19/2018			1.6						< 0.0100
CP22-PMW10B	36-46	9/12/2018			<1.0						< 0.0100
	Grab-Groundwater Samples										
CP22-HP01	31-33	9/12/2018									0.122 J

22/23 Area Marine Corps Base Camp Pendleton, California

						Cor	ncentration (mg/L)			
Sample	Sample	Sample		Ani	ions				Cations		
Location	Depth (ft bgs)	Date	Nitrite	Nitrate	Sulfate	Chloride	Silicon	Calcium	Iron	Manganese	Zinc
CP22-HP01-D	31-33	9/12/2018									<0.0100 UJ
CP22-HP01	35-37	9/14/2017	< 0.10	< 0.10	93	170	14.4	69.4	< 0.100	0.739	< 0.0100
CP22-HP01	39-41	9/14/2017	< 0.10	< 0.10	99	170	9.14	74.3	0.141	0.867	0.0275
CP22-HP01	39-41	9/12/2018									0.808
CP22-HP02	31-33	9/12/2018									0.378
CP22-HP02	35-37	9/12/2017	< 0.10	< 0.10	97	160	13.8	65.9	< 0.100	0.792	0.0333
CP22-HP02	35-37	9/12/2018									< 0.0100
CP22-HP02	39-41	9/12/2018									< 0.0100
CP22-HP02	43-45	9/12/2017					5.87	57.8	< 0.100	0.357	0.0310
CP22-HP03	31-33	9/12/2018									0.0136
CP22-HP03	35-37	9/14/2017	< 0.10	< 0.10	85	170	8.90	41.2	0.594 J	0.368	0.0520
CP22-HP03	35-37	9/12/2018									< 0.0100
CP22-HP03	39-41	9/14/2017	< 0.10	< 0.10	65	180	4.20	58.2	< 0.100	0.518	0.0101
CP22-HP03	43-45	9/14/2017	< 0.10	< 0.10	95	170	12.6	78.4	0.169	1.50	0.0333
CP22-HP04	31-33	9/13/2018									< 0.0100
CP22-HP04	35-37	9/11/2017					8.13	34.0	< 0.100	0.414	0.340
CP22-HP04	35-37	9/13/2018									< 0.0100
CP22-HP04-D	35-37	9/13/2018									< 0.0100
CP22-HP04	39-41	9/11/2017					4.39	36.4	< 0.100	0.223	0.0901
CP22-HP04	39-41	9/13/2018									0.0570
CP22-HP04	43-45	9/11/2017	< 0.10	< 0.10	92	170	10.5	65.5	< 0.100	1.04	0.294
CP22-HP05	31-33	9/13/2018									< 0.0100
CP22-HP05	35-37	9/13/2018									< 0.0100
CP22-HP05	39-41	9/11/2017	< 0.10	< 0.10	80	170	11.9	68.7	< 0.100	1.15	0.0467
CP22-HP05	39-41	9/13/2018									< 0.0100
CP22-HP06	35-37	9/13/2017	< 0.10	< 0.10	80	170	11.7	35.4	< 0.100	0.415	0.0100
CP22-HP06	35-37	9/13/2018									< 0.0100
CP22-HP06	39-41	9/13/2018									< 0.0100
CP22-HP06	43-45	9/13/2017	< 0.10	< 0.10	93	160	13.2	71.2	< 0.100	1.53	0.0170
CP22-HP07	31-33	9/13/2018									< 0.0100

 $D: \label{lem:condition} D: \label{lem:condi$

Geosyntec Consultants

22/23 Area Marine Corps Base Camp Pendleton, California

						Cor	centration (mg/L)			
Sample	Sample	Sample		Ani	ions				Cations		
Location	Depth (ft bgs)	Date	Nitrite	Nitrate	Sulfate	Chloride	Silicon	Calcium	Iron	Manganese	Zinc
CP22-HP07	35-37	9/11/2017	< 0.10	< 0.10	91	180	9.23	55.1	< 0.100	0.360	0.0400
CP22-HP07	35-37	9/13/2018									< 0.0100
CP22-HP07	39-41	9/12/2017	< 0.10	< 0.10	6.5	150	9.78	39.7	< 0.100	1.08	0.109
CP22-HP07	39-41	9/13/2018									0.0104
CP22-HP07	43-45	9/11/2017	< 0.10	< 0.10	99	170	10.8	65.2	< 0.100	0.942	0.0743
CP22-HP08	31-33	9/14/2018									< 0.0100
CP22-HP08	35-37	9/13/2017	< 0.10	< 0.10	90	160	13.7	56.6	< 0.100	0.501	< 0.0100
CP22-HP08	35-37	9/14/2018									< 0.0100
CP22-HP08-D	35-37	9/14/2018									< 0.0100
CP22-HP08	39-41	9/14/2018									< 0.0100
CP22-HP08-D	39-41	9/14/2018									< 0.0100
CP22-HP08	43-45	9/13/2017	< 0.10	< 0.10	95	160	13.7	68.1	< 0.100	1.50	< 0.0100
CP22-HP08-D	43-45	9/13/2017	< 0.10	< 0.10	95	160	13.3	63.4	< 0.100	1.46	0.0133
CP22-HP09	35-37	9/12/2017	< 0.10	< 0.10	96	150	12.7	69.9	< 0.100	0.708	0.0240
CP22-HP09	35-37	9/14/2018									< 0.0100
CP22-HP09	39-41	9/12/2017					4.63	53.1	< 0.100	0.326	0.0236
CP22-HP09	43-45	9/12/2017	< 0.10	< 0.10	85	150	11.5	62.1	< 0.100	0.949	0.0411
CP22-HP10	35-37	9/12/2017	< 0.10	< 0.10	48	160	11.5	66.8	< 0.100	0.691	0.0471
CP22-HP10	35-37	9/14/2018									< 0.0100
CP22-HP10	39-41	9/12/2017	< 0.10	< 0.10	84	150	14.2	67.6	< 0.100	1.22	0.0308
CP22-HP10	39-41	9/14/2018									< 0.0100
CP22-HP10	43-45	9/12/2017	< 0.10	< 0.10	86	150	9.57	58.0	< 0.100	0.916	0.0147 J
CP22-HP10-D	43-45	9/12/2017	< 0.10	< 0.10	84	150	9.61	61.1	< 0.100	0.843	0.0286 J
CP22-HP11	35-37	9/13/2017	< 0.10	< 0.10	75	160	10.3	39.3	< 0.100	0.426	< 0.0100
CP22-HP11	35-37	9/14/2018									< 0.0100
CP22-HP11	39-41	9/13/2017	< 0.10	< 0.10	82	150	11.3	62.3	< 0.100	1.01	0.0217
CP22-HP11	39-41	9/14/2018									< 0.0100
CP22-HP11	43-45	9/13/2017	< 0.10	< 0.10	91	150	14.4	67.5	< 0.100	1.39	0.0141
CP22-HP12	31-33	9/14/2018									< 0.0100
CP22-HP12	35-37	9/12/2017	< 0.10	< 0.10	66	160	13.8	57.1	< 0.100	0.410	0.0257

 $D: \label{lem:condition} D: \label{lem:condi$

22/23 Area

Marine Corps Base Camp Pendleton, California

			Concentration (mg/L)										
Sample	Sample	Sample		Ani	ions				Cations				
Location	Depth (ft bgs)	Date	Nitrite	Nitrate	Sulfate	Chloride	Silicon	Calcium	Iron	Manganese	Zinc		
CP22-HP12-D	35-37	9/13/2017	< 0.10	< 0.10	69	160	9.60	56.5	< 0.100	0.518	0.0183		
CP22-HP12	39-41	9/13/2017	< 0.10	< 0.10	61	150	8.56	47.5	< 0.100	0.933	0.0110		
CP22-HP12-D	39-41	9/13/2017	< 0.10	< 0.10	60	150	10.4	55.3	< 0.100	1.13	0.0127		
CP22-HP12	39-41	9/14/2018									< 0.0100		

Notes:

ft bgs = feet below ground surface

mg/L = milligrams per liter

D = duplicate sample

NS = Not sampled due to insufficient groundwater quantity

<# - Analyte not detected above the laboratory reporting limit.

Sample depths for monitoring wells represent the length of the well screen.

J = Result is estimated based on data qualification

UJ = Analyte was not detected above the reported sample quantification limit. However, the reported quantification limit is approximate and may or may not represent the actual limit of quantification necessary to accurately and precisely measure the analyte in the sample.

Table 13: Soil XRF Results - Zinc

22/23 Area

Marine Corps Base Camp Pendleton California

	Location		IP02			IP02E			IP02W			IP08			IP08W			IP08E			IP08N	
Lateral	Distance from IP	1 ft	3 ft	5 ft	1 ft	3 ft	5 ft	1 ft	3 ft	5 ft	1 ft	3 ft	5 ft	1 ft	3 ft	5 ft	1 ft	3 ft	5 ft	1 ft	3 ft	5 ft
	Direction		North			East			West			South			West			East			North	
	Date Drilled		Jan-18			Sep-18			Sep-18			Jan-18			Sep-18			Sep-18			Sep-18	
	BG (~20 ft)	61				73					58						81					
	34 ft bgs																			154	124	
	35 ft bgs	64	38	34	61	80	74	58	57	57	39	38	63	81	64	88	67	63	79	120	144	85
	36 ft bgs	77	31	35	51	83	50	56	60	68	45	42	56	74	61	86	63	56	78	75	88	80
	37 ft bgs	39	37	40	64	73	46	81	63	60	42	41	58	76	61	75	72	69	68	79	72	86
<u> 20</u>	38 ft bgs	37	85	41	66	58	60	64	68	53	42	50	53	90	84	60	56	107	53	97	332	44
3/kg	39 ft bgs	43	44	41	75	59	50	80	63	52	40	234	41	142	73	63	52	83	51	70	117	43
(mg/kg)	40 ft bgs	51	45	43	71	50	54	70	67	58	46	561	39	92	72	56	58	85	58	65	81	39
Zinc	41 ft bgs	50	38	38	63	52	49	60	80	59	46	2,457	38	66	64	75	60	79	58	47	90	53
1Zi	42 ft bgs	55	47	35	53	50	76	55	81	55	53	77	47	57	56	56	63	97	63	46	54	64
Total	43 ft bgs	63	49	75	51	48	48	64	55	54	53	6,608	35	57	58	51	56	74	52	44	55	55
H	44 ft bgs	43	61	59	54	82	58	57	55	49	58	2,766	51	57	51	54	70	65	57	43	46	56
	45 ft bgs	41	63	49	56	57	57	58	58	49	52	6,194	50	52	67	56	63	63	59	44	53	59
	46 ft bgs											44										
	47 ft bgs											43										
	48 ft bgs											52										
	49 ft bgs											55										

Notes:

ft - feet

ft bgs - feet below ground surface

mg/kg - milligrams per kilogram

BG - background sample, taken from 20 feet below ground surface

IP - injection point

Table 14: Soil Analytical Results - Zinc

22/23 Area

Marine Corps Base Camp Pendleton, California

	Sample	Ι	Concentration (mg/kg)
Sample Location	Depth (ft bgs)	Sample Date	Zinc
IP02-1	35	1/17/2018	82.7
IP02-1	36	1/17/2018	71.7
IP02-1	43	1/17/2018	81.0
IP02-3	38	1/17/2018	122
IP02-3	44	1/17/2018	73.6
IP02-3	45	1/17/2018	69.5
IP02-5	43	1/17/2018	74.4
IP02-5	44	1/17/2018	65.1
IP02-5	45	1/17/2018	53.3
IP02E-1	38	9/17/2018	53.2
IP02E-1	41	9/17/2018	36.6
IP02E-1	45	9/17/2018	42.7
IP02E-3	36	9/17/2018	98.7
IP02E-3	40	9/17/2018	36.4
IP02E-3	44	9/17/2018	59.1
IP02E-5	35	9/17/2018	49.4
IP02E-5	38	9/17/2018	41.5
IP02E-5	42	9/17/2018	66.3
IP02W-1	37	9/18/2018	65.6
IP02W-1	39	9/18/2018	63.4
IP02W-1	43	9/18/2018	46.6
IP02W-3	38	9/18/2018	65.0
IP02W-3	42	9/18/2018	47.4
IP02W-3	45	9/18/2018	46.1
IP02W-5	36	9/17/2018	45.4
IP02W-5	41	9/17/2018	45.6
IP02W-5	45	9/17/2018	41.9
IP08-1	42	1/17/2018	48.9
IP08-1	43	1/17/2018	69.4
IP08-1	44	1/17/2018	71.3
IP08-3	43	1/17/2018	18,100
IP08-3	44	1/17/2018	20,000
IP08-3	45	1/17/2018	1,870
IP08-5	35	1/17/2018	75.6
IP08-5	36	1/17/2018	79.3
IP08-5	37	1/17/2018	69.1
IP08E-1	35	9/19/2018	72.2
IP08E-1	37	9/19/2018	43.1
IP08E-1	44	9/19/2018	44.0
IP08E-3	38	9/18/2018	159
IP08E-3	40	9/18/2018	72.5

Table 14: Soil Analytical Results - Zinc

22/23 Area

Marine Corps Base Camp Pendleton, California

G 1	Sample	g ,	Concentration (mg/kg)
Sample Location	Depth (ft bgs)	Sample Date	Zinc
IP08E-3	42	9/18/2018	65.2
IP08E-5	38	9/19/2018	42.6
IP08E-5	40	9/19/2018	44.5
IP08E-5	42	9/19/2018	43.7
IP08N-1	34	9/19/2018	82.2
IP08N-1	36	9/19/2018	75.8
IP08N-1	38	9/19/2018	84.0
IP08N-3	34	9/19/2018	67.4
IP08N-3	35	9/19/2018	59.2
IP08N-3	38	9/19/2018	272
IP08N-3	41	9/19/2018	75.1
IP08N-5	35	9/19/2018	71.2
IP08N-5	37	9/19/2018	68.2
IP08N-5	42	9/19/2018	48.9
IP08W-1	35	9/18/2018	65.0
IP08W-1	39	9/18/2018	117
IP08W-1	40	9/18/2018	67.3
IP08W-3	35	9/18/2018	98.0
IP08W-3	38	9/18/2018	70.1
IP08W-3	40	9/18/2018	53.4
IP08W-3	45	9/18/2018	57.1
IP08W-5	35	9/18/2018	75.4
IP08W-5	36	9/18/2018	75.5
IP08W-5	41	9/18/2018	51.8

Notes:

ft bgs = feet below ground surface mg/kg = milligrams per kilogram

Table 16a Life-Cycle Cost Estimate - Zero Valent Zinc Injections

ESTCP Project ER-201628

			Capit	tal Costs		
1. Capita	l Costs	Quantity	Unit	Unit Cost	Amount	Notes
1.a	Treatability Study	1	LS	\$30,000	\$30,000	Based on treatability study costs presented in Cost Model.
1.b	Shallow Monitoring Well Installation and Development	12	well	\$10,000		Engineering estimate. Assumes 10 shallow (35-45 feet below ground surface) monitoring wells will be installed to monitor conditions within and downgradient of injection area.
1.c	Deep Monitoring Well Installation and Development	12	well	\$15,000	\$180,000	Engineering estimate. Assumes 10 deep (50-60 feet below ground surface) monitoring wells will be installed to monitor conditions within and downgradient of injection area.
1.d	Baseline Monitoring	29	well	\$1,500	\$43,500	Engineering estimate. Assumes 20 wells will be sampled and analyzed for TCP, anions, cations, and propene. Includes QA/QC samples (one duplicate, one equipment blank, one trip blank).
1.e	Zero Valent Zinc	52,800	pound	\$2	\$105,600	Assumes injection of 52,800 pounds of zero valent zinc. Material cost is \$2.00 per pound, including shipping, based on costs presented in Cost Model.
1.f	Injection Subcontractor Mobilization	1	LS	\$10,000	\$10,000	Based on costs presented in Cost Model.
1.g	Injection Subcontractor Unit Rate	112	injections	\$1,500	\$168,000	Based on costs presented in Cost Model.
1.h	Waste Disposal	1	LS	\$10,000	\$10,000	Engineering estimate. Assumes waste from well installation and well development will be classified as non-hazardous and minimal surfacing will occur during injections.
1.i	Implementation Report	1	report	\$20,000	\$20,000	Assume baseline monitoring results and field implementation will be documented in one report for submittal to overseeing regulatory agencies.
		Subtotal C	apital Costs:		\$688,000	
	Project Ma	nagement2	6%		\$41,000	
	Remed	ial Design ²	12%		\$83,000	
	Construction Ma	nagement ²	8%		\$55,000	
	C	ontingency	10%		\$69,000	
		Total Ca	pital Costs:		\$936,000	

Project WR2274 Page 1 of 2

Table 16a Life-Cycle Cost Estimate - Zero Valent Zinc Injections

ESTCP Project ER-201628

				0& 1	M Costs		
2. Mainte	nance Injections (Year 15)		Quantity	Unit	Unit Cost	Amount	Notes
2.a	Zero Valent Zinc		26,400	pound	\$2	\$52,800	Assumes maintenance injection of 26,400 pounds of zero valent zinc in year 15. Material cost is \$2.00 per pound, including shipping, based on costs presented in Cost Model.
2.b	Injection Subcontractor Mobilization		1	LS	\$10,000	\$10,000	Based on costs presented in Cost Model.
2.c	Injection Subcontractor Unit Rate		56	injections	\$1,500		Based on costs presented in Cost Model.
		Subtotal Maintenance In	jection Co	st (Year 15):		\$147,000	
		Project Mar	nagement ²	8%		\$12,000	
			al Design ²	15%		\$22,000	
		Construction Mar	nagement ²	10%		\$15,000	
		Co	ntingency	10%		\$15,000	
		Maintenance In	jection Co	st (Year 15):		\$211,000	
			NPV Di	scount rate ³ :		3.6%	
		Total Maintenance Injo	ection Cos	t (Year 15):		\$121,000	
3. Annual	Monitoring and Reporting (Years 1-30)		Quantity	Unit	Unit Cost	Amount	
3.a	Annual Monitoring		29	well	\$1,500	\$43,500	Engineering estimate. Assumes 20 wells will be sampled and analyzed for TCP, anions, cations, and propene. Includes QA/QC samples (one duplicate, one equipment blank, one trip blank).
3.b	Analysis and Reporting		1	event/year	\$10,000		Engineering estimate. Assumes annual reports documenting groundwater remedial activities and results will be submitted.
		Sub	otal Moni	toring Costs:		\$53,500	
		Project Mar	nagement ²	10%		\$5,000	
			ntingency	10%		\$5,000	
		O&M Costs	Per Year (Years 1-30):		\$63,500	
			NPV Di	scount rate ³ :		3.6%	
Total Monitoring Costs (Years 1-						\$1,154,000	
Total O&M Cost						\$1,275,000	
Total costs -30%						\$1,560,000	
	Total Estimated Life Cycle					\$2,220,000	
			Total	costs +50%		\$3,330,000	

Notes:

- 1. "Engineering estimate" indicates that unit or annual cost is based on engineering judgment or data from a previous engineering project.
- 2. "A Guide to Developing and Documenting Remedial Alternative Cost Estimates During the Feasibility Study", USEPA, 2000, Exhibits 5-6 and 5-8 in Section 5.5, were used to estimate capital costs. Professional and technical services costs for capital costs are shown below.

	<\$100K	\$100K-\$500K	\$500K-\$2M	\$2M-\$10M	>\$10M
Capital Cost Element	(%)	(%)	(%)	(%)	(%)
Project Management	10	8	6	5	5
Remedial Design	20	15	12	8	6
Construction Management	15	10	8	6	6

3. "Discount Rates for Cost Effectiveness Analysis of Federal Programs", Federal Office of Management and Budget, 2018, Appendix C of OMB Circular A-94, were used to forecast O&M Costs at net present value.

Abbreviations:

Cost Model Cost Model for zero-valent zinc injection program included in Table 14 of Final Report.

LS lump-sum
NPV net present value
O&M operation and maintenance
OMB Office of Management and Budget
QA/QC quality assurance/quality control
TCP 1,2,3-trichloropropane

USEPA United States Environmental Protection Agency

Project WR2274 Page 2 of 2

Table 16b Life-Cycle Cost Estimate - Zero Valent Iron Injections

ESTCP Project ER-201628

			Capit	tal Costs		
1. Capita	al Costs	Quantity	Unit	Unit Cost	Amount	Notes
1.a	Treatability Study	1	LS	\$30,000	\$30,000	Based on treatability study costs presented in Cost Model.
1.b	Shallow Monitoring Well Installation and Development	12	well	\$10,000	\$120,000	Engineering estimate. Assumes 10 shallow (35-45 feet below ground surface) monitoring wells will be installed to monitor conditions within and downgradient of injection area.
1.c	Deep Monitoring Well Installation and Development	12	well	\$15,000	\$180,000	Engineering estimate. Assumes 10 deep (50-60 feet below ground surface) monitoring wells will be installed to monitor conditions within and downgradient of injection area.
1.d	Baseline Monitoring	29	well	\$1,500	\$43,500	Engineering estimate. ¹ Assumes 20 wells will be sampled and analyzed for TCP, anions, cations, and propene. Includes QA/QC samples (one duplicate, one equipment blank, one trip blank).
1.e	Zero Valent Iron	52,800	pound	\$0.60	\$31,680	Assumes injection of 52,800 pounds of zero valent iron. Material cost is \$0.60 per pound, including shipping, based on discussion with vendors.
1.f	Injection Subcontractor Mobilization	1	LS	\$10,000	\$10,000	Based on costs presented in Cost Model.
1.g	Injection Subcontractor Unit Rate	112	injections	\$1,500	\$168,000	Based on costs presented in Cost Model.
1.h	Waste Disposal	1	LS	\$10,000	\$10,000	Engineering estimate. Assumes waste from well installation and well development will be classified as non-hazardous and minimal surfacing will occur during injections.
1.i	Implementation Report	1	report	\$20,000	\$20,000	Assume baseline monitoring results and field implementation will be documented in one report for submittal to overseeing regulatory agencies.
		Subtotal C	apital Costs:		\$614,000	
	Project M	anagement ²	6%		\$37,000	
	•	lial Design ²	12%		\$74,000	
	Construction Ma	anagement ²	8% 10%		\$49,000 \$61,000	
		Contingency Total Co	pital Costs:		\$835,000	

Project WR2274 Page 1 of 2

Table 16b Life-Cycle Cost Estimate - Zero Valent Iron Injections

ESTCP Project ER-201628

				0 &1	A Costs		
2. Mainte	nance Injections (Year 15)		Quantity	Unit	Unit Cost	Amount	Notes
2.a	Zero Valent Zinc		26,400	pound	\$0.60	\$15,840	Assumes maintenance injection of 26,400 pounds of zero valent iron in year 15. Material cost is \$0.60 per pound, including shipping, based on discussion with vendors.
2.b	Injection Subcontractor Mobilization		1	LS	\$10,000	\$10,000	Based on costs presented in Cost Model.
2.c	Injection Subcontractor Unit Rate		56	injections	\$1,500		Based on costs presented in Cost Model.
		Subtotal Maintenance In	jection Co	st (Year 15):	•	\$110,000	•
		Project Ma	nagement ²	8%		\$9,000	
		al Design ²	15%		\$17,000		
		Construction Ma	nagement ²	10%		\$11,000	
		Co	ntingency	10%		\$11,000	
		Maintenance In	jection Co	st (Year 15):		\$158,000	
			NPV Di	scount rate ³ :		3.6%	
		Total Maintenance Inj	ection Cos	t (Year 15):		\$91,000	
3. Annual	Monitoring and Reporting (Years 1-30)		Quantity	Unit	Unit Cost	Amount	
3.a	Annual Monitoring		29	well	\$1,500	\$43,500	Engineering estimate. Assumes 20 wells will be sampled and analyzed for TCP, anions, cations, and propene. Includes QA/QC samples (one duplicate, one equipment blank, one trip blank).
3.b	Analysis and Reporting		1	event/year	\$10,000	\$10,000	Engineering estimate. Assumes annual reports documenting groundwater remedial activities and results will be submitted.
		Sul	otal Moni	toring Costs:		\$53,500	
		Project Ma	nagement ²	10%		\$5,000	
			ntingency	10%		\$5,000	
		O&M Costs	Per Year (Years 1-30):		\$63,500	
			NPV Di	scount rate ³ :		3.6%	
Total Monitoring Costs (Years 1-3						\$1,154,000	
Total O&M Costs						\$1,245,000	
Total costs -30%						\$1,460,000	
Total Estimated Life Cycle Cost:				•		\$2,080,000	
			Total	l costs +50%		\$3,120,000	

Notes:

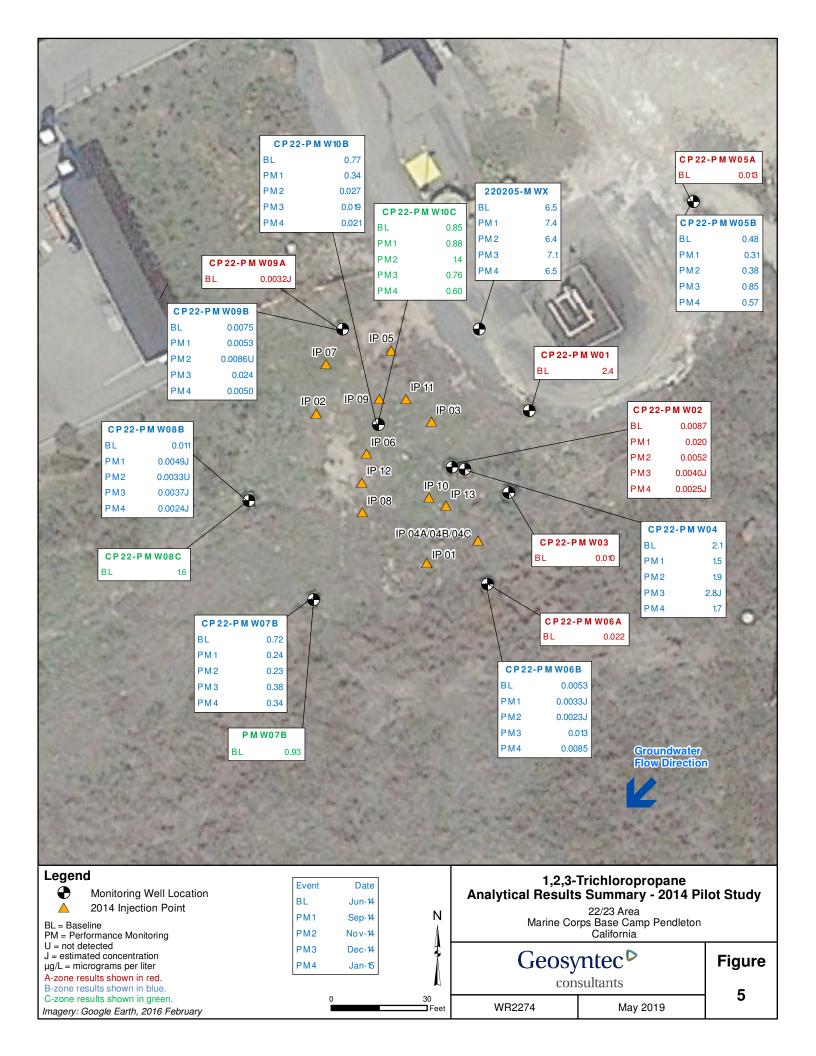
- 1. "Engineering estimate" indicates that unit or annual cost is based on engineering judgment or data from a previous engineering project.
- 2. "A Guide to Developing and Documenting Remedial Alternative Cost Estimates During the Feasibility Study", USEPA, 2000, Exhibits 5-6 and 5-8 in Section 5.5, were used to estimate capital costs. Professional and technical services costs for capital costs are shown below.

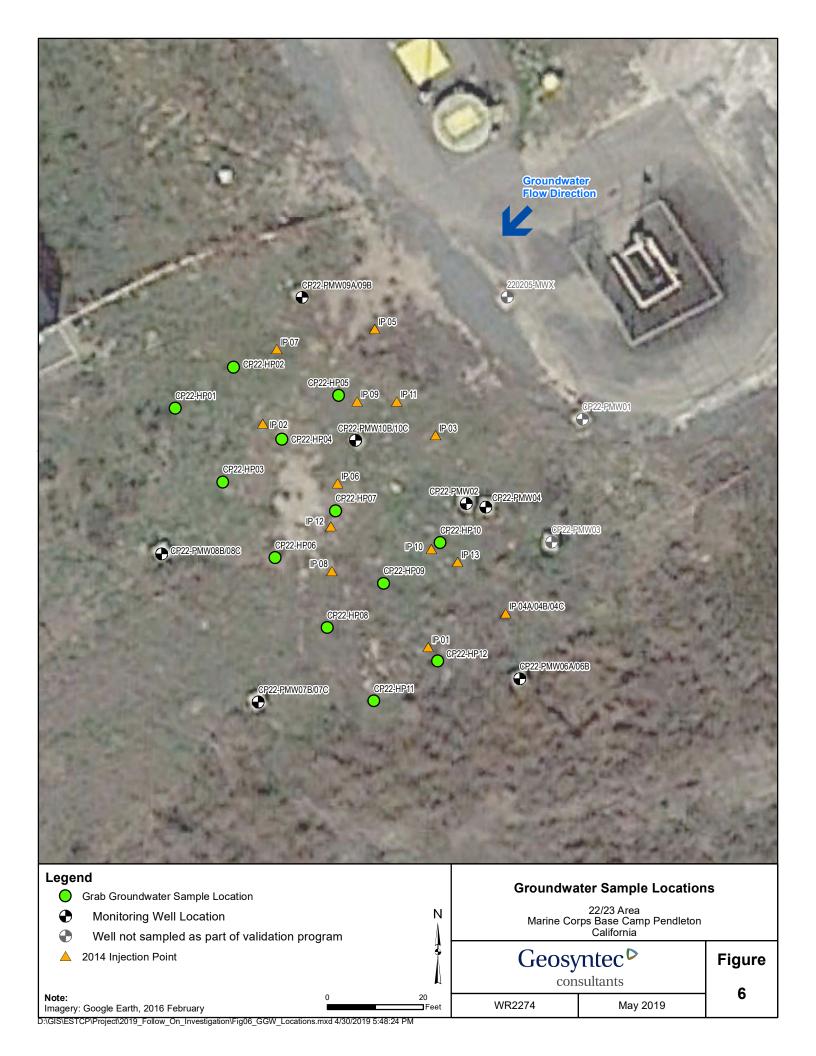
	<\$100K	\$100K-\$500K	\$500K-\$2M	\$2M-\$10M	>\$10M
Capital Cost Element	(%)	(%)	(%)	(%)	(%)
Project Management	10	8	6	5	5
Remedial Design	20	15	12	8	6
Construction Management	15	10	8	6	6

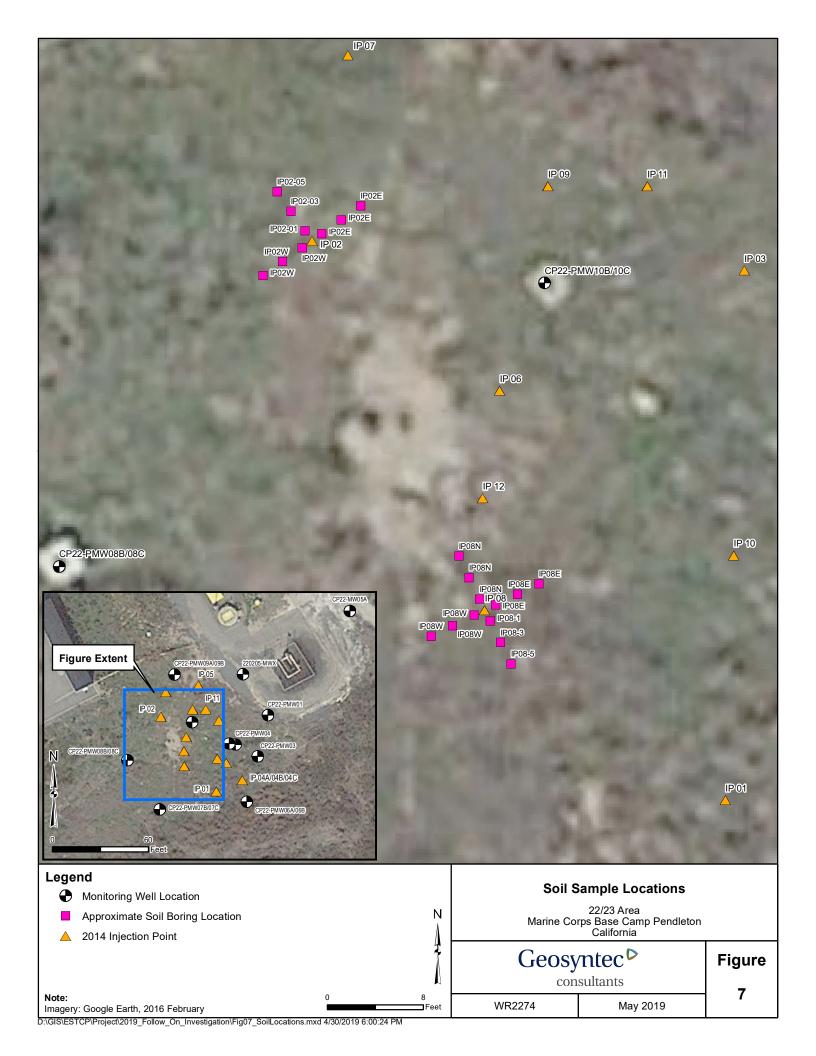
3. "Discount Rates for Cost Effectiveness Analysis of Federal Programs", Federal Office of Management and Budget, 2018, Appendix C of OMB Circular A-94, were used to forecast O&M Costs at net present value.

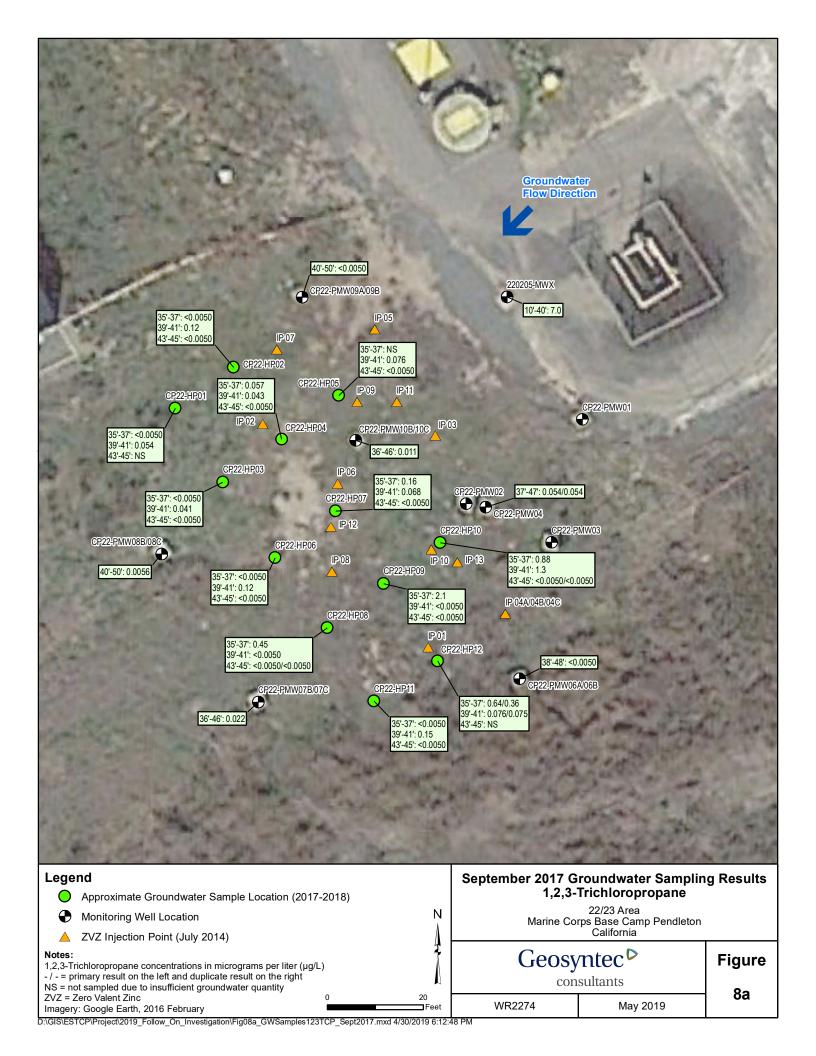
Abbreviations:

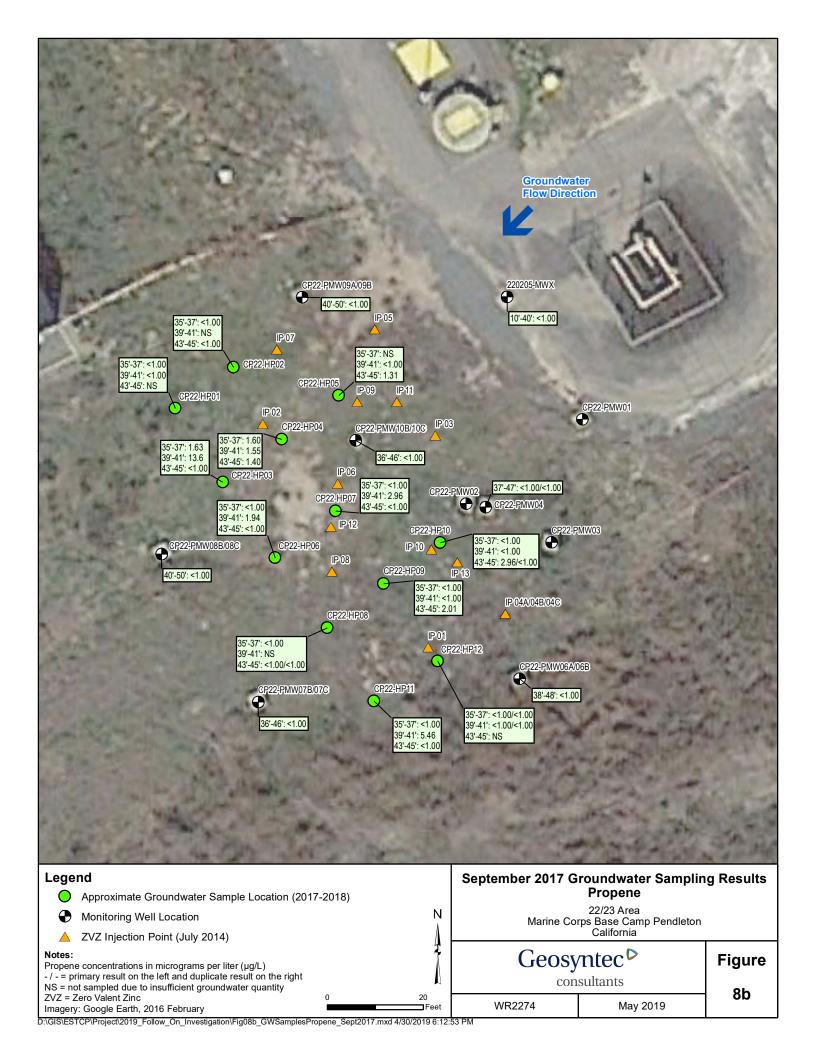
Cost Model Cost Model for zero-valent zinc injection program included in Table 14 of Final Report.

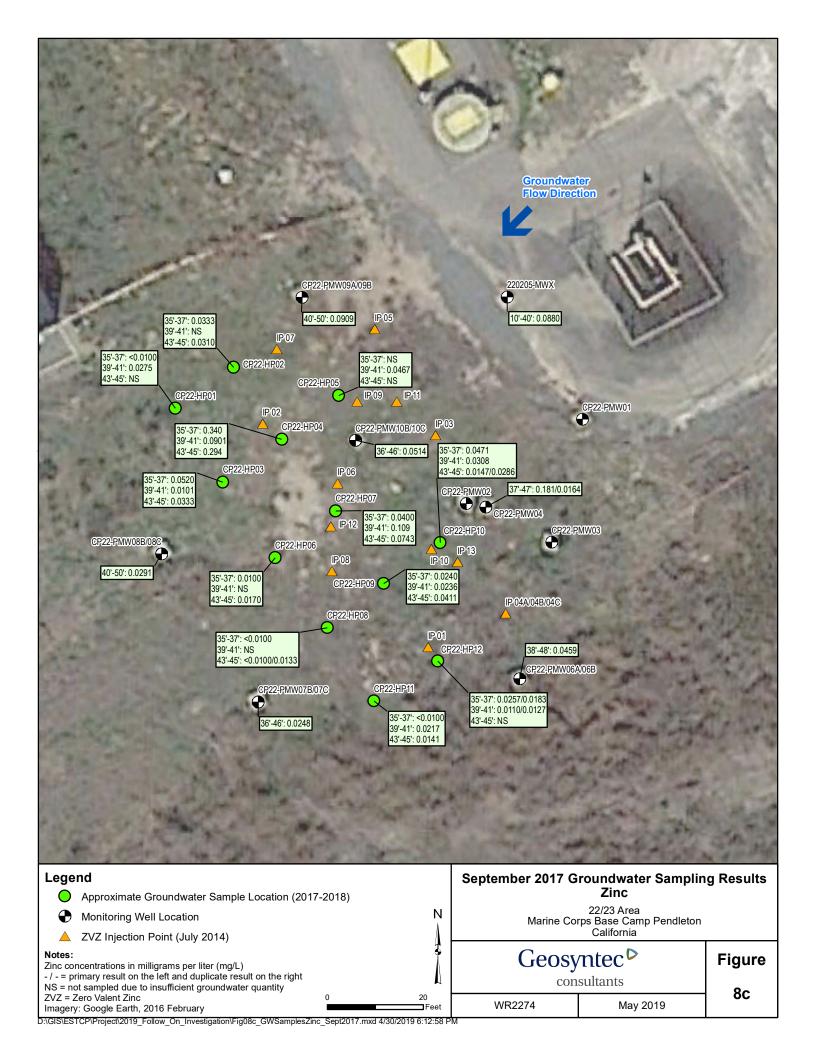

LS lump-sum
NPV net present value
O&M operation and maintenance
OMB Office of Management and Budget
QA/QC quality assurance/quality control
TCP 1,2,3-trichloropropane

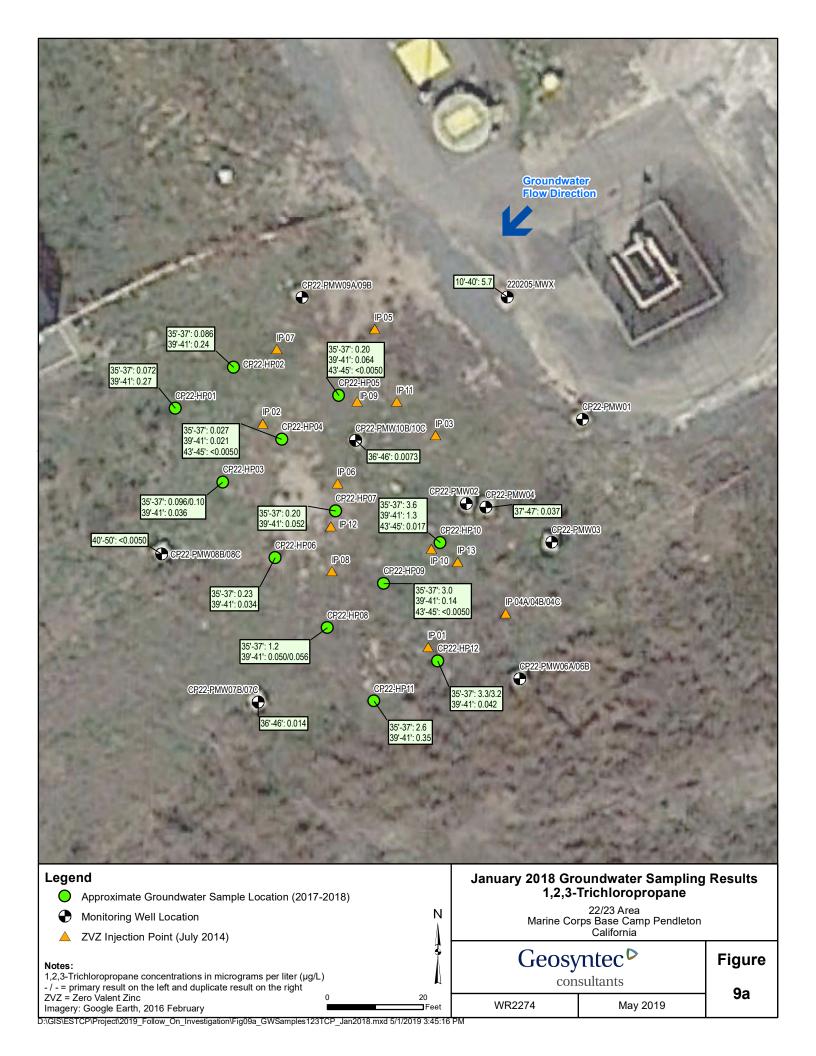

USEPA United States Environmental Protection Agency

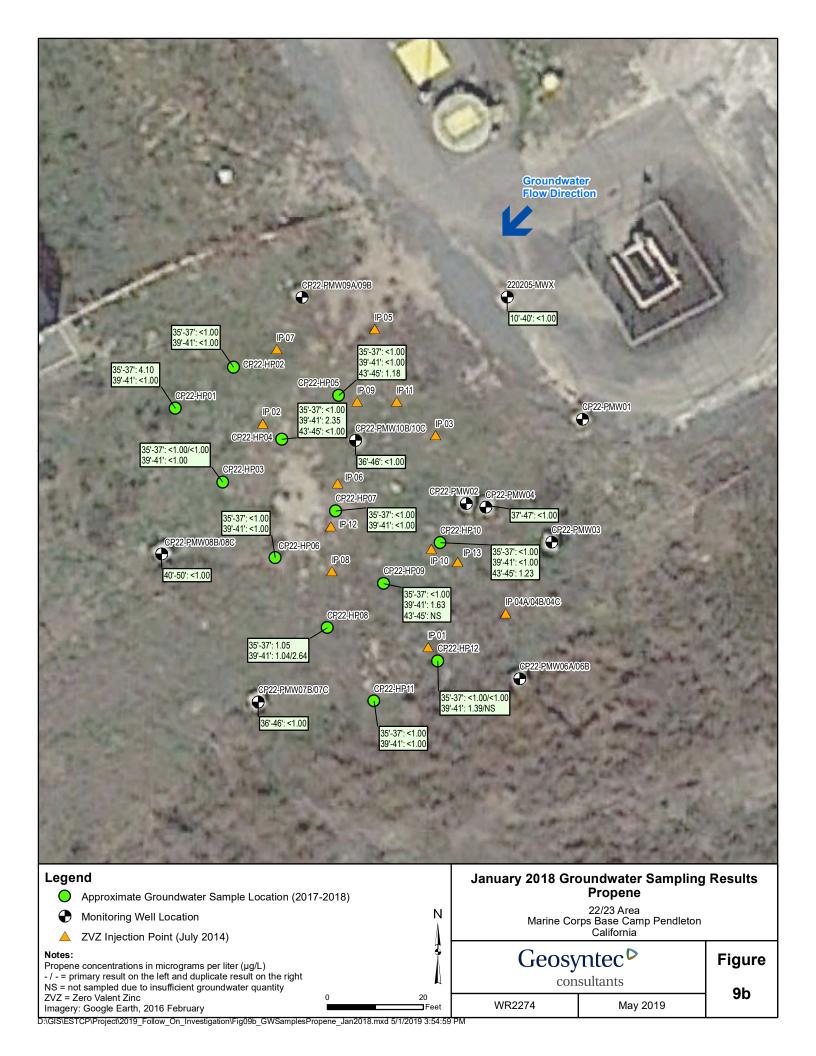

Project WR2274 Page 2 of 2

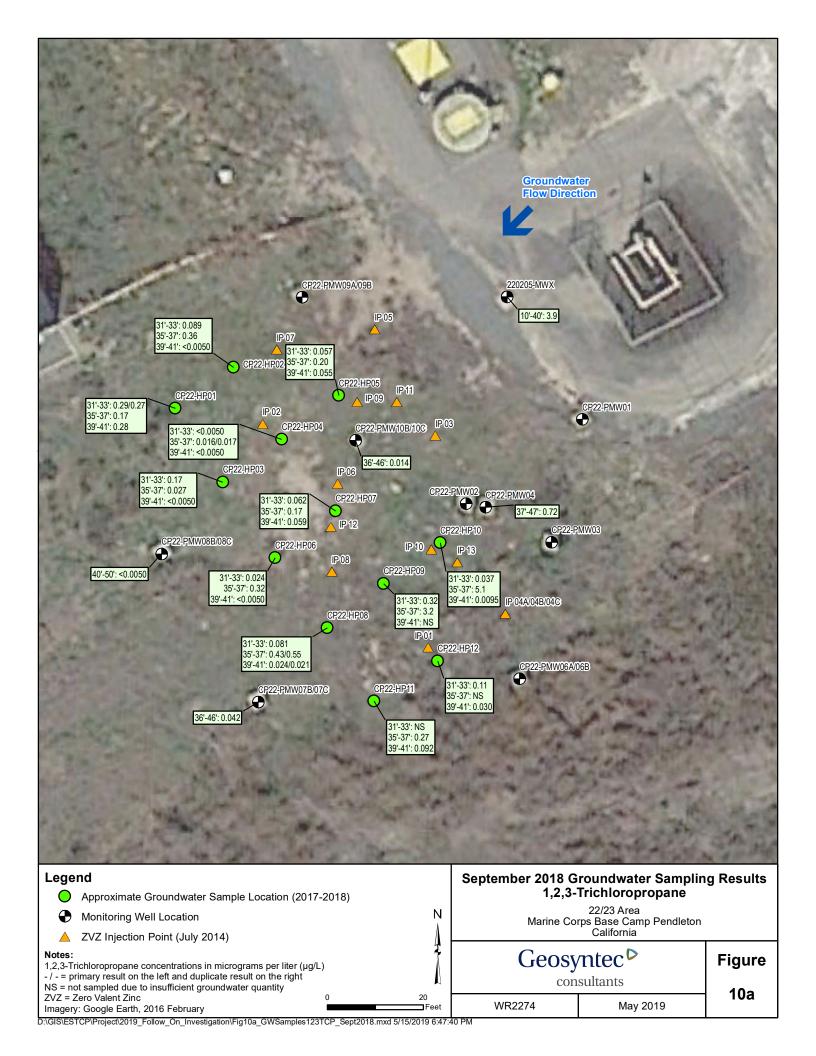

FIGURES

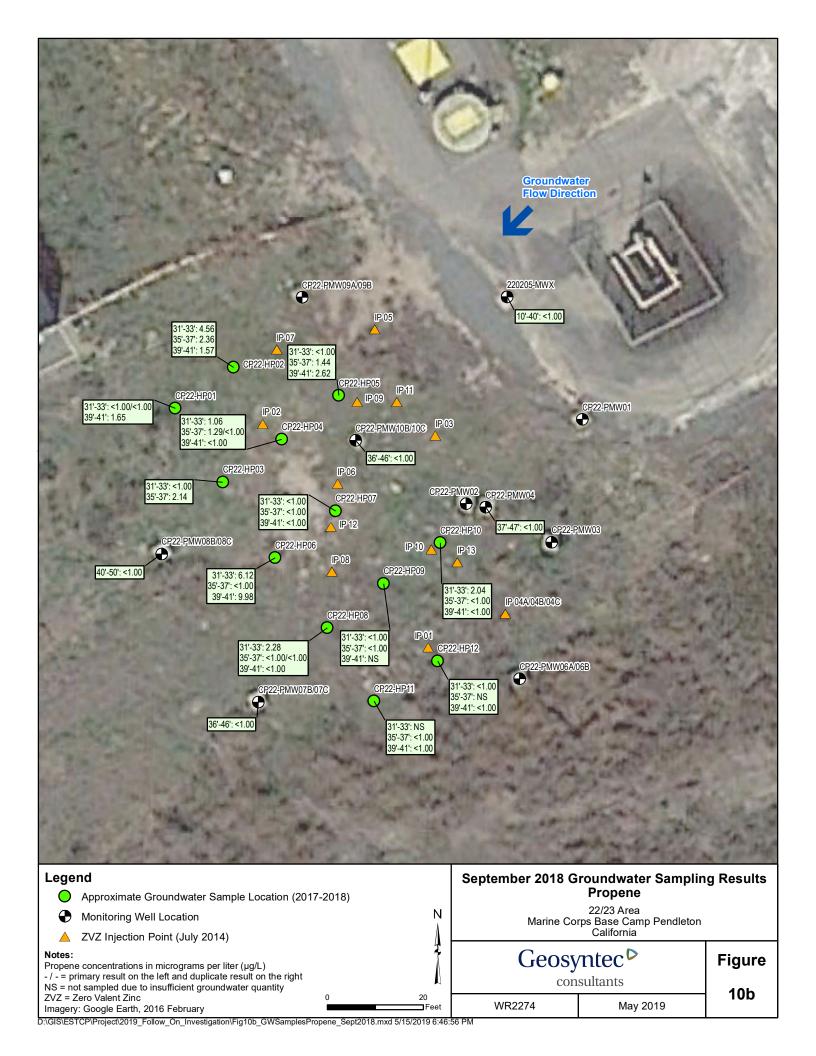


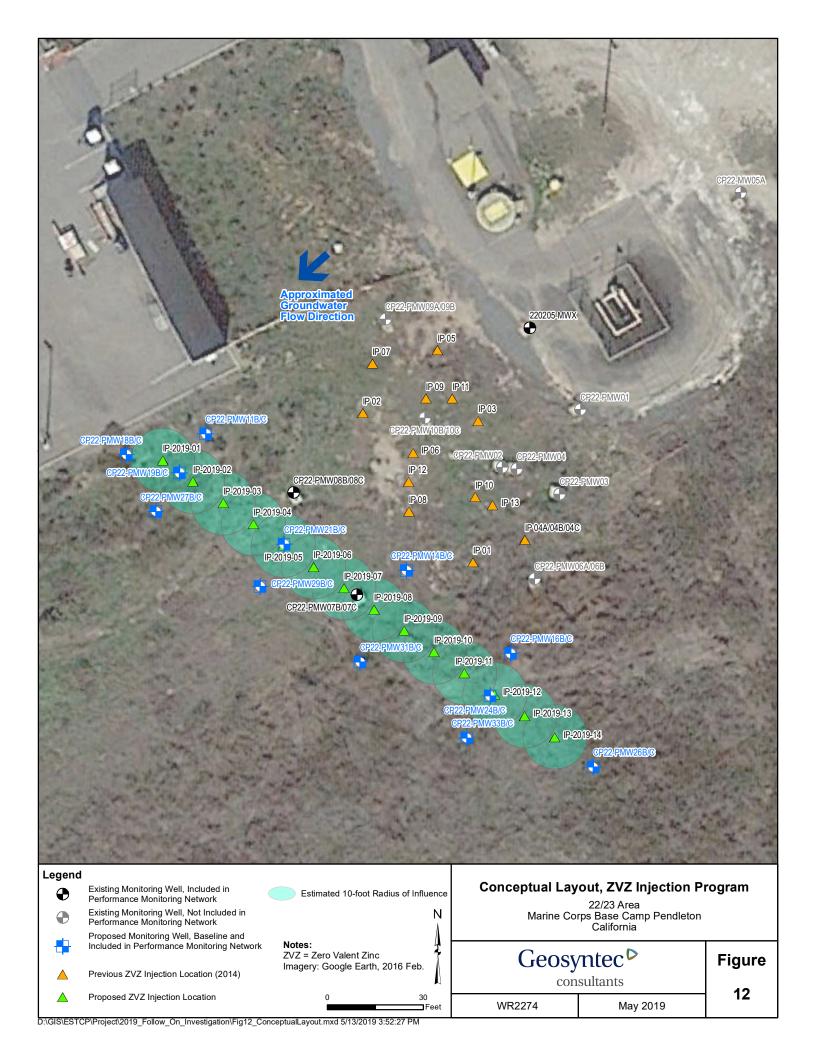












APPENDIX A MONITORING WELL SAMPLING LOGS

WELL GAUGING DATA

Project # 170912-40	Date 09-12-17	Client <u>Cooyntac</u>
Site Goodintee @ Co	imp Pardleton	

w	vell ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
220 M	0205- WX	0813	Ч					4.78	39 <u>.</u> 92	70C	
	m00B	0836	2				-	3,90	50.32		
bwi	M10P	0843	2					5,00	45,90		
bw	22- 12008	0820	2					5.13	50.62	5	
CP2	12- .w04	0848	2					5.77	48.23		
	Basour	1830	2				•	4.31	49.01		
CP:	2:2- .w07B	0826	2					491	46.73	1	
	·								·		
		•									:
	1										
					. · .			•			
		•							•		
							·				
	,		· · · · · · · · · · · · · · · · · · ·								
		· ·								-	
			<u> </u>								

Project #	: 170912	L-KCI		Client: (rlosynte	C				
Sampler:	XC.				Gauging Date: 09-12-17					
Well I.D.	: 22020	5-mw	X	Well Diameter (in.): 2 3 (4) 6 8						
	ll Depth (1			Depth to \	Water (ft.)	: 4.78				
	Free Prod			Thickness			eet):			
Reference		<pvc></pvc>	Grade	Flow Cell						
Purge Methors Sampling M	od:	2" Grundf Dedicated		<u> </u>	Peristaltic P	ump,	Bladder Pump Other			
Start Purge	Time: <u>©913</u>		Flow Rate:	100mg/min			Pump Depth:	<u> Ե</u> և՝		
Time	Temp.	pН	Cond. (mS/cm or (uS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)		
0916	24.0	7,26	12.67	5	0.73	158.6	300	5.06		
0919	23.9	7,26	1259	5	0,58	134.2	600	5,13		
0922	24.0	7.27	1251	H	0.66	1017	900	5,20		
0925	24,4	7.28	1247	Ч	0.72	82.5	1,200	5.26		
0928	24.9	7.31	1247	4	0.76	52.8	1,500	5,29		
0931	25,1	7.30	1248	Ц	0.81	47.2	1,800	5,30		
0934	25.1	7,32	1253	Ц	0.17	41,2	2,100	5,30		
0937	25.2	7.32	1250	Ч	0,75	39,4	2,400	5.30		
					·					
Did well o	lewater?	Yes (No		Amount actually evacuated: 2,400 mg					
Sampling	Time: 09	,40			Sampling	Date: 0	9-12-17			
Sample I.I	D.: 22020	05-ML	υX		Laboratory: Calacience					
Analyzed	for:	TPH-G	BTEX MTB	E ТРН-D	O On					
Equipmen	t Blank I.I	D.:	@ Time		Duplicate					

Project #	: 170912	-HC1		Client: (rewynt				
Sampler:	HC.			Gauging I					
Well I.D.	: cp22-r	mwai	-\	Well Dian	neter (in.)	: (2) 3	3 4 6	8	
Total We	ell Depth (1	ft.): 48	23	Depth to V	Water (ft.)	: 5,77			
Depth to	Free Prod	uct:	-	Thickness	of Free Pi	roduct (fe	eet):		
Referenc		(PVC)	Grade	Flow Cell	Type: ৭৭	SI Pro Ru	لن		
Purge Meth Sampling M		2" Grundf Dedicated	Tubing		Peristaltic F New Tubin	•	Bladder Pump Other		
Start Purge	Time: ১১১১	<u> </u>	Flow Rate: _	100 ml/min		_	Pump Depth:	12'	
Time	Temp.	pН	Cond. (mS/cm or uS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. ormL)	Depth to Water (ft.)	
1341	23.3	7.36	1107	45	095	-72.8	300	5,88	
1344	23.2	7,35	1114	29	0.63	-77.2	ω	5.99	
1347	22.4	7.32	1103	21	0.45	-79,5	900	6.10	
1350	22.3	7.31	1700	17	0.33	-82.4	1,200	6,21	
1353	22.3	7.30	1000	. 14	0.27	-85.3	1,500	6.29	
1356	22.2	7.30	1101	15	0.28	- 2 6.5	1,800	6.36	
1359	22.2	7.30	1103	15 0.27 -88.0 2,100 6					
	•								
						, , , , , , , , , , , , , , , , , , , ,			
Did well o	dewater?	Yes ((No)		Amount a	ctually e	vacuated:		
Sampling	Time: 140	22			Amount actually evacuated: Sampling Date: 09-12-17				
Sample I.	D.:CP22-	+		Laborator	y: Colo	ciónei			
Analyzed	for:	TPH-G	BTEX MTE		0 9000				
Equipmen	t Blank I.I	 D.:	@ Time		Duplicate	I.D.: DU	DP-GW-0912	@ 1415	

Project #	: 17091	2-401		Client: (-ecounto	L			
Sampler:	XC.			I	Date: 0.9-				
	: CP22-P	mwol	0B	Well Diameter (in.): (2) 3 4 6 8					
Total We	ell Depth (ft.) : 49,0) [Depth to Water (ft.): 4.31					
	Free Prod			Thickness of Free Product (feet):					
Referenc		PVC	Grade	Flow Cell		,			
Purge Meth Sampling M	od: lethod:	2" Grundf Dedicated			Peristaltic I New Tubin	•	Bladder Pump Other		
Start Purge	Time: 1150	<u>C</u>	Flow Rate: _	100'			Pump Depth:	+3'	
Time	Temp.	pН	Cond. (mS/cm or (µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)	
1159	25.9	1.43	1000	43	0.89	-112,9	300	5.48	
1202	26,2	7.44	Tool	38	10,1	-114:6	600	5.60	
1205	26.3	7.45	1011	31	1.18	-115.0	900	5.63	
1208	25.4	7.45	1005	58	1.27	-112.6	1,200	5,64	
1211	25,9	7,45	1001	26	1.44	-112.1	1,500	5.64	
1214	26.1	7.46	999	26	1.57	-1119	1,800	5.64	
12.17	26.1	7.47	1002	24	1.56	-111.0	2,100	5.64	
Did well	dewater?	Yes (No	Amount actually evacuated: 2,100 mg					
Sampling	Time: \2	70			Sampling	Date: T	19-12-17		
Sample I.	D.: CP22-	oB		Laborator	ry: Caloci	o onco			
Analyzed	for:	TPH-G	BTEX MTB	E TPH-D	O O On				
Equipmen	t Blank I.I	D.:	@ Time	-	Duplicate	: I.D.:	- readition ()		

Project #	: 170912	L-KC1		Client: 🕒	eosimile	C				
Sampler:	XC			Gauging Date: ้อด-เว-เา						
	:: cp22-1	Pmwo	 76	Well Diameter (in.): 2 3 4 6 8						
	ell Depth (f			Depth to V						
	Free Produ			Thickness			eet):			
Referenc		(PVC)	Grade	Flow Cell						
Purge Meth Sampling M	od:	2" Grundf Dedicated	os Pump		Peristaltic I New Tubin	Pump (Bladder Pump Other			
Start Purge	Time: 1104		Flow Rate: _	100'		***************************************	Pump Depth:	41		
Time	Temp.	pН	Cond. (mS/cm or (uS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)		
1107	23.4	7.45	1188	9	0.52	48.4	300	5.65		
1110	239	7,43	1183	8	0.45	38.5	600	5,90		
1113	24.3	7.46	1191	و	0.41	19.5	900	6,20		
1116	24.2	7.45	1190	·	0.37	13.3	1,200	6.52		
1119	24.1	7.44	1191	4	0.37	11.5	1,500	\$T,v		
1122	24.3	7,44	1186	Ц	0.36	8.5	1,800	6,96		
1125	24,5	7,44	1189	Ц	0,35	6,5	2,100	7.12		
1128	24.5	7,44	1190	4	0,35	53	2,400	7,20		
Did well	dewater?	Yes (Nò,	Amount actually evacuated: 2,400						
Sampling	Time: \\?	51			Sampling Date: 69-12-17					
Sample I.	D.: Y22-	PMW C	 7B		Laborator	ry: Cols	ww			
Analyzed			втех мтв	E TPH-D		Other:	a Sag			
Eguipmen	nt Blank I.I	 D.:	@ Time		Duplicate					

Project #	: 170913	2-KC1		Client: (5.	ecounter	.		
Sampler:	&C			Gauging I	_			-
Well I.D.	:: CP22-	Pmwc	 186	Well Dian	neter (in.)	: ② 3	3 4 6	8
· · · · · · · · · · · · · · · · · · ·	ell Depth (f		· · · · · · · · · · · · · · · · · · ·	Depth to V	Water (ft.)	: 5.13		
Depth to	Free Produ	uct:		Thickness	of Free P	roduct (fe	eet):	
Reference		(PVC)		Flow Cell	Type: Υ	oI Pro P	lus	
Purge Methors Sampling M		2" Grundf Dedicated		•	Peristaltic F New Tubing	-	Bladder Pump Other	D
Start Purge	Time: 1010		Flow Rate: _	100'			Pump Depth: L	15'
Time	Temp.	pН	Cond. (mS/cm or (µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or(mL)	Depth to Water (ft.)
1013	23.1	7.42	1292	18	0.69	-77.0	ω	5.91
1016	22,8	7.40	1276	13	0,51	-81.9	6 ∞	6.28
1019	24.0	7.39	1258	13	0.42	-85.8	900	6.53
1022	23.7	7.39	1262	12	0.39	-85,8	1'500	6.79
1025	24.3	7.36	1239	11	0,37	-82.4	1,500	7,04
1028	24,4	7,36	1239	11	0,37	-819	1,800	7.24
1031	23.7	7.34	1235	10	0,38	-80,5	2,100	T.40
1034	23,7	7.35	1227	10	0.42	8,8~	2,400	7.51
1037	23.7	7,32	1228	9	0,41	-71.5	2,700	7.62
				:				
Did well c	lewater?	Yes C	No	Amount actually evacuated: 2,700				
Sampling	Time:1040	0			Sampling	Date: 00	1-12-17	
Sample I.I	D.: CP22-	PMWOS	8B		Laborator	y: Color	ienco	
Analyzed	for:	ТРН-G	BTEX MTB	BE TPH-D		Other:	2 800	
Equipmen	t Blank I.I) .:	@ Time		Duplicate	I.D.:		

Project #	: 17091	2-401		Client: 5	<u>Dopyrt</u>	<u> </u>			
Sampler:	4C			Gauging I	~				
Well I.D.	: CP22-1	mwc	39B	Well Diameter (in.): 2 3 4 6 8					
Total We	ll Depth (f	ft.) : 50	.32	Depth to V	Vater (ft.)	: 390			
Depth to	Free Produ	uct:		Thickness	of Free P	roduct (fe	eet):		
Reference	ed to:	(PVC)	Grade	Flow Cell	Type:	7SI Pro	5 PQUD		
Purge Metho Sampling M	od: lethod: <	2" Grundf Dedicated			Peristaltic I New Tubin	-	Bladder Pump Other	>	
Start Purge	Time: 125	2	Flow Rate: _	100ml/r	nin		Pump Depth:	<i>†</i> 2,	
Time	Temp.	pН	Cond. (mS/cm or (uS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. of mL)	Depth to Water (ft.)	
1255	26.8	7.27	1217	107	0.95	-65.7	300	5.08	
1258	26.7	7,22	1219	121	07.0	-75.9	<i>000</i>	5,60	
1301	27.4	7.28	1219	119	0.46	-88,4	900	5.90	
1304	27.8	7.31	1220	115	0.37	-91.7	1,200	LO.14	
1307	27.4	7.31	12.20	113	0.36	-94,0	1,500	6.30	
1310	27.3	7.31	1220	115	0.34	-96.1	1,8cc	6,43	
٠							<u> </u>		
Did well d	lewater?	Yes (No)	Amount actually evacuated: 1,800m@					
Sampling	Time: いろい	3			Sampling	Date: O	9-12-17		
Sample I.I	D.: CP22-	-Pmwo	9B		Laborator	r: Coloc	wic		
Analyzed	for:	TPH-G	втех мтв	E TPH-D		Other: 🔾	and a		
Equipmen	t Blank I.I	D.:	@ Time		Duplicate	I.D.:			

	Project #	: 17091	2-1401		Client: 🖧	opyntec				
	Sampler:	dc			1	Date: $ abla 9-1$				
	Well I.D	: CP22-	PMW10	В	Well Dian	neter (in.)	:(2) 3	4 6	8	
		ell Depth (1			Depth to Water (ft.): 5.00					
	Depth to	Free Prod	uct:		Thickness	of Free Pr	roduct (fe	eet):		
•	Referenc		(PVC)	Grade	Flow Cell					
	Purge Meth Sampling M	lethod:	2" Grundf Dedicated		0	Peristaltic I New Tubin	-	Bladder Pump Other		
	Start Purge	Time: 1430		Flow Rate: _	100 mg/min			Pump Depth: L	1	
	Time	Temp.	pН	Cond. (mS/cm or (uS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)	
	1433	24.5	9.98	734	רו	0.66	-270.1	300	5.32	
	1436	24.9	9.85	729	16	0,49	-279.8	600	5:39	
	1439	24.9	9.77	757	154	0.41	-284,3	1,200	5,48	
	1442	24.6	9.80	762	13	0.35	-293.5	1,500	5,55	
445	₩20ki,	24.3	9.77	~765	12	0.31	-297.0	$l'g\omega$	5.57	
	1448	24.5	9,75	763	12	0.30	-297.3	2,100	5,58	
	1451	24,4	9.73	163	11	0.29	- 297.6	2,400	5.58	
	Did well o	lewater?	Yes (No)	· · · · · · · · · · · · · · · · · · ·	Amount a	ctually e	vacuated: 2,49	30	
	Sampling	Time: 14	54			Sampling	Date: 0	4-12-17		
	Sample I.I	D.: CP22-1	mw10B			Laborator	y: Calsic	anci		
	Analyzed			втех мтв			Other:			
	Equipmen	t Blank I.I	D:: * wood d	17 @ 1515		Duplicate	I.D.:			

WELLHEAD INSPECTION CHECKLIST

Page | of |

Client Coc	suntec						Date	09-1	2-	17		
Site Address	Carm	toc @ Co	amp Pandl	oten	• .							····
Job Number						Techi	nician	KC_	•			
Well ID	Well Inspected - No Corrective Action Required	WELL IS SECURABLE BY DESIGN (12"or less)	WELL IS CLEARLY MARKED WITH CORRECT IDENTIFICATION	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	11	Well Not espected (explain below)		Repair Order Submitted
220205-miox	×	×	×									
CP22-FMWO9B	α	X	×								·	
CP22-PMW10B	· \(\psi \)	Ø	⟨>				•					-
CP22-PMWOEB	. &	K	Ø									
CP22-PMW04	. 🗴	X	∞		-							
CP22-PMWOGB	X	4	Ø						·			
CP22-PMWOTB	. 10	X	\sim									
				•								
•.	.				·							
*												
•										· ·		
			\.				•			J		
										_		
· .											·	
•												
NOTES:							•		•			
				***************************************				•				
	•						•					
١ .												
•										<u> </u>		······································
	-											

TEST EQUIPMENT CALIBRATION LOG

			•	•			
8	Green yort	PROJECT NAME GRED ynter @ Camp Pendleten	andletun	PROJECT NUN	PROJECT NUMBER 170912-401	2)	
	EQUIPMENT EQUIPMENT DATE/TIME NAME OF TEST				CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
<u> </u>	16m1co925	00 00 @ LJ-71-ba	- 01/L'17 Hd	01,7,4	Y .	24.9 °C	-Ki-C
 			ORP - 231 -	- 231 99.3°?	シ	24.9 'C	Kerc
1		i,				,	
1							
i							
1							
3							
		-	-	- -			

WELL GAUGING DATA

Project #_	180119-KC1	Date 01-19-18	Client	Georgetac
C:+- / o.s	apyritac @ Camp	Dound On times		

Well ID	Time	Well Size (in.)	Sheen / Odor	Thickness of Immiscible Liquid (ft.)			Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
220205- mwx	6744	4				3,71	39.94	TOC.	
CP22-	0410	2				4.43	45,90		
0P22- PMW04	0749	2				4.61	48.32		
CP22- PMWDTB	o753	2				3,90	46.71		
bwmogg cbss-	0735	2				4.61	50.72	<u> </u>	
									-
					-				
	•								

Project #	#: 18011	J-KCI		Station #	: Geogy	ntec.@ C	amp Parollete	QΥ)		
Sampler					Start Date: 01-10-18					
Well I.D	v: 22020)5-MW	2X	Well Dian	neter: 2	3 (2	6 8			
Total W	ell Depth:	3994		Depth to V	Water: 3	.71				
Depth to	Free Prod	uct:		Thickness	of Free P	roduct (f	eet):			
Screen I	nterval:			Pump Dep	oth: 3억					
Referenc	ed to:	(PVC)	Grade	DO Meter	: 95T P	re Plus				
Purge Meth Peristaltic Bladder Pump Electric Submer Flow Rate:		· .	Sampling Me Ordicated Tubing New Tubing		GeoTech Interface	neter ppe Indicator ace Probe Probe	HACH Turbidimeter YSI 556 Flow-Thru Cell YSI 550 DO Meter Other:			
Time	Temp.	pН	Cond. (mS or uS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or(mL)	Depth to Water		
0955	20.0	7,22	1373	5	0.55	14.6	300	3.74		
0958	20.1	7,22	1375	5	0.50	9.7	600	3.82		
1001	20.2	7,22	1313	Ц	0.48	T.8	000	3,91		
1004	22.02	7,20	1380	3	0.41	3,4	1/200	3,93		
1001	203	7,20	1380	3	0.40	1.2	1,5α	3.95		
1016	20.4	7.19	1380	3	0.39	-0.8	1,800	398		
							· .			
Did well	dewater?	Yes (No)		Amount a	ectually e	vacuated: 1,80	Cs .		
Sampling	Time: 1012	3			Sampling	Date: 0	1-19-18			
Sample I.	D.: 2202	05-MU	UΧ		Laborator	y: Test A	America			
Analyzed	for:	ТРН-G	втех мтв	E TPH-D		Other: Sx	See			
Equipmen	t Blank I.I	D.:	@ Time		Duplicate	I.D.:				

Project #	: 18011	19-KC1		Station #	: Georg	ntec @	Camp Pand	Voten
Sampler	: LC			I	: 01-19-	•		
Well I.D	: U22-	MMOr	+	Well Dian	neter: (2	3 4	68_	
Total Wo	ell Depth:	48.3	2	Depth to	Water: 4.0	01		
Depth to	Free Prod	uct:		Thickness	of Free P	roduct (f	eet):	
Screen In	iterval:			Pump Dep	oth:			
Referenc	ed to:	(VC)	Grade	DO Meter	: 48I (oull w		
Purge Meth Peristaltic Bladder Pump Electric Submer		i. <	Sampling Me Dedicated Tubing New Tubing		Instruments Myron L Ultran Durham Geoslo GeoTech Interface MMC Interface	neter pe Indicator ace Probe	HACH Turbidimeter YSI 556 Flow-Thru Cell> YSI 550 DO Meter Other:	
Flow Rate:	100 1	1		olart pu	nge @ 112	_\	1	1
Time	Temp.	pН	Cond. (mS or (uS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water
1124	19.5	7.38	1216	28	0.79	25.9	300	4.82
1127	20.1	-1,33	1224	26	0.73	24.1	600	4.90
1130	19.9	7.31	1234	28	0.66	24.1	900	L1.(9.L)
1133	19,5	7.24	1235.	29	0.64	25.2	1,200	498
1136	19.2	7.20	1233	30	12.0	26.3	1,500	5.01
1139	19.4	7.17	1228	31	0.62	26.6	1,800	5.03
1142	19.5	T.,F	1225	30	0.59	25.1	2,100	5.05
Did well d	lewater?	Yes (No		Amount a	ctually e	vacuated: 2,10	0
Sampling	Time: 1141	5			Sampling	Date: O	1-19-18	
Sample I.I).: cp22-r	nwon			Laborator	y: Test A	merica (Tal	scano
Analyzed	for:	TPH-G	втех мтв	E TPH-D		Other	ico Seco	
Equipmen	t Blank I.I).: EB-BT-	20100119 Time	10	Duplicate	I.D.: DC	08-BT-2018011	00P09 P

Project #	: 18011	7-KCI		Station #	: Gronn	ntec a	Camp Pandl	etien				
Sampler	: XC			Start Date	: 01-19-	18						
Well I.D	.: tP22-	- Pmwi	57B	Well Diar	neter: (2)	3 4	6 8					
Total We	ell Depth:	46.71		Depth to	Depth to Water: 390							
Depth to	Free Prod	uct:		Thickness	of Free P	roduct (fe	et):					
Screen Ir	iterval:			Pump Dep	oth: 45'							
Referenc	ed to:	PVC	Grade	DO Meter	: 62T	Pro Plu	7					
Purge Meth Peristaltic Bladder Pump Electric Submers	sible	. (Sampling Mo		Instrument: Myron L Ultran Durham Geoslo GeoTech Interface	ope-Indicator Cace Probe	HACH Turbidimeter (SI 556 Flow-Thru Cell) (SI 550 DO Meter Other:	•				
Flow Rate:	100 mg/m	iin		pu trata	mge @ 0'	808						
Time	Temp.	pН	Cond. (mS or (LS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or (mL)	Depth to Water				
1130	18.2	7,1"	1388	4	0.62	-35,8	300	4.31				
1180	18.3	7.28	1293	L\	0.43	~75,7	ρæ	4.60				
0817	17.3	7,30	1294	Ц	0.47	-82.7	900	4,64				
0830	17.0	7,28	1291									
0823	16.9	7,29	1290	3 0.53 - 85.5 1,2c0 1 3 0.54 -87.8 1,5c0 11								
0826	10.91	7.30	1289	3	0.55	1,0P-	1,800	4,73				
							-					
Did well d	lewater?	Yes (No		Amount a	ctually ev	vacuated: 480	20				
Sampling	Time: 08	29			Sampling	Date: 01	- 19-18					
Sample I.I	D.: CP22	-PMW	57B		Laborator	y: Test A	merica					
Analyzed	for:	TPH-G	BTEX MTB	E TPH-D	Other: Sac Suco							
Equipmen	t Blank I.I	D.:	@ Time		Duplicate	I.D.:						

Project #	#: 1801	19-401		Station #	: Gron	intec @	Camp Por	dleton
Sampler	: XC			Start Date		.3		
Well I.D	.: CP22-	Pmwos	3	Well Dian	neter: (2	3 4	68_	
Total W	ell Depth:	50.72		Depth to	Water: 4	.61		•
Depth to	Free Prod	luct:		Thickness	of Free P	roduct (f	eet):	
Screen I	nterval:			Pump Dep	oth: 59	1		
Referenc	ed to:	(PVC)	Grade	DO Meter	:: 43I P.	no Paus		
Purge Meth	nod:		Sampling Me		Instrument	neter	HACH Turbidimeter	
Bladder Pump Electric Submer	rsible		New Tubing		GeoTech Interface	ace Probe	YSI 550 DO Meter Other:	
Flow Rate:	100,00	nin		stant pu	rox @ od	02		
Time	Temp.	pН	Cond. (mS or (µS))	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water
0905	18.8	7.42	1317	18	1.51	-50.2	3 0 0	4.712
8000	18.6	7,41	1401	IL	0.98	-80.1	ωco	x.149.34.93
0911	18.8	7.37	1413	14	0.74	-92.5	m +200 000	5,06
0914	18.8	7.37	1413 .	14	0.67	-94.6	1,200	5,11
Dall	18.6	7.36	1416	13	0.64	-97.3	1,500	1万世 " 5.14
0920	18.5	7.31	1390	12	0.56	95,8	1,800	5.17
0923	185	-1,29	1381	11	0.52	-94.8	3'100	5,20
0926	18.6	7.27	1369	11	0,50	-946	2,400	5.22
<u> </u>								
Did well	dewater?	Yes (No		Amount a	actually e	vacuated: 2,40	XO.
Sampling	Time: OO	<u> 1</u> 9			Sampling	Date: o	1-19-18	
Sample I.	D.:	-Pmw	<u> </u>		Laborator	y: Test A	merica	
Analyzed	for:	ТРН-G	BTEX MTB	E TPH-D		Other: 📞	e Gare	
Equipmen	t Blank I.I	D.:	@ Time		Duplicate	I.D.:	The sample of the same of the	

Project #	: 1801	19-KC1		Station #	: Glosy	ntic @	Camp Pend	leton
Sampler	: XC			Start Date	3: 01-19-18	3	***************************************	
Well I.D	: CP22	- PMW	10B	Well Dia	neter: 2	3 4	68_	
Total We	ell Depth:	50.72		Depth to	Water: 4,0	ol		
Depth to	Free Prod	luct:		Thickness	s of Free P	roduct (fe	eet):	
Screen In	nterval:			Pump De	p th : ԿԳ՝			
Referenc	ed to:	(PVC)	Grade	DO Meter	: <u>49</u> I.1	no Plus		
Purge Meth Peristaltic Bladder Pump Electric Submer	>		Sampling Mo		Instruments Myron L Ultran Durham Geosio GeoTech Interface	pe Indicator	HACH Turbidimeter VSI 556 Flow-Thru-Cell VSI 550 DO Meter Other:	
Flow Rate:	100 ml/mi	<i>y</i>		aring trafe	e @1035			
Time	Temp.	pН	Cond. (mS or µS)	Turbidity	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to Water
1038	19.3	9.90	771	25	0:77	-242.4	300	4.20
1041	19.4	10.08	アルワ	١٦	0.42	-269.7	600	4.31
1044 19.4 1011 770 12 0.34 -275.1 900							4.33	
1011 11,1 1011								4.34
เอรอ	19.6	10.11	80r	cJ	0.28	-285,2	1,500	4.34
1053	19.5	80.01	035	8	0,25	285,8	$\infty 3,i$	4.35
1056	19.6	10.05	OBT	8	0,25	-284,4	2,100	4.35
							-	
						·		
Did well d	ewater?	Yes (No		Amount a	ctually ev	vacuated: کررا	00
Sampling	Time: 10	59			Sampling	Date: 0	1-19-18	
Sample I.I).: CP22-	-bum	OB	•	Laborator	y: Test A	merica	
Analyzed	for:	TPH-G	BTEX MTB	E TPH-D		Other:	o Seer	
Equipmen	t Blank I.I).:	@ Time		Duplicate	I.D.:		

WELLHEAD INSPECTION CHECKLIST

Page ______ of ____

Client	aryeas						Date	01-10-	81	
Site Address	grasin	ntac @ (lamp Pend	action		····				
Job Number	180	110-401				Tech	nician	KC_		
Well ID	Well Inspected - No Corrective Action Required	WELL IS SECURABLE BY DESIGN (12"or less)	WELL IS CLEARLY MARKED WITH THE WORDS "MONITORING WELL" (12"or less)	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
220205-MWX	×	×	×							
6653-6wm10p	×	×	X							
6727-PMW04	×	*	X .							
cp2/2-PmwcizB	X	×	X							
CP22-PMW08B	X	*	X							
						٠.				
	•									
					·					
NOTES:					•					
			,,							
					·					

BLAINE TECH SERVICES, INC.

SAN JOSE

SACRAMENTO

LOS ANGELES

SAN DIEGO

www.blainetech.com

TEST EQUIPMENT CALIBRATION LOG

100 J	PROJECT NAME GRENLYNTEC @ Camp Pendleten		PROJECT NUM	PROJECT NUMBER 180119-1401		
EQUIPMENT DATE		STANDARDS EQUIPMENT USED READING	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
ス ハ		0012 Hd	91'L'H-	シ	14.5%	akto
ſ	υ / ·	ORP 245,6-1245,6	- 245,6 - 100 %	\$	14,5°	of the
1						
l						

WELL GAUGING DATA

Project # 180912-XCI Date 09-15	-18 Client <u>Gaounte</u>
	<u> </u>
Site Camp Pandleton	
Site Camp Yandellary	

	Well ID 220205	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	of Immiscibl e Liquid (ft.)	Volume of Immiscible s Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes ded. tubing
٠	-mwx cp22- pmw04	1243	2					5.66	48.31		0
	CPZZ-	1013	2					6.20	44.79		
	CP22-	1057	2					5.84 .	50.73		
	CP22- PMWIOB	1147	2					7,10	45.93		<u> </u>
• • •		•									
						_					
								•		•	
	,								•		
• -		•									
								-		•	
					ì.		٠.	•		•	
	,								•		
		•									
										•	
		•	,						•	•	

					T		75		
BTS #:		12-KC1				09-12-			
Sampler:	*C				Project	Address: (<u>tryuwaz</u>	<u>ac e (a</u>	r <u>otoilionel qu</u>
Well ID:		<u>05-m</u>				Number:			
Borehole 1		8 (10			Well Di			4 6 8	
Reference			(PVC)	Grade			ight: '53.		
	l Depth: '					Water:			ime_\3\
J	Free Produc						Product (f	eet):	
<u> </u>				wdown during pu	rging x 0.20				
			YSI 556			ID: \	POOIM	<u> 25 </u>	
Decontam	ination Me	thod:	eam/High	Pressure Wa		3 Stage R		Other	
Recharge	type: Fast	Slow_	···		Water Leve	I Indicator Ty	oe: GeoSlope l	ndicator ID: \	537244
Purge Method: Purge Rate:	100 als	Bailer Disposable B Positive Air I Fixed Electric Variable Elec Min	Displacement	Other V	Waterra Peristaltic raction Pump Nackelon)————		Bailer Disposable Bail Extraction Port Dedicated Tubi Other:	
Purging Metho Method 3, I	ods Low-flow instal	I pump at leas	t 2hrs prior to s	tart of purging:	Portable Pur	mp Install Da	e:Tim	ac:De	dicated Pump
		T	Cond.	Turbidity	D.O.		Depth to	Volume	
Time	Temp (°C)	pН	(mS or (is)	(NTUs)	(mg/L)	ORP	Water	Removed (ml)	Observations
1332	27.6	7.32	1359	13	0,51	133.4	6.31	300	
1335	27.6	7.30	1337	9	0.43	116.2	6.42	600	
1338	27.8	7.28	1329	٦	0,30	91.4	649	900	
1341	27.9	7.28	1329	7	0.29	87.1	6.53	1,200	
1344	27.7	7.28	1328	9	0.30	±,8,74	6,54	1,500	
1347	27.6	7.27	1328	6	0.33	73,0	6.54	1,800	
	·								
,									
									
							•	·	
Did well de	ewater?		Yes (No)	Volume	actually e	vacuated:	1,800	
Sampling I		17-18		Sampling T					ater: 6.54
Sample I.D			1) X		Laborato	· · · · · · · · · · · · · · · · · · ·		l	
	Analyzed for: TPH-O RIEX MTBE TPH-D Oxygenates (5) Sou Quantity: 8 Filterd: NY								
<u> </u>	EB I.D. (if applicable): EB-BT-20180912 Time 324 Duplicate I.D. (if applicable):								
D.O. (if red			Pre-purge:	- 1	ing/L		Post-purge:		mg/L
O.R.P. (if r			Pre-purge:		mV		Post-purge:		mV
	ield Sheet Checked by:								

BTS #:	180912-	KCI				9-12-18			
Sampler:	*C	······			Project A	Address: (, seconat	oc @ Can	2 Parallation
Well ID:		Cb55-b1			Project i				·
	Diameter:	<u>(8) 10</u>	12 _	-		ameter: (4 6 8	
Reference			PVC	Grade			eight: ધ્૧.૯		
	l Depth: "		····			Water:			Fime 1243
<u> </u>	Free Produc				J.,		Product (f	eet):	
	· · ·			wdown during p	arging x 0.20)				
Meter type			YSI 556				POOILWA		
				Pressure Wa		3 Stage R		Other	
Recharge	type: Fast	<u> </u>			Water Level	Indicator Ty	pe: GeoSlope T	ndicator ID: 10	351244
Purge Method: , Purge Rate:	100 m/m		Displacement	Other to	Waterra Peristaltic traction Pump			Bailer Disposable Bai Extraction Port Dedicated Tubi Other:	ing
Purging Metho	ds		t 2hrs prior to s	tart of purging:	Portable Pun	np Install Da	te:Tim	e: De	dicated Pump
Time	Temp (°C)	pН	Cond. (mS or (LS))	Turbidity (NTUs)	D.O. (mg/L)	ORP	Depth to Water	Volume Removed (ml)	Observations
1246	24.4	7,60	1191	16	1.13	93.8	15.21	300	
1249 25,3 7.40 1174 14 0.57 69,0 698 600									
1249 25,3 7.40 1174 14 0.57 69.0 698 600 1252 25,5 7.35 1195 12 0.53 49.3 7.18 900									
1255	25,5	~1,33	1184	11	0,47	456	7.30 .	1,200	
1258	25,17	7.31	1192	10	0,42	38.2	7.38	1,500	
1301	25,7	7,31	1193	10	0.40	37.1	7.42	1,800	
	٠.						**		
	·				·		•		
	•						· · · · · · · · · · · · · · · · · · ·		
Did well de	ewater?	<u> </u>	Yes (No,	Volume	actually e	vacuated:	UDG/	
Sampling I	Date: OG-1	2-18		Sampling T	ime: 130	4		Depth to W	/ater: 7,42
Sample-I.D					Laborato	ry:			
Analyzed f	or:	(PH-G)		BE TPH-D	Qxygenate	s (5) Su	فعن	Quantity: 8	Filterd:(N/Y
EB I.D. (if	applicable):		Time	•	I.D. (if a	pplicable)	: DUP	
D.O. (if red	• •		Pre-purge:		mg/L		Post-purge:		. mg/ _L
O.R.P. (if r			Pre-purge:		mV		Post-purge:		mV
Field Sheet	d Sheet Checked by:								

BTS #:	180912-	- KC1			Date: 09-12-18								
Sampler:					Project Address: geosyntac @ comp land lation								
Well ID:	CP22-	PMWI	07B	•	Project	Number:							
Borehole	Diameter:	(8) 10	12			ameter: (4 6 8					
Reference	d to:		(PVC)	Grade	Water Column Height: 40,59								
Total Wel	l Depth: 1	PF.04			Depth to Water: 6.20 Time 10125								
Depth to I	ree Produ	ct:			Thickne	ss of Free	Product (1	feet):					
DTW with 809	% Recharge of	drawdown [(Maximum Dra	wdown during pu	rging x 0.20)	+ DTW]:			w				
Meter type	e/ID: Ulti	rameter <	YSI 556	YSI 550		ID: <u>\</u>	omioog;	25					
Decontamination Method: Steam/High Pressure Wash 3 Stage Rinse Other													
Recharge type: Fast Slow Water Level Indicator Type: GeoSlope Indicator ID: 1537244													
Purge Method: Bailer Waterra Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Fixed Electric Submersible Variable Electric Submersible Variable Electric Submersible Start Purge: 1017													
Purging Methods Method 3. Low-flow install pump at least 2hrs prior to start of purging: Portable Pump Install Date: Time: Dedicated Pump													
Time	Temp (°C)	рН	Cond. (mS or (µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP	Depth to Water	Volume Removed (ml)	Observations				
1020	24.3	7.22	1244	7	0.97	180.3	690	3co ·					
1023	. 25.1	7.28	1231	1	0.69	163.2	1.37.	600					
1026	25.4	7,30	1222	6	0.60	148.7	7.79	6100 1500 111	٠.				
1029	25.4	7,31	1233	b	0,58	139.1	8.700	1,200					
1032	25.8	7,31	1229	6	0.60	127.0	8.09 "	1,500					
1035	25,5	7.31	1231	6	0.60	121.4	B.14	1,800.					
1038	25,4	71,31	1233	وک	0.59	119.7	8.22	5,100					
,													
Did well dewater? Yes (No Volume actually evacuated: 2,100 nc,													
Sampling I	ا-9ن :Date	J-18		Sampling T	ime: 101	+1		Depth to W	/ater: 8,22				
Sample-I.D).: CP22-	PMWO	1B		Laborato	ry:							
Analyzed f			(BTEX) MI	BE TPH-D	Oxygenate	s (5) Sco	Seco	Quantity: ⊱	Filterd: NY				
EB I.D. (if	applicable):		Time	Duplicat	e I.D. (if a	applicable)	:					
D.O. (if red	q'd):		Pre-purge:		ing/L		Post-purge:		mg/L				
O.R.P. (if r			Pre-purge:		mV		Post-purge:		mV				
Field Sheet Checked by:							•						

BTS #: 180912-KC1					Date: 09-12-18								
Sampler:					Project Address: Gassyntec @ Camp Pandleter								
	CP22		22-PMW	0800		Number:							
Borehole	Diameter:	8 10	12				<u>2</u>) 3 .						
Reference			PVC	Grade			eight: 44						
ļ	1 Depth: 5					Water:			Time_1057				
	ree Produc				L		Product (f	eet):					
<u></u>				wdown during pu	urging x 0.20)								
Meter type/ID: Ultrameter (YSL556) YSI 550 ID: 16M 1009 25													
Decontamination Method: Steam/High Pressure Wash 3 Stage Rinse Other Recharge type: Fast Slow Water Level Indicator Type: GeoSlope Indicator ID: 1537244													
Recharge	type: Fast	Slow			Water Level	Indicator Ty	pe: GeoSlope I	ndicator ID:	1537244				
Purge Method: Bailer Waterra Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump. Extraction Port Fixed Electric Submersible Variable Electric Submersible Purge Rate: Variable Electric Submersible Purge Rate: Start Purge: 1 VC													
Purge Rate: VOONUM Start Purge: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \													
Cond. Turbidity D.O. Depth to Volume													
Time	Temp (°C)	pН	(mS or (LS)	(NTUs)	(mg/L)	ORP	Water	Removed (ml)	Observations				
1103	25.0	81.17	1242	10	1.06	1001	6.30	300					
1106	24.9	7,15	1236	9	0.69	83.7	<u> </u>	PCC					
1109	25.1	-1,14	1236	9	0.52	74.9	7.43	900					
1112	25.2	7.14	1237	8	0.45	67.8	7.65	1,200	·				
1112	24.9	71.13	1236	8	0.43	4.00	7.83	1,500					
8111	25.1	7.14	1234	8	0,40	61.2	7.97	$\omega \beta J$					
1121	25.2	7.14	1238	8	0.42	59,3	8,05	2,100					
								•					
Did well de	ewater?		Yes (No)	Volume	actually e	vacuated:	2,100 mg					
Sampling Date: 09-12-18 Sampling Time: 1124 Depth to Water: 8.05													
Sample I.D.: LP22-PMW08B Laboratory:													
Analyzed f	or:	трн-д	BTEX MT	BE) TPH-D	Qxygenate	s (5) Su	San	Quantity: 8	Filterd: Ñ/Y				
EB I.D. (if	3 I.D. (if applicable): Duplicate I.D. (if applicable):												
D.O. (if req'd): Pre-purge: "g/L Post-purge: "g/L													
O.Ŗ.P. (if r	eq'd):		Pre-purge:		mV		Post-purge:		mV				
Field Sheet	Checked l	ov:					-						

BTS #: V	180912-	KCI			Date: 09-12-18								
Sampler:	KC				Project Address: Georgetec & Camp Pendleton								
Well ID:	CP22-F	mw 101	3	<u> </u>	Project	Number:		-					
Borehole	Diameter:	8 10	12		Well Di	ameter: (2 3	4 6 8					
Reference	d to:		(PVC)	Grade	Water C	Column He	eight: 3ら	·					
Total Wel	ا Depth: ا	15,93			Depth to	Water:	01.T"	•	Time_ <u>1147</u>				
Depth to I	Free Produ	ct:			Thickne	ss of Free	Product (feet):					
DTW with 80°	% Recharge o	f drawdown [(Maximum Dra	wdown during pu	irging x 0:20	+ DTW]:							
			YSI 556	Carrier -		ID: الو	<i>wiadd</i>	25					
Decontamination Method: Steam/High Pressure Wash 3 Stage Rinse Other													
Recharge type: Fast Slow Water Level Indicator Type: GeoSlope Indicator ID: 1537244													
Purge Method: Bailer Disposable Bailer Peristaltic Positive Air Displacement Fixed Electric Submersible Variable Electric Submersible Purge Rate: Continuation Start Purge: 1150 Start Purge: 11													
Purging Metho Method 3, I		Il pump at leas	t 2hrs prior to s	tart of purging:	Portable Pur	np Install Dat	te: T-in	ne: De	dicated Pump				
		T	Cond.	Turbidity	D.O.		Depth to	Volume					
Time	Temp (°C)	pН	(mS or (µS)	(NTUs)	(mg/L)	ORP	Water	Removed (ml)	Observations				
1153	23.9	9.39	702	lή	0.41	-2947	<i>6.</i> 92 .	300					
1156	24.5	9.46	<i>∟85</i>	15	0.35	-3069	6.92	600 m					
1159	25.3	9.53	692	13	0.37	-328.0	692	900					
1202	25.4	9,55	692	11	0.31	-334.8	692	1,200					
1205	25,6	9.57	693	10	0,27	-346.1	6.92	1,500.					
1208	.25.0	9.58	700	٩	0.26	-352.1	6.92	1,800					
1211	25.1	9.59	·702	9	0.24	-3559	6.92	2,100					
1													
Did well de	ewater?	<u> </u>	Yes (No	Volume	actually ev	vacuated:	2,100 mg					
Sampling I	Date: 09-	12-18		Sampling T	ime: 121	7	•	Depth to W	ater: 692				
Sample I.D	.:· CP22-	Priwio)		Laborato	ry:							
Analyzed for: TPH-G (BTEX) (MTBE) TPH-D (Dxygenates (5) (Suc Suc) Quantity: E Filterd: (NY)													
EB I.D. (if applicable): Time Duplicate I.D. (if applicable):													
D.O. (if rec	q'd):		Pre-purge:		mg/L		Post-purge:		mg/L				
O.R.P. (if r	eq'd):		Pre-purge:		mV		Post-purge:		mV				
Field Sheet	Field Sheet Checked by:												

WELLHEAD INSPECTION CHECKLIST

Site Address Camp Pandlatan Job Number Technician Well S CLEARLY Inspected - SECURABLE MARKED WITH Bailed Components Cap Lock Taken Township Contain Countries Rep Orc	Client _ Groot	intec				• .		Date	09-17	2-18	
Job Number Technician Well Is Inspected No Corrective Nation Required Well IS Well IS CLEARLY MARKED WITH CORRECT DENTIFICATION Wellbox Cleaned Replaced Cleaned Replaced Corrective (explain below) Submode Cap Corpensis Cleaned Cleaned Cleaned Cleaned Corpensis Cor			Meter		 	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		i			
Well ID Well ID 1 Inspected No Corrective Action Required Not Corrective Action (12°or less) Well ID 1 22.02.05-mwx							Techi	nician	· XC		
CP22-Pmwo16 X X X X X X X X X X X X X X X X X X X	•	Inspected - No Corrective Action	SECURABLE BY DESIGN	CLEARLY MARKED WITH CORRECT	Bailed From	Components		i 1	 Action Taken (explain 	Inspected (explain	Repair Order Submitted
CP22-PMW0H X X X X CP22-PMW08B X X X X CP22-PMW1B X X X X CP22-PMW1B X X X X CP22-PMW1B X X X X	220205-mwx	X	×	X						.	
CP22-Pmwo86 . X	cp22-Pmw04	· ×	X	Х				·			
CP22-Pmwio8 X X X X X X X X X X X X X X X X X X X	CP22-PMWOTE	. X	×	Χ.							
	CP22-Pmw08B	. ×	×	×		·					
	Cb35-burniog	X	*	*							
	,	· . · ·								J	
		·									
						·					
	٠										
										·	
		•		ì		·					
	*	•									
	•							<u> </u>			
						<u></u>			<u> </u>		
NOTES:	**					•					
	-										
					·····					•	
CLAINE TECH SERVICES INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO www.blainetech.com		:								-	

TEST EQUIPMENT CALIBRATION LOG

	INITIALS	akro	dle						
N	TEMP.	ગ્રફ [;] નાર	. 7, E. 97						
BER 180912-KCA	RATED TO: ITHIN 10%:	· ·							
PROJECT NUN	EQUIPMENT READING	0268-	-730.4 - 99.6%						
Georgan Comp Pendleton PROJECT NUMBER	STANDARDS USED	01/2h-01/2h-14d	ORP230.4-						•
		00-15-18 . © 1000						·	
E 180912-1/CF	UIPMENT JMBER	1500 Junio							
PROJECT NAME	EQUIPMENT NAME	and Ish	!			·			

SPH or Purge Water Drum Log

	1.0	30,000	į
1100	liei	- + -	
4.5		0.00	ŝ
	T.T. ()		

Georgiatec

Site Address:

Count Pond Cators.

STATUS OF DRUM(S) UPON	ARRIVAL			
Date	09-12-18			
Number of drum(s) empty:	0			
Number of drum(s) 1/4 full:				
Number of drum(s) 1/2 full:				
Number of drum(s) 3/4 full:				11
Number of drum(s) full:	<u> </u>			
Fotal drum(s) on site:	0			
Are the drum(s) properly labeled?	4			
Drum ID & Contents:				ender a
f any drum(s) are partially or totally illed, what is the first use date:				

⁻ If you add any SPH to an empty or partially filled drum, drum must have at least 20 gals, of Purgewater or DI Water.

-AILBTS drums MUST be labeled appropriately.

STATUS OF DRUM(S) UPON	DEPART	URÉ			
Date	09-12-18				
Number of drums empty:	0				20.2
Number of drum(s) 1/4 full:				2004	
Number of drum(s) 1/2 full:	.0				
Number of drum(s) 3/4 full:	0				
Number of drum(s) full:	,O				
Total drum(s) on site:					1
Are the drum(s) properly labeled?	der				
Drum ID & Contents	paroknaja				

LOCATION OF DRUM(S)

Describe location of drum(s): ment to funció in enclasuro

FINALSTATUS				
Number of new drum(s) left on site	1			
this event	an in in			
Date of inspection:	81-11-120			
Drum(s) labelled properly	(A)			Estations
Logged by BTS Field Tech	Ann.			
Office reviewed by:		4.0		E at 1

⁻If drum contains SPH, the drum MUST be steel AND labeled with the appropriate label.

APPENDIX B BORING LOGS

Geosyntec^o consultants

1111 Broadway, 6th Fl Oakland, CA 94607 Phone: (510) 836-3034 Fax: (510) 836-3036

START DATE 1/16/2019 **FINISH DATE** 1/16/2019

IP-02-1'

BORING

SHEET 1 OF 1 **ELEVATION DATA GROUND SURFACE**

DATUM

GS FORM:

BORFHOLF RECORD

LOCATION Camp Pendleton, CA PROJECT NAVFAC - 22/23 Area TOTAL DEPTH 46 ft PROJECT NUMBER WR2274 **DEPTH TO WATER** 8 ff

	BOREHOLE RECORD) 	J PR	OJECT	NUM	BER \	VR227	4	DEPTH TO WATER 8 ft
DEPTH (ft)	MATERIAL DESCRIPTION	GRAPHIC LOG	GROUNDWATER	Sample ID	TYPE	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
- -	Poorly graded SAND with silt [SP-SM]: dark grayish brown [10YR 3/2]; moist; fine to medium sand, fines [0, 90, 10]; micaceous								
5 -	Silty SAND [SM]: brown [10YR 5/3]; moist; fine to medium sand, fines [0, 80, 20]						1.1		wet after 8'
10 -			T				1.2		
- - -							1.6		
15 - - -							0.8		
20 -	becomes olive brown [2.5Y 4/3]; very high mica content						0.7		20'-discreet sample collected for XRF analysis
25 -							1.3		
- - -							0.7		
30 -	Poorly graded SAND with silt [SP-SM]: very dark grayish brown [2.5Y 3/2]; wet; fine to medium sand, fines [0, 90, 10]; high mica						1.9		
35 -	Content Sandy SILT [ML]: very dark gray [2.5Y 3/1]; wet; fine to medium sand, fines [0, 40, 60]; medium plasticity; soft to medium stiff						1.6		
- - -	Silty SAND [SM]: very dark grayish brown [2.5Y 3/2]; wet; fine to medium sand, fines [0, 80, 20]						1.3		
40 - - -	42'-46' increased silt content [0, 60, 40]						1.5		35'-45' discreet samples collected for XF analysis
45 -							1.4		
- - -	Total Depth: 46 ft bgs								
50 -									
55 CONT	PACTOR Kehen			MARKS	Porc	hole ha	okello 4 ::	ith ba-	tonito/comont grout
EQUIF DRILL		ertical	KE	IVIAKKS	Borel	noie bad	cktilled w	vith ben	tonite/cement grout.
DIAME	ETER 2.75" BER BR REVIEWER LK		SEE	EKEY SHE	ET FO	R SYMB	OLS AND	ABBRE	VIATIONS

Geosyntec consultants

1111 Broadway, 6th Fl Oakland, CA 94607 Phone: (510) 836-3034

Fax: (510) 836-3036

BORING IP02E-3'

START DATE 9/17/2018 **ELEVATION DATA FINISH DATE** 9/17/2018 **GROUND SURFACE**

LOCATION Camp Pendleton, CA **DATUM**

PROJECT NAVFAC - 22/23 Area TOTAL DEPTH 52 ft

SHEET 1 OF 1

	GS FORM: _HYDROPUNCH BOREHOLE	RECORD	1	OJECT					DEPTH TO WATER 12 ft
DEPTH (ft)	MATERIAL DESCRIPTION	GRAPHIC LOG	GROUNDWATER	Sample ID	TYPE	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
-	Well graded SAND [SW]: dark brown [2.5YR 3/2]; coarse sand [0, 100, 0]	ry; fine to							0'-4' ~50% sample compression
5 -	Well graded SAND [SW-SM] with silt: very dark gra [10YR 3/2]; moist; fine to medium sand, fines [0, 90]	yish brown , 10]							
10 -	SILT [MH]: very dark grayish brown [10YR 3/2]; mo	ist; fine sand,							
-	Silty SAND [SM]: very dark grayish brown [10YR 3/sand, fines [0, 70, 30]; micaceous	2]; wet; fine	Ā						wet 12'-14'
15 -	SILT [MH]: very dark grayish brown [10YR 3/2]; mo	ist; fine sand,							
]	Silty SAND [SM]: very dark grayish brown [10YR 3/ sand, fines [0, 70, 30]; micaceous	2]; wet; fine							wet 16'-19'
20 -	Sandy SILT [MH]: very dark gray [10YR 3/1]; moist fines [0, 30, 70]; micaceous	fine sand,							20'-discreet sample collected for XRF analysis
7	Silty SAND [SM]: very dark gray [10YR 3/1]; wet; fii [0, 60, 40]; micaceous	ne sand, fines							wet 20'-22'
-	SILT [MH]: very dark gray [10YR 3/1]; wet; fine san 10, 90]; micaceous	d, fines [0,							wet 24'-25'
25 - - -	Silty SAND [SM]: very dark gray [10YR 3/1]; moist; fines [0, 70, 30]; micaceous	fine sand,							24'-28' ~25% sample compression
30 -	Sandy SILT [MH]: very dark gray [10YR 3/1]; wet; fi fines [0, 40, 60]; micaceous	ne sand,							wet 29'-30'
-	Silty SAND [SM]: very dark gray [10YR 3/1]; wet; fir [0, 60, 40]; micaceous	ne sand, fines							wet 32'-33'
35 -	SILT [MH]: very dark gray [10YR 3/1]; moist; fine sa 10, 90]; micaceous	and, fines [0,							wet 36'-37'
40	Silty SAND [SM]: very dark gray [10YR 3/1]; wet; fir [0, 80, 20]; micaceous	ne sand, fines							wet 40'-42'
40 - - - -									35'-45' discreet samples collected for XF analysis
45 - - - -	SILT [MH]: very dark gray [10YR 3/1]; wet; fine san 10, 90]; micaceous	d, fines [0,							wet 44'-50'
50 - -	Silty SAND [SM]: very dark gray [10YR 3/1]; moist; fines [0, 80, 20]; micaceous Total Depth: 52 ft bgs	fine sand,							
55	1								
		rthing Sting	RE	MARKS	Bore	hole ba	ckfilled \	vith ber	ntonite/cement grout.
DRILL		GLE Vertical							
	GER BR REVIEWER LK		SEE	KEY SHE	ET EO	R SYMP	OLS AND	ARRRE	VIATIONS

Geosyntec consultants

1111 Broadway, 6th Fl Oakland, CA 94607 Phone: (510) 836-3034 Fax: (510) 836-3036

START DATE 1/16/2019 **FINISH DATE** 1/16/2019

IP-08-1'

BORING

SHEET 1 OF 1 **ELEVATION DATA GROUND SURFACE**

DATUM

GS FORM:

BORFHOLF RECORD

LOCATION Camp Pendleton, CA PROJECT NAVFAC - 22/23 Area TOTAL DEPTH 46 ft PROJECT NUMBER WR2274 DEPTH TO WATER

	BOREHOLE RECORD		J PR	OJECT	NUM	BER \	VR227	4	DEPTH TO WATER 5 ft
DEPTH (ft)	MATERIAL DESCRIPTION	GRAPHIC LOG	GROUNDWATER	Sample ID	TYPE	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
- - - 5 -	Poorly graded SAND with silt [SP-SM]: dark grayish brown [10YR 4/2]; moist; fine to medium sand, fines [0, 90, 10]; high mica content Silty SAND [SM]: brown [10YR 5/3]; moist; fine to medium sand, fines [0, 80, 20]		Ţ				2.0		wet after 5'
- - -	Poorly graded SAND with silt [SP-SM]: very dark grayish brown [10YR 3/2]; wet; fine to medium sand, fines [0, 90, 10]; high mica content						1.4		
10 -	Silty SAND [SM]: very dark grayish brown [2.5Y 3/2]; wet; fine to medium sand, fines [0, 60, 40]; high mica content						1.5		
15 - - -							0.7		
20 - -							1.0		20'-discreet sample collected for XRF analysis
25 –	decrease in fines [0, 80, 20]						1.6		
30 -	Sandy SILT [ML]: very dark gray [2.5Y 3/1]; wet; fine to medium sand, fines [0, 40, 60]; medium plasticity; stiff						1.2		
35 -	Silty SAND [SM]: very dark grayish brown [10YR 3/2]; wet; fine to medium sand, fines [0, 70, 30]; high mica content						2.0		
- - 40 -	Sandy SILT [ML]: very dark gray [2.5Y 3/1]; wet; fine to medium						1.9 2.1		35'-45' discreet samples collected for XRI analysis
- - 45 -	sand, fines [0, 40, 60]; medium plasticity; soft to medium stiff						2.0		anaysis
- - 50 -	Total Depth: 46 ft bgs								
55 CONT	TRACTOR Kehoe NORTHING		RF	MARKS	Roro	shole ha	ckfilled	with her	ntonite/cement grout.
EQUIF	PMENT EASTING L MTHD DPT ANGLE Veri	tical		MARKS	Bore	noie da	ckilled \	viu1 der	norme/cement grout.
LOGG	BER BR REVIEWER LK		SEE	KEY SHE	ET FOI	R SYMB	OLS AND	ABBRE	VIATIONS

Geosyntec^D 1111 Broadway, 6th Fl Oakland, CA 94607 Phone: (510) 836-3034 consultants Fax: (510) 836-3036 GS FORM: **BOREHOLE RECORD** BORE_HYDROPUNCH GROUNDWATER GRAPHIC LOG DEPTH MATERIAL **DESCRIPTION** (ft) Well graded SAND with silt (SW-SM): dark grayish brown (10YR 4/2); dry; fine to medium sand, fine to coarse sand, fines [0, 90, Silty SAND [SM]: very dark grayish brown [10YR 3/2]; moist; fine sand, fines [0, 70, 30] 5 SILT [MH]: very dark grayish brown [10YR 3/2]; moist; fine sand, fines [0, 10, 90] Silty SAND [SM]: very dark grayish brown [10YR 3/2]; moist; fine sand, fines [0, 60, 40] SILT [MH]: very dark gray [10YR 3/1]; moist; fine sand, fines [0, Silty SAND [SM]: very dark gray [10YR 3/1]; moist; fine sand, fines [0, 70, 30]; micaceous V 25

BORING IP08E-1' SHEET 1 OF **START DATE** 9/19/2018 **ELEVATION DATA GROUND SURFACE FINISH DATE** 9/19/2018 LOCATION Camp Pendleton, CA **DATUM** PROJECT NAVFAC - 22/23 Area TOTAL DEPTH 48 ft **DEPTH TO WATER PROJECT NUMBER** WR2274 21 ft

RECOVERY (%) READING (ppm) Sample ID COMMENTS TYPE 吕 moist after 4' 0'-16' ~ 40-50% compression wet 21'-24' 20'-discreet sample collected for XRF analysis 24'-28' ~60% compression Sandy SILT [MH]: very dark gray [10YR 3/1]; wet; fine sand, wet 28'-30' fines [0, 30, 70]; micaceous 30 Silty SAND [SM]: very dark gray [10YR 3/1]; moist; fine sand, fines [0, 70, 30], micaceous wet 32.5'-35' SILT with sand [MH]: very dark gray [10YR 3/1]; wet; fine sand, fines [0, 20, 80] wet 37'-48' 35 Silty SAND [SM]: grayish brown [10YR 5/2]; wet; fine sand, fines [0, 60, 40]; micaceous 40 35'-45' discreet samples collected for XRF analysis POS.GPJ GEOSNTEC.GDT 4/23/19 45 Total Depth: 48 ft bgs **CONTRACTOR** Kehoe **NORTHING REMARKS** Borehole backfilled with bentonite/cement grout. **EQUIPMENT EASTING**

DRILL MTHD DPT DIAMETER 2"

LOGGER BR

ANGLE Vertical

REVIEWER LK

SEE KEY SHEET FOR SYMBOLS AND ABBREVIATIONS

APPENDIX C X-RAY FLUORESCENT ANALYZER OPERATING PROCEDURES

Appendix C

X-Ray Fluorescent (XRF) Analyzer Operating Procedures

- 1. **Order Equipment:** Rent Innov-X Delta from Olympus (or similar supplier) along with sample table. Confirm that the equipment rental will include one NIST standard and an SiO₂ blank for calibration checks. Order radiation badges from Landauer for each member of the field team who will operate the XRF unit.
- 2. **Health and Safety:** The primary safety concern when using the XRF is due to accidental radiation exposure, and the primary mitigation measures for this risk consist of proper instrument use including distance and shielding. Details of the safety protocol for this instrument are listed in the project-specific Health and Safety Plan (HASP, Appendix A).
- 3. **Test:** Turn on equipment before heading to the field to check that the battery is charged and the equipment is running properly. Download the data import software "Innov-X Delta Advanced PC Software", which should be included with the XRF meter.
- 4. **Setup/Materials:** Prepare test and sample materials including a) XRF meter, b) XRF sample table (rented), c) NIST samples, d) disposable zip-top bags to hold soil samples, e) disposable plastic spoons to remove large rocks/debris from samples f) Sharpie for labeling samples, g) container for organizing field-screening samples (e.g. muffin tin), h) all set up at a folding table test station or back of field vehicle. Put on radiation badge before commencing XRF handling; badges are uniquely-assigned and should not change hands.

5. Display/Sample Analysis Configuration:

- a. The display of the Innov-X Delta can be configured to show all of the Title 22 metals that are measurable by the instrument (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, nickel, selenium, vanadium, and zinc; molybdenum, silver, and thorium are unlikely to be measurable), and Zn can be configured to appear at the top of the display sort-order.
- b. Note that high concentrations (>10,000 ppm) will show as %.
- 6. **Daily Startup:** Before starting every day, run internal calibration check and analyze NIST standard.
 - a. Turn on XRF with green button on top. The meter is always safe to handle when the red light is not flashing. A solid red light means that the meter is ready to emit X-rays, but is not currently doing so. The trigger on the instrument is not locked if possible, do not use the trigger.
 - b. Insert the XRF meter into the Workstation table and use thumb screws to fix in place.

- c. XRF instrument will be allowed to warm up for 15 to 30 minutes daily before analysis of samples to alleviate drift or energy calibration problems
- 7. **Initial Calibration**: Run calibrations per the Innov-X user manual:
 - a. Instrument Blank Place SiO₂ blank (supplied with the instrument) over the meter lens in the Workstation. Close the cover and run meter. The purpose of this test is to verify there is no contamination on the analyzer window
 - b. Calibration Verification Next, place NIST standard for Zn (supplied with the instrument), with the labeled cap face up, over the meter lens in the Workstation. Close the cover and perform a 2 minute test on the NIST standard.
 - c. If the meter is working correctly, there will be no reported metals during the blank analysis and the NIST standards will be accurate within 20% of the listed values.
- 8. **Additional Calibration:** After every 20 samples, re-run internal calibration check and re-analyze NIST standard.
- 9. **Field Screening:** Perform XRF field screening for soil samples as follows:
 - a. Place a golf ball sized sample in zip-top bag, remove rocks or other large debris, label with boring ID and depth, and seal.
 - b. Break the soil into smaller pieces and massage bag to facilitate homogeneity.
 - c. The sample will be positioned in front of the plastic film measurement window of the probe, and the instrument will be triggered to expose the sample to the source radiation for a minimum exposure count time of 30 seconds.
 - d. The XRF instrument will process the data from the sample. The concentrations of target analytes shown on the display will be recorded in field forms, and/or the instrument will be programmed to record numerical analytical results files which will be downloaded periodically.
 - e. Steps c and d will be repeated to collect a total of three readings per sample. If one or more of the three values is anomalous, an attempt may be made to homogenize the sample and repeat steps c through e, discarding the previous results. The average of the three values will be used as the sample concentration.
 - f. Following analysis, a minimum of three soil samples per boring will be saved in a labeled jar for submittal to the analytical laboratory (see details in the work plan).
- 10. **Daily Shutdown**: Remove XRF meter from Workstation and click the power button on the top right of the screen. Charge the meter and spare battery overnight.
- 11. **File Download**: Data will store automatically on the XRF meter. At the end of the field effort, connect the XRF to a computer and export the analytical results.
- 12. **Radiation Badge**: After the field effort is completed, radiation badges will be collected and sent to Landauer for analysis. See HASP for details.

APPENDIX D ANALYTICAL LABORATORY REPORTS

Calscience

WORK ORDER NUMBER: 17-09-0693

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: WR2274 / ESTCP Pendleton

Attention: Lea Kane

595 Market Street

Suite 610

San Francisco, CA 94105-2811

ResultLink)

Email your PM >

Approved for release on 09/22/2017 by:

Stephen Nowak Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	WR2274 / ESTCP Pendleton

Work Order Number: 17-09-0693

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 RSK-175M (Aqueous). 4.2 EPA 300.0 Anions (Aqueous). 4.3 EPA 200.7 ICP Metals (Aqueous). 4.4 EPA 8260B Volatile Organics (Aqueous). 4.5 SRL 524M-TCP 1,2,3-Trichloropropane (Aqueous).	7 9 11 13
5	Quality Control Sample Data5.1 MS/MSD5.2 LCS/LCSD	18 18 23
6	Sample Analysis Summary	29
7	Glossary of Terms and Qualifiers	30
8	Chain-of-Custody/Sample Receipt Form	31

Work Order Narrative

Work Order: 17-09-0693 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/11/17. They were assigned to Work Order 17-09-0693.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Work Order: Project Name:

WR2274 / ESTCP Pendleton

PO Number:

Date/Time Received:

09/11/17 18:05

Number of

Containers:

75

17-09-0693

Lea Kane Attn:

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
CP22-HP05-39-41	17-09-0693-1	09/11/17 09:00	11	Aqueous
CP22-HP05-43-45	17-09-0693-2	09/11/17 12:00	5	Aqueous
CP22-HP04-35-37	17-09-0693-3	09/11/17 11:45	7	Aqueous
CP22-HP04-39-41	17-09-0693-4	09/11/17 13:00	10	Aqueous
CP22-HP04-43-45	17-09-0693-5	09/11/17 13:15	11	Aqueous
CP22-HP07-35-37	17-09-0693-6	09/11/17 14:15	11	Aqueous
CP22-HP07-39-41	17-09-0693-7	09/11/17 15:15	6	Aqueous
CP22-HP07-43-45	17-09-0693-8	09/11/17 14:45	11	Aqueous
TRIP BLANK	17-09-0693-9	09/11/17 00:00	3	Aqueous

Detections Summary

Client: Geosyntec Consultants Work Order: 17-09-0693

595 Market Street, Suite 610 Project Name: WR2274 / ESTCP Pendleton

San Francisco, CA 94105-2811 Received: 09/11/17

Attn: Lea Kane Page 1 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
CP22-HP05-39-41 (17-09-0693-1)						
Zinc	0.0467		0.0100	mg/L	EPA 200.7	Filtered
Calcium	68.7		0.100	mg/L	EPA 200.7	Filtered
Manganese	1.15		0.00500	mg/L	EPA 200.7	Filtered
Silicon	11.9		0.0500	mg/L	EPA 200.7	Filtered
Chloride	170		2.0	mg/L	EPA 300.0	N/A
Sulfate	80		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.076		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP05-43-45 (17-09-0693-2)						
Propene	1.31		1.00	ug/L	RSK-175M	N/A
CP22-HP04-35-37 (17-09-0693-3)						
Zinc	0.340		0.0100	mg/L	EPA 200.7	Filtered
Calcium	34.0		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.414		0.00500	mg/L	EPA 200.7	Filtered
Silicon	8.13		0.0500	mg/L	EPA 200.7	Filtered
Propene	1.60		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.057		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP04-39-41 (17-09-0693-4)						
Zinc	0.0901		0.0100	mg/L	EPA 200.7	Filtered
Calcium	36.4		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.223		0.00500	mg/L	EPA 200.7	Filtered
Silicon	4.39		0.0500	mg/L	EPA 200.7	Filtered
Propene	1.55		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.043		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP04-43-45 (17-09-0693-5)						
Zinc	0.294		0.0100	mg/L	EPA 200.7	Filtered
Calcium	65.5		0.100	mg/L	EPA 200.7	Filtered
Manganese	1.04		0.00500	mg/L	EPA 200.7	Filtered
Silicon	10.5		0.0500	mg/L	EPA 200.7	Filtered
Chloride	170		2.0	mg/L	EPA 300.0	N/A
Sulfate	92		1.0	mg/L	EPA 300.0	N/A
Propene	1.40		1.00	ug/L	RSK-175M	N/A

^{*} MDL is shown

Detections Summary

Client: Geosyntec Consultants

Work Order:

Project Name:

17-09-0693

WR2274 / ESTCP Pendleton

595 Market Street, Suite 610 San Francisco, CA 94105-2811

Received: 09/11/17

Attn: Lea Kane Page 2 of 2

Client SampleID							
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction	
CP22-HP07-35-37 (17-09-0693-6)							
Zinc	0.0400		0.0100	mg/L	EPA 200.7	Filtered	
Calcium	55.1		0.100	mg/L	EPA 200.7	Filtered	
Manganese	0.360		0.00500	mg/L	EPA 200.7	Filtered	
Silicon	9.23		0.0500	mg/L	EPA 200.7	Filtered	
Chloride	180		2.0	mg/L	EPA 300.0	N/A	
Sulfate	91		1.0	mg/L	EPA 300.0	N/A	
1,2,3-Trichloropropane	0.16		0.010	ug/L	SRL 524M-TCP	EPA 5030C	
CP22-HP07-39-41 (17-09-0693-7)							
Propene	2.96		1.00	ug/L	RSK-175M	N/A	
1,2,3-Trichloropropane	0.068		0.0050	ug/L	SRL 524M-TCP	EPA 5030C	
CP22-HP07-43-45 (17-09-0693-8)							
Zinc	0.0743		0.0100	mg/L	EPA 200.7	Filtered	
Calcium	65.2		0.100	mg/L	EPA 200.7	Filtered	
Manganese	0.942		0.00500	mg/L	EPA 200.7	Filtered	
Silicon	10.8		0.0500	mg/L	EPA 200.7	Filtered	
Chloride	170		2.0	mg/L	EPA 300.0	N/A	
Sulfate	99		1.0	mg/L	EPA 300.0	N/A	

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Geosyntec Consultants			Date Recei	ved:			09/11/17
595 Market Street, Suite 610			Work Order	·:			17-09-0693
San Francisco, CA 94105-2811			Preparation	n:			N/A
•			Method:				RSK-175M
			Units:				ug/L
Project: WR2274 / ESTCP Pendle	eton					Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP05-39-41	17-09-0693-1-C	09/11/17 09:00	Aqueous	GC 52	N/A	09/13/17 14:34	170913L02
Parameter		Result	RL		<u>DF</u>	Qu	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP05-43-45	17-09-0693-2-D	09/11/17 12:00	Aqueous	GC 52	N/A	09/13/17 15:32	170913L02
Parameter		Result	RL		<u>DF</u>	Qu	alifiers
Propene		1.31	1.0	00	1.00		
CP22-HP04-35-37	17-09-0693-3-D	09/11/17 11:45	Aqueous	GC 52	N/A	09/13/17 16:04	170913L02
Parameter		Result	RL		<u>DF</u>	Qu	alifiers
Propene		1.60	1.0	00	1.00		
CP22-HP04-39-41	17-09-0693-4-G	09/11/17 13:00	Aqueous	GC 52	N/A	09/13/17 17:01	170913L02
Parameter		Result	RL		<u>DF</u>	Qu	<u>alifiers</u>
Propene		1.55	1.0	00	1.00		
CP22-HP04-43-45	17-09-0693-5-G	09/11/17 13:15	Aqueous	GC 52	N/A	09/13/17 18:09	170913L02
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Propene		1.40	1.0	0	1.00		
CP22-HP07-35-37	17-09-0693-6-G	09/11/17 14:15	Aqueous	GC 52	N/A	09/13/17 18:36	170913L02
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Propene		ND	1.0	0	1.00		
CP22-HP07-39-41	17-09-0693-7-D	09/11/17 15:15	Aqueous	GC 52	N/A	09/13/17 19:31	170913L02
Parameter		Result	RL		<u>DF</u>	Qu	<u>alifiers</u>
Propene		2.96	1.0	00	1.00		
CP22-HP07-43-45	17-09-0693-8-D	09/11/17 14:45	Aqueous	GC 52	N/A	09/13/17 20:35	170913L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qu	alifiers
Propene		ND	1.0	00	1.00		

Page 2 of 2

Project: WR2274 / ESTCP Pendleton

Analytical Report

 Geosyntec Consultants
 Date Received:
 09/11/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0693

 San Francisco, CA 94105-2811
 Preparation:
 N/A

 Method:
 RSK-175M

 Units:
 ug/L

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-325-83	N/A	Aqueous	GC 52	N/A	09/13/17 10:48	170913L02
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Propene		ND	1.0	00	1.00		

Geosyntec Consultants	Date Received:	09/11/17
595 Market Street, Suite 610	Work Order:	17-09-0693
San Francisco, CA 94105-2811	Preparation:	N/A
	Method:	EPA 300.0
	Units:	mg/L
Project: WR2274 / ESTCP Pendleton		Page 1 of 2

<u> </u>							
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch I
CP22-HP05-39-41	17-09-0693-1-K	09/11/17 09:00	Aqueous	IC 9	N/A	09/12/17 13:52	170912L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		80	1.0)	1.00		
CP22-HP05-39-41	17-09-0693-1-K	09/11/17 09:00	Aqueous	IC 9	N/A	09/12/17 16:26	170912L0
Parameter Parameter		Result	RL	•	<u>DF</u>	Qua	alifiers
Chloride		170	2.0)	2.00		
CP22-HP04-43-45	17-09-0693-5-K	09/11/17 13:15	Aqueous	IC 9	N/A	09/12/17 14:11	170912L0
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		92	1.0)	1.00		
CP22-HP04-43-45	17-09-0693-5-K	09/11/17 13:15	Aqueous	IC 9	N/A	09/12/17 16:45	170912L0 ⁻
Parameter Parameter		Result	RL	•	<u>DF</u>	Qua	alifiers
Chloride		170	2.0)	2.00		
CP22-HP07-35-37	17-09-0693-6-K	09/11/17 14:15	Aqueous	IC 9	N/A	09/12/17 14:30	170912L0
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		91	1.0)	1.00		
CP22-HP07-35-37	17-09-0693-6-K	09/11/17 14:15	Aqueous	IC 9	N/A	09/12/17 17:41	170912L0
Parameter		Result	RL		<u>DF</u>	Qua	alifiers

Geosyntec Consultants Date Received: 09/11/17 595 Market Street, Suite 610 Work Order: 17-09-0693 San Francisco, CA 94105-2811

N/A Preparation: Method: EPA 300.0 Units: mg/L

Page 2 of 2 Project: WR2274 / ESTCP Pendleton

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP07-43-45	17-09-0693-8-K	09/11/17 14:45	Aqueous	IC 9	N/A	09/12/17 14:49	170912L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		99	1.0)	1.00		

CP22-HP07-43-45	17-09-0693-8-K	09/11/17 14:45	Aqueous IC 9	N/A	09/12/17 170912L01 18:00	
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers	
Chloride		170	2.0	2.00		

Method Blank	099-12-906-7899	N/A	Aqueous IC 9	N/A	09/12/17 170912L01 11:38
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Chloride		ND	1.0	1.00	
Nitrite (as N)		ND	0.10	1.00	
Nitrate (as N)		ND	0.10	1.00	
Sulfate		ND	1.0	1.00	

 Geosyntec Consultants
 Date Received:
 09/11/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0693

 San Francisco, CA 94105-2811
 Preparation:
 Filtered

 Method:
 EPA 200.7

 Units:
 mg/L

Project: WR2274 / ESTCP Pendleton Page 1 of 2

Floject. WKZZ747 ESTCF	- endictori					1 6	ige i oi z
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP05-39-41	17-09-0693-1-J	09/11/17 09:00	Aqueous	ICP 7300	09/14/17	09/15/17 13:25	170914LA5F
<u>Parameter</u>		<u>Result</u>	RL	i	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		0.0467	0.0	100	1.00		
Calcium		68.7	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		1.15	0.0	00500	1.00		
Silicon		11.9	0.0	500	1.00		
CP22-HP04-35-37	17-09-0693-3-J	09/11/17 11:45	Aqueous	ICP 7300	09/14/17	09/15/17 13:28	170914LA5F
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Zinc		0.340	0.0	100	1.00		
Calcium		34.0	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		0.414	0.0	00500	1.00		
Silicon		8.13	0.0	500	1.00		
CP22-HP04-39-41	17-09-0693-4-J	09/11/17 13:00	Aqueous	ICP 7300	09/14/17	09/15/17 13:29	170914LA5F

CP22-HP04-39-41	17-09-0693-4-J	09/11/17 13:00	Aqueous ICP 7300	09/14/17	09/15/17 170914LA5F 13:29
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		0.0901	0.0100	1.00	
Calcium		36.4	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		0.223	0.00500	1.00	
Silicon		4.39	0.0500	1.00	

CP22-HP04-43-45	17-09-0693-5-J	09/11/17 13:15	Aqueous ICP 7300	09/14/17	09/15/17 170914LA5F 13:30
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		0.294	0.0100	1.00	
Calcium		65.5	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		1.04	0.00500	1.00	
Silicon		10.5	0.0500	1.00	

Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-0693
San Francisco, CA 94105-2811
Preparation:
Filtered
Method:
EPA 200.7

Units: mg/L

Project: WR2274 / ESTCP Pendleton Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP07-35-37	17-09-0693-6-J	09/11/17 14:15	Aqueous	ICP 7300	09/14/17	09/15/17 13:31	170914LA5F
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
Zinc		0.0400	0.0	0100	1.00		
Calcium		55.1	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		0.360	0.0	00500	1.00		
Silicon		9.23	0.0)500	1.00		

CP22-HP07-43-45	17-09-0693-8-J	09/11/17 14:45	Aqueous ICP 7300	09/14/17	09/15/17 13:34	170914LA5F
Parameter		Result	<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		0.0743	0.0100	1.00		
Calcium		65.2	0.100	1.00		
Iron		ND	0.100	1.00		
Manganese		0.942	0.00500	1.00		
Silicon		10.8	0.0500	1.00		

Method Blank	099-14-304-633	N/A	Aqueous ICP 7300	09/14/17	09/15/17 170914LA5F 12:18
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Zinc		ND	0.0100	1.00	
Calcium		ND	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		ND	0.00500	1.00	
Silicon		ND	0.0500	1.00	

Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-0693
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Method: EPA 8260B Units: ug/L

Project: WR2274 / ESTCP Pendleton

Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP05-39-41	17-09-0693-1-A	09/11/17 09:00	Aqueous	GC/MS L	09/12/17	09/12/17 18:18	170912L002
Parameter	·	Result	RL	:	<u>DF</u>	Qua	alifiers
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		87	68	-120			
Dibromofluoromethane		117	80	-127			
1,2-Dichloroethane-d4		108	80	-128			
Toluene-d8		99	80	-120			

CP22-HP04-39-41	17-09-0693-4-A	09/11/17 13:00	Aqueous GC/MS L	09/12/17	09/12/17 18:49	170912L002
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
1,2-Dichloropropane		ND	0.50	1.00		
1,3-Dichloropropane		ND	1.0	1.00		
Allyl Chloride		ND	1.0	1.00		
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		89	68-120			
Dibromofluoromethane		109	80-127			
1,2-Dichloroethane-d4		108	80-128			
Toluene-d8		99	80-120			

CP22-HP04-43-45	17-09-0693-5-A	09/11/17 13:15	Aqueous GC/MS L	09/12/17	09/12/17 170912L002 19:20
Parameter		Result	<u>RL</u>	DF	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		89	68-120		
Dibromofluoromethane		109	80-127		
1,2-Dichloroethane-d4		111	80-128		
Toluene-d8		100	80-120		

Geosyntec Consultants
Date Received:

Work Order:

17-09-0693
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B
Units:

ug/L

Project: WR2274 / ESTCP Pendleton Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP07-35-37	17-09-0693-6-A	09/11/17 14:15	Aqueous	GC/MS L	09/12/17	09/12/17 19:50	170912L002
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	<u>llifiers</u>
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		88	68	-120			
Dibromofluoromethane		102	80	-127			
1,2-Dichloroethane-d4		112	80	-128			
Toluene-d8		100	80	-120			

CP22-HP07-43-45	17-09-0693-8-A	09/11/17 14:45	Aqueous GC/MS L	09/12/17	09/12/17 170912L002 20:21
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		87	68-120		
Dibromofluoromethane		103	80-127		
1,2-Dichloroethane-d4		110	80-128		
Toluene-d8		99	80-120		

TRIP BLANK	17-09-0693-9-A	09/11/17 00:00	Aqueous GC/MS L	09/12/17	09/12/17 170912L002 17:47
Parameter		Result	<u>RL</u>	DF	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		86	68-120		
Dibromofluoromethane		111	80-127		
1,2-Dichloroethane-d4		112	80-128		
Toluene-d8		99	80-120		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

17-09-0693 EPA 5030C EPA 8260B

09/11/17

Units: ug/L Page 3 of 3

Project: WR2274 / ESTCP Pendleton

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-446-239	N/A	Aqueous	GC/MS L	09/12/17	09/12/17 09:57	170912L002
<u>Parameter</u>		<u>Result</u>	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		89	68	-120			
Dibromofluoromethane		98	80	-127			
1,2-Dichloroethane-d4		96	80	-128			
Toluene-d8		95	80	-120			

Geosyntec Consultants			Date Recei	ved:			09/11/17
595 Market Street, Suite 610			Work Orde	r:			17-09-0693
San Francisco, CA 94105-2811			Preparation	n:			EPA 5030C
			Method:			S	RL 524M-TCP
			Units:				ug/L
Project: WR2274 / ESTCP Pendle	eton					Pa	ige 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP05-39-41	17-09-0693-1-D	09/11/17 09:00	Aqueous	GC/MS M	09/12/17	09/12/17 15:19	170912L017
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		0.076	0.0	0050	1.00		
CP22-HP05-43-45	17-09-0693-2-B	09/11/17 12:00	Aqueous	GC/MS M	09/20/17	09/20/17 12:24	170920L049
<u>Parameter</u>		Result	RL	1	DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-HP04-35-37	17-09-0693-3-A	09/11/17 11:45	Aqueous	GC/MS M	09/12/17	09/12/17 16:18	170912L017
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		0.057	0.0	0050	1.00		
CP22-HP04-39-41	17-09-0693-4-D	09/11/17 13:00	Aqueous	GC/MS M	09/12/17	09/12/17 16:47	170912L017
<u>Parameter</u>		Result	RL	:	DF	Qua	alifiers
1,2,3-Trichloropropane		0.043	0.0	0050	1.00		
CP22-HP04-43-45	17-09-0693-5-D	09/11/17 13:15	Aqueous	GC/MS M	09/12/17	09/12/17 17:17	170912L017
<u>Parameter</u>		Result	<u>RL</u>	<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-HP07-35-37	17-09-0693-6-E	09/11/17 14:15	Aqueous	GC/MS M	09/20/17	09/20/17 13:23	170920L049
<u>Parameter</u>		Result	RL	:	DF	Qua	alifiers
1,2,3-Trichloropropane		0.16	0.0)10	2.00		
CP22-HP07-39-41	17-09-0693-7-A	09/11/17 15:15	Aqueous	GC/MS M	09/12/17	09/12/17 18:17	170912L017
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.068	0.0	0050	1.00		
CP22-HP07-43-45	17-09-0693-8-D	09/11/17 14:45	Aqueous	GC/MS M	09/12/17	09/12/17 18:47	170912L017
Parameter		Result	RL		DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		

Project: WR2274 / ESTCP Pendleton

Analytical Report

Geosyntec Consultants

Date Received:

09/11/17

595 Market Street, Suite 610

Work Order:

17-09-0693

San Francisco, CA 94105-2811

Preparation:

Method:

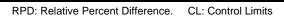
Units:

ug/L

Units: ug/L Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-022-1363	N/A	Aqueous	GC/MS M	09/12/17	09/12/17 12:20	170912L017
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		

Method Blank	099-10-022-1366	N/A	Aqueous GC/MS M	09/20/17	09/20/17 11:42	170920L049
Parameter		Result	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
1 2 3-Trichloropropage		ND	0.0050	1.00		



Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-0693
San Francisco, CA 94105-2811
Preparation:
N/A
Method:
EPA 300.0

Project: WR2274 / ESTCP Pendleton Page 1 of 5

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
17-09-0688-18	Sample		Aqueous	IC 9)	N/A	09/12/17	13:33	170912S01	
17-09-0688-18	Matrix Spike		Aqueous	IC 9)	N/A	09/12/17	15:08	170912S01	
17-09-0688-18	Matrix Spike	Duplicate	Aqueous	IC 9)	N/A	09/12/17	15:27	170912S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chloride	130.9	50.00	190.0	118	190.0	118	80-120	0	0-20	
Nitrite (as N)	ND	2.500	4.452	178	4.380	175	80-120	2	0-20	3
Nitrate (as N)	ND	5.000	4.752	95	4.746	95	80-120	0	0-20	
Sulfate	37.38	50.00	98.81	123	99.03	123	80-120	0	0-20	3

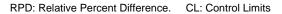
Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811

Project: WR2274 / ESTCP Pendleton

Date Received: Work Order: Preparation: Method: 09/11/17 17-09-0693 Filtered EPA 200.7

Page 2 of 5

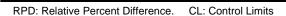
Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
CP22-HP05-39-41	Sample		Aqueou	s IC	P 7300	09/14/17	09/15/17	13:25	170914SA5	
CP22-HP05-39-41	Matrix Spike		Aqueou	s IC	P 7300	09/14/17	09/15/17	13:26	170914SA5	
CP22-HP05-39-41	Matrix Spike	Duplicate	Aqueou	s IC	P 7300	09/14/17	09/15/17	13:27	170914SA5	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	0.04669	0.5000	0.5897	109	0.6065	112	80-120	3	0-20	
Calcium	68.65	0.5000	69.43	4X	69.08	4X	80-120	4X	0-20	Q
Iron	ND	0.5000	0.5529	111	0.5746	115	80-120	4	0-20	
Manganese	1.147	0.5000	1.669	104	1.663	103	80-120	0	0-20	
Silicon	11.85	0.5000	12.39	4X	12.09	4X	80-120	4X	0-20	Q


RPD: Relative Percent Difference. CL: Control Limits

Geosyntec Consultants
Date Received:
09/11/17
595 Market Street, Suite 610
Work Order:
17-09-0693
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 3 of 5

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-09-0680-3	Sample		Aqueou	s G	C/MS L	09/12/17	09/12/17	10:35	170912S043	
17-09-0680-3	Matrix Spike		Aqueou	s G	C/MS L	09/12/17	09/12/17	13:09	170912S043	
17-09-0680-3	Matrix Spike	Duplicate	Aqueou	s G	C/MS L	09/12/17	09/12/17	13:40	170912S043	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2-Dichloropropane	ND	10.00	9.444	94	9.281	93	75-125	2	0-20	
1,3-Dichloropropane	ND	10.00	8.978	90	9.154	92	75-125	2	0-20	
Allyl Chloride	ND	10.00	8.155	82	9.034	90	80-120	10	0-20	



Geosyntec Consultants
Date Received: 09/11/17
595 Market Street, Suite 610
Work Order: 17-09-0693
San Francisco, CA 94105-2811
Preparation: EPA 5030C
Method: SRL 524M-TCP

Project: WR2274 / ESTCP Pendleton Page 4 of 5

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
17-09-0280-2	Sample		Aqueous	s GC	MS M	09/12/17	09/12/17	12:50	170912S010	
17-09-0280-2	Matrix Spike		Aqueous	s GC	MS M	09/12/17	09/12/17	13:49	170912S010	
17-09-0280-2	Matrix Spike	Duplicate	Aqueous	s GC	MS M	09/12/17	09/12/17	14:19	170912S010	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	ND	0.02500	0.03300	132	0.02950	118	70-130	11	0-20	3

Geosyntec Consultants

Date Received: 09/11/17

595 Market Street, Suite 610

Work Order: 17-09-0693

San Francisco, CA 94105-2811

Preparation: EPA 5030C

Method: SRL 524M-TCP

Project: WR2274 / ESTCP Pendleton Page 5 of 5

Quality Control Sample ID	Туре		Matrix	lr	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
CP22-HP07-35-37	Sample		Aqueou	ıs G	C/MS M	09/20/17	09/20/17	13:23	170920S020	
CP22-HP07-35-37	Matrix Spike		Aqueou	ıs G	C/MS M	09/20/17	09/20/17	14:52	170920S020	
CP22-HP07-35-37	Matrix Spike	Duplicate	Aqueou	ıs G	C/MS M	09/20/17	09/20/17	15:22	170920S020	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.1646	0.01000	0.1934	288	0.1838	192	70-130	5	0-20	3

Quality Control - LCS/LCSD

Geosyntec Consultants
595 Market Street, Suite 610
San Francisco, CA 94105-2811

Date Received: Work Order: Preparation: Method:

17-09-0693 N/A

09/11/17

RSK-175M

Project: WR2274 / ESTCP Pendleton

Page 1 of 6

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Dat	e Analyzed	LCS/LCSD B	atch Number
099-14-325-83	LCS	Aqı	ieous	GC 52	N/A	09/	13/17 09:44	170913L02	
099-14-325-83	LCSD	Aqı	ieous	GC 52	N/A	09/	13/17 10:13	170913L02	
<u>Parameter</u>	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Propene	103.0	101.5	99	100.6	98	80-120	1	0-20	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation:

17-09-0693 N/A

09/11/17

Method:

EPA 300.0

Project: WR2274 / ESTCP Pendleton

Page 2 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date	Prepared Date	Analyzed LCS Ba	atch Number
099-12-906-7899	LCS	Aqueous	IC 9	N/A	09/1	2/17 11:57 170912	2L01
<u>Parameter</u>		Spike Added	Conc. Recov	<u>/ered</u>	LCS %Rec.	%Rec. CL	Qualifiers
Chloride		50.00	50.87		102	90-110	
Nitrite (as N)		2.500	2.573		103	90-110	
Nitrate (as N)		5.000	4.854		97	90-110	
Sulfate		50.00	52.60		105	90-110	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811

Silicon

Project: WR2274 / ESTCP Pendleton

Date Received: Work Order: Preparation: 09/11/17 17-09-0693 Filtered EPA 200.7

Method:

0.5239

105

85-115

Page 3 of 6

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-14-304-633	LCS	Aqueous	ICP 7300 0	9/14/17	09/15/17 12:19	170914LA5F
Parameter		Spike Added	Conc. Recovered	d LCS %Re	c. %Rec.	CL Qualifiers
Zinc		0.5000	0.5509	110	85-115	
Calcium		0.5000	0.4953	99	85-115	
Iron		0.5000	0.5451	109	85-115	
Manganese		0.5000	0.5370	107	85-115	

0.5000

RPD: Relative Percent Difference. CL: Control Limits

Geosyntec Consultants
Date Received:
09/11/17
595 Market Street, Suite 610
Work Order:
17-09-0693
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 4 of 6

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-16-446-239	LCS	Aqueous	GC/MS L 0	09/12/17	09/12/17 09:15	170912L002
<u>Parameter</u>		Spike Added	Conc. Recovered	d LCS %Re	ec. %Rec	. CL Qualifiers
1,2-Dichloropropane		10.00	9.058	91	74-122	2
1,3-Dichloropropane		10.00	8.837	88	74-128	3
Allyl Chloride		10.00	7.580	76	70-130)

09/11/17

17-09-0693

EPA 5030C

Quality Control - LCS

Geosyntec Consultants Date Received: 595 Market Street, Suite 610 Work Order: Preparation: San Francisco, CA 94105-2811 Method: SRL 524M-TCP

Project: WR2274 / ESTCP Pendleton Page 5 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-10-022-1363	LCS	Aqueous	GC/MS M	09/12/17	09/12/17 11:42	170912L017
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.005000	0.005200	104	80-120	0

RPD: Relative Percent Difference. CL: Control Limits

Geosyntec ConsultantsDate Received:09/11/17595 Market Street, Suite 610Work Order:17-09-0693San Francisco, CA 94105-2811Preparation:EPA 5030CMethod:SRL 524M-TCP

Project: WR2274 / ESTCP Pendleton Page 6 of 6

Quality Control Sample ID	Туре	Matrix	ix Instrument Date Prepar		Date Analyzed	LCS Batch Number		
099-10-022-1366	LCS	Aqueous	GC/MS M	09/20/17	09/20/17 11:10	170920L049		
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers		
1,2,3-Trichloropropane		0.005000	0.005700	114	80-12	0		

Sample Analysis Summary Report

Work Order: 17-09-0693				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 200.7	Filtered	935	ICP 7300	1
EPA 300.0	N/A	834	IC 9	1
EPA 8260B	EPA 5030C	316	GC/MS L	2
RSK-175M	N/A	1078	GC 52	2
SRL 524M-TCP	EPA 5030C	486	GC/MS M	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 17-09-0693 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.
 - Analytic presence was not committed by second column of Co/Mo analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Document Number:, 10293

17-09-0693	Page of	White copy: to accompany samples	Yellow copy: field copy		Only	Comments Bottles											Turn-around Time: 及 Normal □ Rush:	Date Oq[11] 17		
Analysis Request and Chain of Custody Record	Required Analyses	4.00 WSE1-74 471 471 70220	EPA 3 CP 13 SE VOCS by 8	Bottle Type a	Way 1	Number	3 3 1 1 1	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 1	3 3 1	3 1 1 2 5 1 5	3 3 3 1	3 3	3 3 1 (ing to brockwelle sousynke, com	6 (Signiture/Affiliation)	18:0 (Signiture/Affiliation)	3. Received by (Signiture/Affiliation)
Analysis Reque	Project Number	Project Contact Lab Contact S. Mark		<u> </u>	o o o	ــــــــــــــــــــــــــــــــــــــ	0900 Wake 3	1280	1(45/	1300	ا این ا	1415	اکاد		>		do LKanc@gossynku.com 7	Date 7	Date OO Time	Date Time
	Project Numb	Project Conta	Lab Phone Carrier/Waybill No.			Date	1/11/13								>			R R		
	Project Name EstCP Pensulum	Samplers Names B. P. Laboratory Name	Lab Address			Sample Name	(CP12-HPOS - 39.41		\$ CP22- HPOH - 55-37	4 Clu-Wos- 39-41	CAST-HARM - 43-45	6 Orz-1407-55-37	702-1107-39-41		9 TRIP BLANK		Special Instructions: & Lorento	1. Relinquished by (Signiture/Affiliation)	2. Relinquished by (Signiture/Affiliation)	3. Relinquished by (Signiture/Affiliation)

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 Geosyntec^o

Calscience

WORK ORDER NUMBER: 17-09-0036

SAMPLE RECEIPT CHECKLIST

COOLER ____OF ___

CLIENT: GEOSYNTEC	DATE	≣: <u>09 / 1</u>	1 / 2017
TEMPERATURE: (Criteria: 0.0°C − 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: +0.2°C); Temperature (w/o CF):		Blank	□ Sample
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: ☐ Air ☐ Filter		Checked	by: <u>671</u>
CUSTODY SEAL: Cooler	□ N/A	Checked I	by: <u>671</u>
SAMPLE CONDITION:			No N/A
Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete			
□ Sampling date □ Sampling time □ Matrix □ Number of containers □ No analysis requested □ No relinquished □ No relinquished date □ No relinquished	quished time		
Sampler's name indicated on COC			
Sample container label(s) consistent with COC			
Sample container(s) intact and in good condition			
Proper containers for analyses requested			
Sufficient volume/mass for analyses requested		A	
Samples received within holding time		<u></u> ₽	
Aqueous samples for certain analyses received within 15-minute holding time			
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen			
Proper preservation chemical(s) noted on COC and/or sample container Unpreserved aqueous sample(s) received for certain analyses U Volatile Organics Total Metals Dissolved Metals		ا کر	
Acid/base preserved samples - pH within acceptable range		. 🗖	
Container(s) for certain analysis free of headspace			
☑ Volatile Organics ☑ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 450 ☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Ha	00)		
Tedlar™ bag(s) free of condensation			
• • • • • • • • • • • • • • • • • • • •	k Lot Numbe		
Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJna₂ □ 125AGB □ 125AGBh □ 125AGBh <t< td=""><td>AGJ □ 500AG</td><td>GJs (pH2)</td><td>□ 500PB</td></t<>	AGJ □ 500AG	GJ s (pH2)	□ 500PB
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () EnCores® () TerraCores® ()			
Air: ☐ Tedlar™ ☐ Canister ☐ Sorbent Tube ☐ PUF ☐ Other Matrix ():			
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z	Z = Ziploc/Res	ealable Bag	
Preservative: \mathbf{b} = buffered, \mathbf{f} = filtered, \mathbf{h} = HCl, \mathbf{n} = HNO ₃ , \mathbf{na} = NaOH, $\mathbf{na_2}$ = Na ₂ S ₂ O ₃ , \mathbf{p} = H ₃ PC			1 (
$\mathbf{s} = H_2SO_4$, $\mathbf{u} = \text{ultra-pure}$, $\mathbf{x} = Na_2SO_3 + NaHSO_4$. H_2O , $\mathbf{znna} = Zn (CH_3CO_2)_2 + NaC_3$)H	Reviewed b	эу: <u>ИУ</u>

Calscience

WORK ORDER NUMBER: 17-09-06 9 3

SAMPLE ANOMALY REPORT

	DATE: <u>09 / 11 / 201</u>
SAMPLES, CONTAINERS, AND LABELS:	Comments
☐ Sample(s) NOT RECEIVED but listed on COC	
☐ Sample(s) received but NOT LISTED on COC	
☐ Holding time expired (list client or ECI sample ID and analysis)	
☐ Insufficient sample amount for requested analysis (list analysis)	
☐ Improper container(s) used (list analysis)	
☐ Improper preservative used (list analysis)	
□ pH outside acceptable range (list analysis)	
\square No preservative noted on COC or label (list analysis and notify la	o)
☐ Sample container(s) not labeled	
☐ Client sample label(s) illegible (list container type and analysis)	
☐ Client sample label(s) do not match COC (comment)	
☐ Project information	: :
☐ Client sample ID	
☐ Sampling date and/or time	
☐ Number of container(s)	
☐ Requested analysis	
☐ Sample container(s) compromised (comment)	
☐ Broken	
☐ Water present in sample container	
☐ Air sample container(s) compromised (comment)	
□ Flat	
☐ Very low in volume	
☐ Leaking (not transferred; duplicate bag submitted)	
☐ Leaking (transferred into ECI Tedlar™ bags*)	
☐ Leaking (transferred into client's Tedlar™ bags*)	
* Transferred at client's request.	
MISCELLANEOUS: (Describe)	Comments
HEADSPACE:	
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis)	(Containers with bubble for other analysis)
ECI ECI Total ECI ECI Total Sample ID Container ID Number** Sample ID Container ID Number	* ECI ECI Total Sample ID Container ID Number** Requested Analysis
4 C, F, H, I 9	
6 C,I 9	
7 B,C,E,F 6	
Comments:	
Comments.	Reported by: (년년)
** Record the total number of containers (i.e., vials or bottles) for the affected sample.	Reviewed by: 677
resolution total rambes of contamers (i.e., vals of bottles) for the anected sample.	Neviewed by

2017-08-29 Revision

Contents

Stephen Nowak

From: Lea Kane <LKane@Geosyntec.com>
Sent: Tuesday, September 12, 2017 9:04 AM

To: Stephen Nowak

Cc: Hoaibao Nguyen; Brian G. Rockwell

Subject: RE: ESTCP Pendleton

Hi Stephen,

Thanks for following up. Please see the full analyte list for this project below:

Analyte	Method
TCP	SRL 524M-TCP
TCP degradation products 3-chloro-1-	USEPA 8260B
propene,	
1,2-DCP, 1,3-DCP	
Propene	RSK-175M
Field parameters (pH, DO, ORP,	Field measurement
temperature, specific conductivity)	using an integrated
	instrument
Anions	USEPA 300.0
Cations species, including dissolved	USEPA 200.7
zinc	

Let me know if you have any other questions.

Thanks,

Lea

From: Stephen Nowak [mailto:StephenNowak@eurofinsUS.com]

Sent: Tuesday, September 12, 2017 8:44 AM **To:** Lea Kane < LKane@Geosyntec.com>

Cc: Hoaibao Nguyen < Hoaibao Nguyen@eurofinsUS.com >

Subject: ESTCP Pendleton

Hi Lea-

I have a question on the attached COC for the ESTCP Pendleton project.

For EPA 200.7 –what metals do you need reported?

The container received is unpreserved so it looks like we need to lab filter- is this correct?

Please let me know- thanks.

Stephen Nowak Project Manager

o Contents

Stephen Nowak

From: Lea Kane <LKane@Geosyntec.com>
Sent: Tuesday, September 12, 2017 9:26 AM

To: Stephen Nowak
Cc: Brian G. Rockwell
Subject: RE: ESTCP Pendleton

Yes, thanks!

From: Stephen Nowak [mailto:StephenNowak@eurofinsUS.com]

Sent: Tuesday, September 12, 2017 9:22 AM **To:** Lea Kane <LKane@Geosyntec.com>

Cc: Brian G. Rockwell < BRockwell@Geosyntec.com>

Subject: RE: ESTCP Pendleton

Lea-

We quoted Metals (Si, Ca, Fe, Mn) and Zn. Is this what you need for 200.7?

Stephen Nowak Project Manager

Calscience

Eurofins Calscience, Inc. 7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494

Email: <u>StephenNowak@EurofinsUS.com</u> Website: <u>www.eurofinsUS.com/Calscience</u>

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication.

Calscience

WORK ORDER NUMBER: 17-09-0821

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: WR2274 / ESTCP Pendleton

Attention: Lea Kane

595 Market Street

Suite 610

San Francisco, CA 94105-2811

Approximation for

Approved for release on 09/26/2017 by:

Stephen Nowak Project Manager

Email your PM >

ResultLink >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Ol: (D : ()		MDOOTA	FOTOD	Describer to a
Client Project I	name:	WR2274/	ESTUP	Pendleton

Work Order Number: 17-09-0821

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 RSK-175M (Aqueous). 4.2 EPA 300.0 Anions (Aqueous). 4.3 EPA 200.7 ICP Metals (Aqueous). 4.4 EPA 8260B Volatile Organics (Aqueous). 4.5 SRL 524M-TCP 1,2,3-Trichloropropane (Aqueous).	8 10 14 18 23
5	Quality Control Sample Data	25 25 31
6	Sample Analysis Summary	40
7	Glossary of Terms and Qualifiers	41
8	Chain-of-Custody/Sample Receipt Form	42

Work Order Narrative

Work Order: 17-09-0821 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/12/17. They were assigned to Work Order 17-09-0821.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Work Order: Project Name:

WR2274 / ESTCP Pendleton

PO Number:

Date/Time

Received:

Number of Containers:

121

17-09-0821

09/12/17 18:30

Attn: Lea Kane

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
CP22-HP02-35-37	17-09-0821-1	09/12/17 08:00	11	Aqueous
CP22-HP02-39-41	17-09-0821-2	09/12/17 08:50	2	Aqueous
CP22-HP02-43-45	17-09-0821-3	09/12/17 09:00	9	Aqueous
CP22-HP07-39-41	17-09-0821-4	09/12/17 07:15	5	Aqueous
CP22-HP09-35-37	17-09-0821-5	09/12/17 10:25	11	Aqueous
CP22-HP09-39-41	17-09-0821-6	09/12/17 10:30	7	Aqueous
CP22-HP09-43-45	17-09-0821-7	09/12/17 10:45	11	Aqueous
CP22-HP10-35-37	17-09-0821-8	09/12/17 12:15	11	Aqueous
CP22-HP10-39-41	17-09-0821-9	09/12/17 12:20	11	Aqueous
CP22-HP10-43-45	17-09-0821-10	09/12/17 14:20	11	Aqueous
CP22-DUP1-09122017	17-09-0821-11	09/12/17 14:00	11	Aqueous
CP22-HP12-35-37	17-09-0821-12	09/12/17 14:45	11	Aqueous
EB-09122017	17-09-0821-13	09/12/17 15:30	8	Aqueous
ГВ-09122017	17-09-0821-14	09/12/17 00:00	2	Aqueous

Detections Summary

Client: Geosyntec Consultants Work Order: 17-09-0821

595 Market Street, Suite 610 Project Name: WR2274 / ESTCP Pendleton

San Francisco, CA 94105-2811 Received: 09/12/17

Attn: Lea Kane Page 1 of 3

Part	Client SampleID						
Zinc 0.0333 0.0100 mg/L EPA 200.7 Filtered Calcium 65.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.792 0.00500 mg/L EPA 200.7 Filtered Silicon 13.8 0.0500 mg/L EPA 200.7 Filtered Chloride 160 2.0 mg/L EPA 300.0 N/A Sulfate 97 1.0 mg/L EPA 300.0 N/A CP22-HP02-39-41 (17-09-0821-2) EPA 300.0 N/A 2.24 HP02-43-45 (17-09-0821-2) EPA 200.7 EPA 5030C CP22-HP02-39-41 (17-09-0821-3) EPA 200.7 Filtered Zinc 0.0310 0.0100 mg/L EPA 200.7 Filtered Galcium 57.8 0.100 mg/L EPA 200.7 Filtered CP22-HP07-39-41 (17-09-0821-4) EPA 200.7 Filtered Zinc 0.109 0.0100 mg/L EPA 200	<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
Calcium 65.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.792 0.00500 mg/L EPA 200.7 Filtered Silicon 13.8 0.0500 mg/L EPA 200.7 Filtered Choride 160 2.0 mg/L EPA 300.0 N/A Sulfate 97 1.0 mg/L EPA 300.0 N/A CP22-HP02-39-41 (17-09-0821-2) """">"""""""""""""""""""""""""""""""	CP22-HP02-35-37 (17-09-0821-1)						
Manganese 0.792 0.00500 mg/L EPA 200.7 Filtered Silicon 13.8 0.0500 mg/L EPA 200.7 Filtered Chloride 160 2.0 mg/L EPA 300.0 N/A Sulfate 97 1.0 mg/L EPA 300.0 N/A CP22-HP02-39-41 (17-09-0821-2) V V SRL 524M-TCP EPA 5030C CP22-HP02-43-45 (17-09-0821-3) 0.12 0.0100 mg/L EPA 200.7 Filtered Clacium 57.8 0.100 mg/L EPA 200.7 Filtered Manganese 0.357 0.0500 mg/L EPA 200.7 Filtered Silicon 5.87 0.0500 mg/L EPA 200.7 Filtered CP22-HP07-39-41 (17-09-0821-4) 0.109 mg/L EPA 200.7 Filtered Zinc 0.109 mg/L EPA 200.7 Filtered Calcium 39.7 0.100 mg/L EPA 200.7 Filtered Manganese 1.08 0.0500	Zinc	0.0333		0.0100	mg/L	EPA 200.7	Filtered
Silicon 13.8 0.0500 mg/L EPA 200.7 Filtered Chloride 160 2.0 mg/L EPA 300.0 N/A Sulfate 97 1.0 mg/L EPA 300.0 N/A CP22-HP02-39-41 (17-09-0821-2) V V SRL 524M-TCP EPA 5030C CP22-HP02-43-45 (17-09-0821-3) V SRL 524M-TCP EPA 5030C Zinc 0.0310 0.0100 mg/L EPA 200.7 Filtered Calcium 57.8 0.100 mg/L EPA 200.7 Filtered Manganese 0.357 0.0500 mg/L EPA 200.7 Filtered Silicon 5.87 0.0500 mg/L EPA 200.7 Filtered CP22-HP07-39-41 (17-09-0821-4) V V EPA 200.7 Filtered Zinc 0.109 0.0100 mg/L EPA 200.7 Filtered Alarganese 1.08 0.00500 mg/L EPA 200.7 Filtered Silicon 9.78 0.0500 mg/L <	Calcium	65.9		0.100	mg/L	EPA 200.7	Filtered
Chloride 160 2.0 mg/L EPA 300.0 N/A Sulfate 97 1.0 mg/L EPA 300.0 N/A CP22-HP02-39-41 (17-09-0821-2) EPA 5030C <t< td=""><td>Manganese</td><td>0.792</td><td></td><td>0.00500</td><td>mg/L</td><td>EPA 200.7</td><td>Filtered</td></t<>	Manganese	0.792		0.00500	mg/L	EPA 200.7	Filtered
Sulfate 97 1.0 mg/L EPA 300.0 N/A CP22-HP02-39-41 (17-09-0821-2) EPA 5030C CP22-HP02-43-45 (17-09-0821-3) EPA 200.7 Filtered Calcium 57.8 0.100 mg/L EPA 200.7 Filtered Manganese 0.357 0.0500 mg/L EPA 200.7 Filtered Silicon 5.87 0.0500 mg/L EPA 200.7 Filtered CP22-HP07-39-41 (17-09-0821-4) EPA 200.7 Filtered Zinc 0.109 0.0100 mg/L EPA 200.7 Filtered Calcium 39.7 0.100 mg/L EPA 200.7 Filtered Manganese 1.08 0.0500 mg/L EPA 200.7 Filtered Silicon 9.78 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A CP22-HP09-3	Silicon	13.8		0.0500	mg/L	EPA 200.7	Filtered
CP22-HP02-39-41 (17-09-0821-2) 0.12 0.010 ug/L SRL 524M-TCP EPA 5030C CP22-HP02-43-45 (17-09-0821-3) Zinc 0.0310 0.0100 mg/L EPA 200.7 Filtered Calcium 57.8 0.100 mg/L EPA 200.7 Filtered Manganese 0.357 0.00500 mg/L EPA 200.7 Filtered Silicon 5.87 0.0500 mg/L EPA 200.7 Filtered CP22-HP07-39-41 (17-09-0821-4) V EPA 200.7 Filtered Zinc 0.109 0.0100 mg/L EPA 200.7 Filtered Calcium 39.7 0.100 mg/L EPA 200.7 Filtered Silicon 9.78 0.0500 mg/L EPA 200.7 Filtered Silicon 150 2.0 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A CP22-HP09-35-37 (17-09-0821-5) V EPA 200.7 Filtered Zinc 0.0240	Chloride	160		2.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane 0.12 0.010 ug/L SRL 524M-TCP EPA 5030C CP22-HP02-43-45 (17-09-0821-3) Zinc 0.0310 0.0100 mg/L EPA 200.7 Filtered Calcium 57.8 0.100 mg/L EPA 200.7 Filtered Manganese 0.357 0.0500 mg/L EPA 200.7 Filtered Silicon 5.87 0.0500 mg/L EPA 200.7 Filtered CP22-HP07-39-41 (17-09-0821-4) V EPA 200.7 Filtered Zinc 0.109 0.0100 mg/L EPA 200.7 Filtered Calcium 39.7 0.100 mg/L EPA 200.7 Filtered Manganese 1.08 0.00500 mg/L EPA 200.7 Filtered Silicon 9.78 0.0500 mg/L EPA 200.7 Filtered Sulfate 6.5 1.0 mg/L EPA 300.0 N/A CP22-HP09-35-37 (17-09-0821-5) V EPA 200.7 Filtered Zinc 0.0240	Sulfate	97		1.0	mg/L	EPA 300.0	N/A
CP22-HP02-43-45 (17-09-0821-3) Zinc 0.0310 0.0100 mg/L EPA 200.7 Filtered Calcium 57.8 0.100 mg/L EPA 200.7 Filtered Manganese 0.357 0.00500 mg/L EPA 200.7 Filtered Silicon 5.87 0.0500 mg/L EPA 200.7 Filtered CP22-HP07-39-41 (17-09-0821-4) Tinc 0.109 0.0100 mg/L EPA 200.7 Filtered Calcium 39.7 0.100 mg/L EPA 200.7 Filtered Manganese 1.08 0.00500 mg/L EPA 200.7 Filtered Silicon 9.78 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 200.7 Filtered CP22-HP09-35-37 (17-09-0821-5) Tinc 0.0240 0.0100 mg/L EPA 200.7 Filtered Calcium 69.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.708 0.00500	CP22-HP02-39-41 (17-09-0821-2)						
Zinc 0.0310 0.0100 mg/L EPA 200.7 Filtered Calcium 57.8 0.100 mg/L EPA 200.7 Filtered Manganese 0.357 0.00500 mg/L EPA 200.7 Filtered Silicon 5.87 0.0500 mg/L EPA 200.7 Filtered CP22-HP07-39-41 (17-09-0821-4) V V EPA 200.7 Filtered Zinc 0.109 0.0100 mg/L EPA 200.7 Filtered Calcium 39.7 0.100 mg/L EPA 200.7 Filtered Manganese 1.08 0.0500 mg/L EPA 200.7 Filtered Silicon 9.78 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A CP22-HP09-35-37 (17-09-0821-5) V EPA 200.7 Filtered Zinc 0.0240 0.0100 mg/L EPA 200.7 Filtered Calcium 69.9 0.100 mg/L	1,2,3-Trichloropropane	0.12		0.010	ug/L	SRL 524M-TCP	EPA 5030C
Calcium 57.8 0.100 mg/L EPA 200.7 Filtered Manganese 0.357 0.00500 mg/L EPA 200.7 Filtered Silicon 5.87 0.0500 mg/L EPA 200.7 Filtered CP22-HP07-39-41 (17-09-0821-4) V Filtered Filtered Zinc 0.109 0.0100 mg/L EPA 200.7 Filtered Calcium 39.7 0.100 mg/L EPA 200.7 Filtered Manganese 1.08 0.00500 mg/L EPA 200.7 Filtered Silicon 9.78 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A Sulfate 6.5 1.0 mg/L EPA 300.0 N/A CP22-HP09-35-37 (17-09-0821-5) Zinc 0.0240 0.0100 mg/L EPA 200.7 Filtered Calcium 69.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.708	CP22-HP02-43-45 (17-09-0821-3)						
Manganese 0.357 0.00500 mg/L EPA 200.7 Filtered CP22-HP07-39-41 (17-09-0821-4) Filtered 5.87 0.0500 mg/L EPA 200.7 Filtered Zinc 0.109 0.0100 mg/L EPA 200.7 Filtered Calcium 39.7 0.100 mg/L EPA 200.7 Filtered Manganese 1.08 0.00500 mg/L EPA 200.7 Filtered Silicon 9.78 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A Sulfate 6.5 1.0 mg/L EPA 300.0 N/A CP22-HP09-35-37 (17-09-0821-5) V EPA 200.7 Filtered Zinc 0.0240 0.0100 mg/L EPA 200.7 Filtered Calcium 69.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.708 0.00500 mg/L EPA 200.7 Filtered Silicon 12.7 </td <td>Zinc</td> <td>0.0310</td> <td></td> <td>0.0100</td> <td>mg/L</td> <td>EPA 200.7</td> <td>Filtered</td>	Zinc	0.0310		0.0100	mg/L	EPA 200.7	Filtered
Silicon 5.87 0.0500 mg/L EPA 200.7 Filtered CP22-HP07-39-41 (17-09-0821-4) Jinc 0.109 0.0100 mg/L EPA 200.7 Filtered Calcium 39.7 0.100 mg/L EPA 200.7 Filtered Manganese 1.08 0.00500 mg/L EPA 200.7 Filtered Silicon 9.78 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A Sulfate 6.5 1.0 mg/L EPA 300.0 N/A CP22-HP09-35-37 (17-09-0821-5) V EPA 200.7 Filtered Zinc 0.0240 0.0100 mg/L EPA 200.7 Filtered Calcium 69.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.708 0.00500 mg/L EPA 200.7 Filtered Silicon 12.7 0.0500 mg/L EPA 200.7 Filtered Chloride 150	Calcium	57.8		0.100	mg/L	EPA 200.7	Filtered
CP22-HP07-39-41 (17-09-0821-4) Zinc 0.109 0.0100 mg/L EPA 200.7 Filtered Calcium 39.7 0.100 mg/L EPA 200.7 Filtered Manganese 1.08 0.00500 mg/L EPA 200.7 Filtered Silicon 9.78 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A Sulfate 6.5 1.0 mg/L EPA 300.0 N/A CP22-HP09-35-37 (17-09-0821-5) Zinc 0.0240 0.0100 mg/L EPA 200.7 Filtered Calcium 69.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.708 0.00500 mg/L EPA 200.7 Filtered Silicon 12.7 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 200.7 Filtered	Manganese	0.357		0.00500	mg/L	EPA 200.7	Filtered
Zinc 0.109 0.0100 mg/L EPA 200.7 Filtered Calcium 39.7 0.100 mg/L EPA 200.7 Filtered Manganese 1.08 0.00500 mg/L EPA 200.7 Filtered Silicon 9.78 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A Sulfate 6.5 1.0 mg/L EPA 300.0 N/A CP22-HP09-35-37 (17-09-0821-5) V V EPA 200.7 Filtered Calcium 69.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.708 0.00500 mg/L EPA 200.7 Filtered Silicon 12.7 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 200.7 Filtered	Silicon	5.87		0.0500	mg/L	EPA 200.7	Filtered
Calcium 39.7 0.100 mg/L EPA 200.7 Filtered Manganese 1.08 0.00500 mg/L EPA 200.7 Filtered Silicon 9.78 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A Sulfate 6.5 1.0 mg/L EPA 300.0 N/A CP22-HP09-35-37 (17-09-0821-5) V EPA 200.7 Filtered Calcium 69.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.708 0.00500 mg/L EPA 200.7 Filtered Silicon 12.7 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 200.7 Filtered	CP22-HP07-39-41 (17-09-0821-4)						
Manganese 1.08 0.00500 mg/L EPA 200.7 Filtered Silicon 9.78 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A Sulfate 6.5 1.0 mg/L EPA 300.0 N/A CP22-HP09-35-37 (17-09-0821-5) V V EPA 200.7 Filtered Calcium 69.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.708 0.00500 mg/L EPA 200.7 Filtered Silicon 12.7 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A	Zinc	0.109		0.0100	mg/L	EPA 200.7	Filtered
Silicon 9.78 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A Sulfate 6.5 1.0 mg/L EPA 300.0 N/A CP22-HP09-35-37 (17-09-0821-5) V V EPA 200.7 Filtered Calcium 69.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.708 0.00500 mg/L EPA 200.7 Filtered Silicon 12.7 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A	Calcium	39.7		0.100	mg/L	EPA 200.7	Filtered
Chloride 150 2.0 mg/L EPA 300.0 N/A Sulfate 6.5 1.0 mg/L EPA 300.0 N/A CP22-HP09-35-37 (17-09-0821-5) V V EPA 200.7 Filtered Zinc 0.0240 0.0100 mg/L EPA 200.7 Filtered Calcium 69.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.708 0.00500 mg/L EPA 200.7 Filtered Silicon 12.7 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A	Manganese	1.08		0.00500	mg/L	EPA 200.7	Filtered
Sulfate 6.5 1.0 mg/L EPA 300.0 N/A CP22-HP09-35-37 (17-09-0821-5) 0.0240 0.0100 mg/L EPA 200.7 Filtered Calcium 69.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.708 0.00500 mg/L EPA 200.7 Filtered Silicon 12.7 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A	Silicon	9.78		0.0500	mg/L	EPA 200.7	Filtered
CP22-HP09-35-37 (17-09-0821-5) Zinc 0.0240 0.0100 mg/L EPA 200.7 Filtered Calcium 69.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.708 0.00500 mg/L EPA 200.7 Filtered Silicon 12.7 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A	Chloride	150		2.0	mg/L	EPA 300.0	N/A
Zinc 0.0240 0.0100 mg/L EPA 200.7 Filtered Calcium 69.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.708 0.00500 mg/L EPA 200.7 Filtered Silicon 12.7 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A	Sulfate	6.5		1.0	mg/L	EPA 300.0	N/A
Calcium 69.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.708 0.00500 mg/L EPA 200.7 Filtered Silicon 12.7 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A	CP22-HP09-35-37 (17-09-0821-5)						
Manganese 0.708 0.00500 mg/L EPA 200.7 Filtered Silicon 12.7 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A	Zinc	0.0240		0.0100	mg/L	EPA 200.7	Filtered
Silicon 12.7 0.0500 mg/L EPA 200.7 Filtered Chloride 150 2.0 mg/L EPA 300.0 N/A	Calcium	69.9		0.100	mg/L	EPA 200.7	Filtered
Chloride 150 2.0 mg/L EPA 300.0 N/A	Manganese	0.708		0.00500	mg/L	EPA 200.7	Filtered
· · · · · · · · · · · · · · · · · · ·	Silicon	12.7		0.0500	mg/L	EPA 200.7	Filtered
Sulfate 96 1.0 mg/L EPA 300.0 N/A	Chloride	150		2.0	mg/L	EPA 300.0	N/A
	Sulfate	96		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane 2.1 0.12 ug/L SRL 524M-TCP EPA 5030C	1,2,3-Trichloropropane	2.1		0.12	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP09-39-41 (17-09-0821-6)	CP22-HP09-39-41 (17-09-0821-6)						
Zinc 0.0236 0.0100 mg/L EPA 200.7 Filtered	Zinc	0.0236		0.0100	mg/L	EPA 200.7	Filtered
Calcium 53.1 0.100 mg/L EPA 200.7 Filtered	Calcium	53.1		0.100	mg/L	EPA 200.7	Filtered
Manganese 0.326 0.00500 mg/L EPA 200.7 Filtered	Manganese	0.326		0.00500	mg/L	EPA 200.7	Filtered
Silicon 4.63 0.0500 mg/L EPA 200.7 Filtered	Silicon	4.63		0.0500	mg/L	EPA 200.7	Filtered

^{*} MDL is shown

Detections Summary

Client: Geosyntec Consultants Work Order: 17-09-0821

595 Market Street, Suite 610 Project Name: WR2274 / ESTCP Pendleton

San Francisco, CA 94105-2811 Received: 09/12/17

Attn: Lea Kane Page 2 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
CP22-HP09-43-45 (17-09-0821-7)						
Zinc	0.0411		0.0100	mg/L	EPA 200.7	Filtered
Calcium	62.1		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.949		0.00500	mg/L	EPA 200.7	Filtered
Silicon	11.5		0.0500	mg/L	EPA 200.7	Filtered
Chloride	150		2.0	mg/L	EPA 300.0	N/A
Sulfate	85		1.0	mg/L	EPA 300.0	N/A
Propene	2.01		1.00	ug/L	RSK-175M	N/A
CP22-HP10-35-37 (17-09-0821-8)						
Zinc	0.0471		0.0100	mg/L	EPA 200.7	Filtered
Calcium	66.8		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.691		0.00500	mg/L	EPA 200.7	Filtered
Silicon	11.5		0.0500	mg/L	EPA 200.7	Filtered
Chloride	160		2.0	mg/L	EPA 300.0	N/A
Sulfate	48		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.88		0.050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP10-39-41 (17-09-0821-9)						
Zinc	0.0308		0.0100	mg/L	EPA 200.7	Filtered
Calcium	67.6		0.100	mg/L	EPA 200.7	Filtered
Manganese	1.22		0.00500	mg/L	EPA 200.7	Filtered
Silicon	14.2		0.0500	mg/L	EPA 200.7	Filtered
Chloride	150		2.0	mg/L	EPA 300.0	N/A
Sulfate	84		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	1.3		0.12	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP10-43-45 (17-09-0821-10)				J		
Zinc	0.0147		0.0100	mg/L	EPA 200.7	Filtered
Calcium	58.0		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.916		0.00500	mg/L	EPA 200.7	Filtered
Silicon	9.57		0.0500	mg/L	EPA 200.7	Filtered
Chloride	150		2.0	mg/L	EPA 300.0	N/A
Sulfate	86		1.0	mg/L	EPA 300.0	N/A
Propene	2.96		1.00	ug/L	RSK-175M	N/A
CP22-DUP1-09122017 (17-09-0821-				3		
Zinc	0.0286		0.0100	mg/L	EPA 200.7	Filtered
Calcium	61.1		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.843		0.00500	mg/L	EPA 200.7	Filtered
Silicon	9.61		0.0500	mg/L	EPA 200.7	Filtered
Chloride	150		2.0	mg/L	EPA 300.0	N/A
Sulfate	84		1.0	mg/L	EPA 300.0	N/A

^{*} MDL is shown

Detections Summary

Work Order:

17-09-0821

Client: Geosyntec Consultants

595 Market Street, Suite 610 Project Name: WR2274 / ESTCP Pendleton

San Francisco, CA 94105-2811 Received: 09/12/17

Attn: Lea Kane Page 3 of 3

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
CP22-HP12-35-37 (17-09-0821-12)						
,						
Zinc	0.0257		0.0100	mg/L	EPA 200.7	Filtered
Calcium	57.1		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.410		0.00500	mg/L	EPA 200.7	Filtered
Silicon	13.8		0.0500	mg/L	EPA 200.7	Filtered
Chloride	160		2.0	mg/L	EPA 300.0	N/A
Sulfate	66		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.64		0.050	ug/L	SRL 524M-TCP	EPA 5030C
EB-09122017 (17-09-0821-13)						
Calcium	11.5		0.100	mg/L	EPA 200.7	Filtered
Silicon	14.1		0.0500	mg/L	EPA 200.7	Filtered
Chloride	4.8		1.0	mg/L	EPA 300.0	N/A
Sulfate	7.1		1.0	mg/L	EPA 300.0	N/A

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Geosyntec Consultants			Date Recei	ved:			09/12/17
595 Market Street, Suite 610			Work Order	r:			17-09-0821
San Francisco, CA 94105-2811			Preparation	n:			N/A
•			Method:				RSK-175M
			Units:				ug/L
Project: WR2274 / ESTCP Pendle	eton					Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP02-35-37	17-09-0821-1-H	09/12/17 08:00	Aqueous	GC 52	N/A	09/15/17 12:34	170915L01
Parameter		Result	RL	•	<u>DF</u>	Qu	alifiers
Propene		ND	1.0	00	1.00		
CP22-HP02-43-45	17-09-0821-3-H	09/12/17 09:00	Aqueous	GC 52	N/A	09/15/17 13:00	170915L01
Parameter		Result	RL		<u>DF</u>	Qu	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP09-35-37	17-09-0821-5-G	09/12/17 10:25	Aqueous	GC 52	N/A	09/15/17 13:26	170915L01
Parameter		Result	RL		<u>DF</u>	Qu	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP09-39-41	17-09-0821-6-F	09/12/17 10:30	Aqueous	GC 52	N/A	09/15/17 13:54	170915L01
Parameter		Result	RL		<u>DF</u>	Qu	alifiers
Propene		ND	1.0	00	1.00		
CP22-HP09-43-45	17-09-0821-7-G	09/12/17 10:45	Aqueous	GC 52	N/A	09/15/17 14:22	170915L01
<u>Parameter</u>		Result	RL	i	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Propene		2.01	1.0	00	1.00		
CP22-HP10-35-37	17-09-0821-8-G	09/12/17 12:15	Aqueous	GC 52	N/A	09/15/17 14:49	170915L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP10-39-41	17-09-0821-9-G	09/12/17 12:20	Aqueous	GC 52	N/A	09/15/17 15:21	170915L01
Parameter		Result	RL		<u>DF</u>	Qu	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP10-43-45	17-09-0821-10-G	09/12/17 14:20	Aqueous	GC 52	N/A	09/15/17 15:54	170915L01
Parameter		Result	RL		<u>DF</u>	Qu	<u>alifiers</u>
Propene		2.96	1.0		1.00		

 Geosyntec Consultants
 Date Received:
 09/12/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0821

 San Francisco, CA 94105-2811
 Preparation:
 N/A

 Method:
 RSK-175M

 Units:
 ug/L

 Project: WR2274 / ESTCP Pendleton
 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-DUP1-09122017	17-09-0821-11-G	09/12/17 14:00	Aqueous	GC 52	N/A	09/15/17 16:16	170915L01
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-HP12-35-37	17-09-0821-12-G	09/12/17 14:45	Aqueous	GC 52	N/A	09/15/17 17:30	170915L01
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
EB-09122017	17-09-0821-13-D	09/12/17 15:30	Aqueous	GC 52	N/A	09/15/17 18:41	170915L01
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		

Method Blank	099-14-325-86	N/A	Aqueous	GC 52	N/A	09/15/17 12:05	170915L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Propene		ND	1.0	0	1.00		

Geosyntec Consultants	Date Received:	09/12/17
595 Market Street, Suite 610	Work Order:	17-09-0821
San Francisco, CA 94105-2811	Preparation:	N/A
	Method:	EPA 300.0
	Units:	mg/L
Project: WR2274 / ESTCP Pendleton		Page 1 of 4

			Units:				mg/L
Project: WR2274 / ESTCP P	endleton					Pa	ge 1 of 4
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP02-35-37	17-09-0821-1-J	09/12/17 08:00	Aqueous	IC 10	N/A	09/13/17 14:36	170913L01
Comment(s): - The reporting lim	nit is elevated resulting from r	matrix interferen	ice.				
<u>Parameter</u>		Result	<u>RL</u>	:	<u>DF</u>	Qua	<u>alifiers</u>
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		97	1.0)	1.00		
CP22-HP02-35-37	17-09-0821-1-J	09/12/17 08:00	Aqueous	IC 10	N/A	09/14/17 00:00	170913L01
Parameter		<u>Result</u>	<u>RL</u>	1	<u>DF</u>	Qua	alifiers
Chloride		160	2.0)	2.00		
CP22-HP07-39-41	17-09-0821-4-D	09/12/17 07:15	Aqueous	IC 10	N/A	09/13/17 14:55	170913L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		6.5	1.0)	1.00		
CP22-HP07-39-41	17-09-0821-4-J	09/12/17 07:15	Aqueous	IC 10	N/A	09/14/17 00:19	170913L01
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Chloride		150	2.0)	2.00		
CP22-HP09-35-37	17-09-0821-5-J	09/12/17 10:25	Aqueous	IC 10	N/A	09/13/17 15:14	170913L01
Comment(s): - The reporting lim	nit is elevated resulting from r	matrix interferen	ice.				
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	:	<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		96	1.0)	1.00		
CP22-HP09-35-37	17-09-0821-5-J	09/12/17 10:25	Aqueous	IC 10	N/A	09/14/17 00:38	170913L01
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Chloride		150	2.0)	2.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants	Date Received:	09/12/17
595 Market Street, Suite 610	Work Order:	17-09-0821
San Francisco, CA 94105-2811	Preparation:	N/A
	Method:	EPA 300.0
	Units:	mg/L
Project: WR2274 / ESTCP Pendleton		Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP09-43-45	17-09-0821-7-J	09/12/17 10:45	Aqueous	IC 10	N/A	09/13/17 17:08	170913L01
<u>Parameter</u>		<u>Result</u>	RL	i	<u>DF</u>	Qua	<u>alifiers</u>
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		85	1.0)	1.00		
CP22-HP09-43-45	17-09-0821-7-J	09/12/17 10:45	Aqueous	IC 10	N/A	09/14/17 00:57	170913L01
Parameter		Result	RL	:	DF	Qua	alifiers
Chloride		150	2.0)	2.00		
CP22-HP10-35-37	17-09-0821-8-J	09/12/17 12:15	Aqueous	IC 10	N/A	09/13/17 17:26	170913L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		48	1.0)	1.00		
CP22-HP10-35-37	17-09-0821-8-J	09/12/17 12:15	Aqueous	IC 10	N/A	09/14/17 01:15	170913L01
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	alifiers
Chloride		160	2.0)	2.00		
CP22-HP10-39-41	17-09-0821-9-J	09/12/17 12:20	Aqueous	IC 10	N/A	09/13/17 17:45	170913L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		84	1.0)	1.00		
CP22-HP10-39-41	17-09-0821-9-J	09/12/17 12:20	Aqueous	IC 10	N/A	09/14/17 01:34	170913L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Chloride		150	2.0)	2.00		

CP22-HP12-35-37

<u>Parameter</u>

Chloride

Analytical Report

Geosyntec Consultants	Date Received:	09/12/17
595 Market Street, Suite 610	Work Order:	17-09-0821
San Francisco, CA 94105-2811	Preparation:	N/A
	Method:	EPA 300.0
	Units:	mg/L
Drainati MD2274 / ECTCD Dandlaton		Dogo 2 of 4

Project: WR2274 / ESTCP Pend	leton					Pa	ge 3 of 4
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP10-43-45	17-09-0821-10-J	09/12/17 14:20	Aqueous	IC 10	N/A	09/13/17 18:04	170913L01
<u>Parameter</u>		Result	<u>RL</u>	i	<u>DF</u>	Qua	<u>alifiers</u>
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		86	1.0)	1.00		
CP22-HP10-43-45	17-09-0821-10-J	09/12/17 14:20	Aqueous	IC 10	N/A	09/14/17 01:53	170913L01
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Chloride		150	2.0)	2.00		
CP22-DUP1-09122017	17-09-0821-11-J	09/12/17 14:00	Aqueous	IC 10	N/A	09/13/17 18:23	170913L01
Parameter	·	Result	RL		<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		84	1.0)	1.00		
CP22-DUP1-09122017	17-09-0821-11-J	09/12/17 14:00	Aqueous	IC 10	N/A	09/14/17 02:12	170913L01
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Chloride		150	2.0)	2.00		
CP22-HP12-35-37	17-09-0821-12-J	09/12/17 14:45	Aqueous	IC 10	N/A	09/13/17 18:42	170913L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		66	1.0)	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

17-09-0821-12-J

09/12/17 14:45

Result

160

N/A

<u>DF</u>

2.00

IC 10

Aqueous

<u>RL</u>

2.0

09/14/17 02:31

170913L01

Qualifiers

Geosyntec ConsultantsDate Received:09/12/17595 Market Street, Suite 610Work Order:17-09-0821San Francisco, CA 94105-2811Preparation:N/A

Method: EPA 300.0 Units: mg/L

Project: WR2274 / ESTCP Pendleton Page 4 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EB-09122017	17-09-0821-13-G	09/12/17 15:30	Aqueous	IC 10	N/A	09/13/17 16:49	170913L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	lifiers
Chloride		4.8	1.0		1.00		
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		7.1	1.0		1.00		

Method Blank	099-12-906-7906	N/A	Aqueous IC 10	N/A	09/13/17 170913L01 13:47
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Chloride		ND	1.0	1.00	
Nitrite (as N)		ND	0.10	1.00	
Nitrate (as N)		ND	0.10	1.00	
Sulfate		ND	1.0	1.00	

 Geosyntec Consultants
 Date Received:
 09/12/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0821

 San Francisco, CA 94105-2811
 Preparation:
 Filtered

 Method:
 EPA 200.7

 Units:
 mg/L

Project: WR2274 / ESTCP Pendleton Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix Ir	nstrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP02-35-37	17-09-0821-1-K	09/12/17 08:00	Aqueous I	CP 7300	09/15/17	09/19/17 15:33	170915LA4F
Parameter		Result	<u>RL</u> <u>DF</u>		<u>DF</u>	<u>Qualifiers</u>	
Zinc		0.0333	0.010	0	1.00		
Calcium		65.9	0.100)	1.00		
Iron		ND	0.100)	1.00		
Manganese		0.792	0.005	000	1.00		
Silicon		13.8	0.050	0	1.00		
CP22-HP02-43-45	17-09-0821-3-I	09/12/17	Aqueous I	CP 7300	09/15/17	09/19/17	170915LA4F

CP22-HP02-43-45	17-09-0821-3-I	09/12/17 09:00	Aqueous ICP 7300	09/15/17	09/19/17 15:34	170915LA4F
Parameter		Result	<u>RL</u>	DF	Qu	alifiers
Zinc		0.0310	0.0100	1.00		
Calcium		57.8	0.100	1.00		
Iron		ND	0.100	1.00		
Manganese		0.357	0.00500	1.00		
Silicon		5.87	0.0500	1.00		

CP22-HP07-39-41	17-09-0821-4-E	09/12/17 07:15	Aqueous ICP 7300	09/15/17	09/19/17 170915LA4F 15:35
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Zinc		0.109	0.0100	1.00	
Calcium		39.7	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		1.08	0.00500	1.00	
Silicon		9.78	0.0500	1.00	

CP22-HP09-35-37	17-09-0821-5-K	09/12/17 10:25	Aqueous ICP 7300	09/15/17	09/19/17 170915LA4F 15:38
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		0.0240	0.0100	1.00	
Calcium		69.9	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		0.708	0.00500	1.00	
Silicon		12.7	0.0500	1.00	

Geosyntec Consultants
Date Received:

Work Order:

San Francisco, CA 94105-2811
Preparation:

Method:
Units:

Date Received:

09/12/17

Proposition:

Filtered

Method:

mg/L

Project: WR2274 / ESTCP Pendleton Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP09-39-41	17-09-0821-6-G	09/12/17 10:30	Aqueous	ICP 7300	09/15/17	09/19/17 15:39	170915LA4F
Parameter	·	Result	RL	:	<u>DF</u>	Qua	<u>lifiers</u>
Zinc		0.0236	0.0	100	1.00		
Calcium		53.1	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		0.326	0.0	00500	1.00		
Silicon		4.63	0.0	500	1.00		

CP22-HP09-43-45	17-09-0821-7-K	09/12/17 10:45	Aqueous ICP 7300	09/15/17	09/19/17 15:39	170915LA4F
Parameter		Result	RL	DF	Qu	<u>alifiers</u>
Zinc		0.0411	0.0100	1.00		
Calcium		62.1	0.100	1.00		
Iron		ND	0.100	1.00		
Manganese		0.949	0.00500	1.00		
Silicon		11.5	0.0500	1.00		

CP22-HP10-35-37	17-09-0821-8-K	09/12/17 12:15	Aqueous ICP 7300	09/15/17	09/19/17 170915LA4F 15:40
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		0.0471	0.0100	1.00	
Calcium		66.8	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		0.691	0.00500	1.00	
Silicon		11.5	0.0500	1.00	

CP22-HP10-39-41	17-09-0821-9-K	09/12/17 12:20	Aqueous ICP 7300	09/15/17	09/19/17 170915LA4F 15:41
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		0.0308	0.0100	1.00	
Calcium		67.6	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		1.22	0.00500	1.00	
Silicon		14.2	0.0500	1.00	

 Geosyntec Consultants
 Date Received:
 09/12/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0821

 San Francisco, CA 94105-2811
 Preparation:
 Filtered

 Method:
 EPA 200.7

 Units:
 mg/L

Project: WR2274 / ESTCP Pendleton Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP10-43-45	17-09-0821-10-K	09/12/17 14:20	Aqueous	ICP 7300	09/15/17	09/19/17 15:42	170915LA4F
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>lifiers</u>
Zinc		0.0147	0.0	100	1.00		
Calcium		58.0	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		0.916	0.0	00500	1.00		
Silicon		9.57	0.0	500	1.00		

CP22-DUP1-09122017	17-09-0821-11-K	09/12/17 14:00	Aqueous	ICP 7300	09/15/17	09/19/17 15:43	170915LA4F
Parameter	·	Result	<u>RL</u>		DF	Qu	alifiers
Zinc		0.0286	0.0	100	1.00		
Calcium		61.1	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		0.843	0.0	0500	1.00		
Silicon		9.61	0.0	500	1.00		

CP22-HP12-35-37	17-09-0821-12-K	09/12/17 14:45	Aqueous ICP 7300	09/15/17	09/19/17 170915LA4F 15:44
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		0.0257	0.0100	1.00	
Calcium		57.1	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		0.410	0.00500	1.00	
Silicon		13.8	0.0500	1.00	

EB-09122017	17-09-0821-13-H	09/12/17 15:30	Aqueous ICP 7300	09/15/17	09/19/17 170915LA4F 15:45
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		ND	0.0100	1.00	
Calcium		11.5	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		ND	0.00500	1.00	
Silicon		14.1	0.0500	1.00	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/12/17 17-09-0821 Filtered EPA 200.7

mg/L

Units:

Page 4 of 4

Project: WR2274 / ESTCP Pendleton

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-304-634	N/A	Aqueous	ICP 7300	09/15/17	09/19/17 12:08	170915LA4F
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Zinc		ND	0.0	100	1.00		
Calcium		ND	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		ND	0.0	00500	1.00		
Silicon		ND	0.0	500	1.00		

Geosyntec ConsultantsDate Received:09/12/17595 Market Street, Suite 610Work Order:17-09-0821San Francisco, CA 94105-2811Preparation:EPA 5030C

Method: EPA 8260B Units: ug/L

Project: WR2274 / ESTCP Pendleton Page 1 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP02-35-37	17-09-0821-1-A	09/12/17 08:00	Aqueous	GC/MS L	09/16/17	09/17/17 00:33	170916L018
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	=	<u>DF</u>	Qua	<u>llifiers</u>
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		88	68	-120			
Dibromofluoromethane		106	80	-127			
1,2-Dichloroethane-d4		112	80	-128			
Toluene-d8		101	80	-120			

CP22-HP02-43-45	17-09-0821-3-A	09/12/17 09:00	Aqueous GC/MS L	09/16/17	09/17/17 170916L018 01:04
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		87	68-120		
Dibromofluoromethane		106	80-127		
1,2-Dichloroethane-d4		109	80-128		
Toluene-d8		100	80-120		

CP22-HP07-39-41	17-09-0821-4-A	09/12/17 07:15	Aqueous GC/MS L	09/16/17	09/17/17 170916L018 01:35
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		89	68-120		
Dibromofluoromethane		109	80-127		
1,2-Dichloroethane-d4		111	80-128		
Toluene-d8		101	80-120		

Geosyntec ConsultantsDate Received:09/12/17595 Market Street, Suite 610Work Order:17-09-0821San Francisco, CA 94105-2811Preparation:EPA 5030C

Method: EPA 8260B Units: ug/L

Project: WR2274 / ESTCP Pendleton Page 2 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP09-35-37	17-09-0821-5-A	09/12/17 10:25	Aqueous	GC/MS L	09/16/17	09/17/17 02:06	170916L018
<u>Parameter</u>		<u>Result</u>	RL	•	<u>DF</u>	Qua	alifiers
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		83	68	-120			
Dibromofluoromethane		104	80	-127			
1,2-Dichloroethane-d4		109	80	-128			
Toluene-d8		100	80	-120			

CP22-HP09-43-45	17-09-0821-7-A	09/12/17 10:45	Aqueous GC/MS L	09/16/17	09/17/17 170916L018 02:36
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		86	68-120		
Dibromofluoromethane		103	80-127		
1,2-Dichloroethane-d4		111	80-128		
Toluene-d8		100	80-120		

CP22-HP10-35-37	17-09-0821-8-A	09/12/17 12:15	Aqueous GC/MS	L 09/16/17	09/17/17 03:07	170916L018
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
1,2-Dichloropropane		ND	0.50	1.00		
1,3-Dichloropropane		ND	1.0	1.00		
Allyl Chloride		ND	1.0	1.00		
Surrogate		Rec. (%)	Control Limit	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		87	68-120			
Dibromofluoromethane		106	80-127			
1,2-Dichloroethane-d4		110	80-128			
Toluene-d8		101	80-120			

Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-0821
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Units: ug/L Page 3 of 5

Project: WR2274 / ESTCP Pendleton

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP10-39-41	17-09-0821-9-A	09/12/17 12:20	Aqueous	GC/MS L	09/16/17	09/17/17 03:38	170916L018
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	<u>alifiers</u>
1,2-Dichloropropane		ND	0.8	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		84	68	-120			
Dibromofluoromethane		104	80	-127			
1,2-Dichloroethane-d4		109	80	-128			
Toluene-d8		100	80	-120			

CP22-HP10-43-45	17-09-0821-10-A	09/12/17 14:20	Aqueous GC/MS L	09/16/17	09/17/17 170916L018 04:09
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
<u>Surrogate</u>		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		84	68-120		
Dibromofluoromethane		105	80-127		
1,2-Dichloroethane-d4		111	80-128		
Toluene-d8		99	80-120		

CP22-DUP1-09122017	17-09-0821-11-A	09/12/17 14:00	Aqueous	GC/MS L	09/16/17	09/17/17 04:39	170916L018
Parameter	•	Result	RL		<u>DF</u>	Qu	alifiers
1,2-Dichloropropane		ND	0.5	0	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0	1	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		84	68-	120			
Dibromofluoromethane		103	80-	127			
1,2-Dichloroethane-d4		109	80-	128			
Toluene-d8		101	80-	120			

Geosyntec Consultants
Date Received:

09/12/17
595 Market Street, Suite 610
Work Order:
17-09-0821
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Units: ug/L Page 4 of 5

Project: WR2274 / ESTCP Pendleton

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP12-35-37	17-09-0821-12-A	09/12/17 14:45	Aqueous	GC/MS L	09/16/17	09/17/17 05:10	170916L018
Parameter	·	Result	RL	•	<u>DF</u>	Qua	alifiers
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		85	68	-120			
Dibromofluoromethane		106	80	-127			
1,2-Dichloroethane-d4		112	80	-128			
Toluene-d8		102	80	-120			

EB-09122017	17-09-0821-13-A	09/12/17 15:30	Aqueous GC/MS L	09/16/17	09/16/17 170916L005 19:56
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	Qualifiers	
				Qualifiers	
1,4-Bromofluorobenzene		86	68-120		
Dibromofluoromethane		115	80-127		
1,2-Dichloroethane-d4		113	80-128		
Toluene-d8		100	80-120		

TB-09122017	17-09-0821-14-A	09/12/17 00:00	Aqueous GC/MS L	09/16/17	09/16/17 170916L005 20:27
Parameter		Result	<u>RL</u>	DF	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		83	68-120		
Dibromofluoromethane		112	80-127		
1,2-Dichloroethane-d4		107	80-128		
Toluene-d8		101	80-120		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

17-09-0821 EPA 5030C EPA 8260B

09/12/17

ug/L

Project: WR2274 / ESTCP Pendleton

Page 5 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-446-242	N/A	Aqueous	GC/MS L	09/16/17	09/16/17 11:11	170916L005
Parameter		Result	RL	•	<u>DF</u>	Qua	alifiers
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0	1.00			
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		84	68	-120			
Dibromofluoromethane		104	80	-127			
1,2-Dichloroethane-d4		103	80	-128			
Toluene-d8		99	80	-120			

Method Blank	099-16-446-244	N/A	Aqueous GC/MS L	09/16/17	09/17/17 170916L018 00:03
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		84	68-120		
Dibromofluoromethane		109	80-127		
1,2-Dichloroethane-d4		108	80-128		
Toluene-d8		99	80-120		

Geosyntec Consultants			Date Recei	ved:			09/12/17		
595 Market Street, Suite 610			Work Order	r:			17-09-0821		
San Francisco, CA 94105-2811			Preparation	n:			EPA 5030C		
·			Method:			s	RL 524M-TCP		
			Units:				ug/L		
Project: WR2274 / ESTCP Pendle	eton					Pa	age 1 of 2		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
CP22-HP02-35-37	17-09-0821-1-D	09/12/17 08:00	Aqueous	GC/MS M	09/19/17	09/19/17 20:10	170919L042		
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>alifiers</u>		
1,2,3-Trichloropropane		ND	0.0	0050	1.00				
CP22-HP02-39-41	17-09-0821-2-B	09/12/17 08:50	Aqueous	GC/MS M	09/20/17	09/20/17 13:53	170920L049		
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	alifiers		
1,2,3-Trichloropropane		0.12	0.0)10	2.00				
CP22-HP02-43-45	17-09-0821-3-B	09/12/17 09:00	Aqueous	GC/MS M	09/19/17	09/19/17 20:39	170919L042		
Parameter		Result	RL		<u>DF</u>	Qua	alifiers		
1,2,3-Trichloropropane		ND	0.0	0050	1.00				
CP22-HP09-35-37	17-09-0821-5-F	09/12/17 10:25	Aqueous	GC/MS M	09/21/17	09/21/17 18:25	170921L064		
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers		
1,2,3-Trichloropropane		2.1	0.1	2	25.0				
CP22-HP09-39-41	17-09-0821-6-C	09/12/17 10:30	Aqueous	GC/MS M	09/25/17	09/25/17 12:44	170925L030		
<u>Parameter</u>		Result	<u>RL</u>	i	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>		
1,2,3-Trichloropropane		ND	0.0	0050	1.00				
CP22-HP09-43-45	17-09-0821-7-D	09/12/17 10:45	Aqueous	GC/MS M	09/19/17	09/19/17 21:09	170919L042		
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	alifiers		
1,2,3-Trichloropropane		ND	0.0	0050	1.00				
CP22-HP10-35-37	17-09-0821-8-D	09/12/17 12:15	Aqueous	GC/MS M	09/19/17	09/19/17 23:37	170919L042		
Parameter		Result	RL		DF	Qua	alifiers		
1,2,3-Trichloropropane		0.88	0.0)50	10.0				
CP22-HP10-39-41	17-09-0821-9-D	09/12/17 12:20	Aqueous	GC/MS M	09/19/17	09/20/17 00:07	170919L042		
Parameter		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>		
1,2,3-Trichloropropane		1.3	0.1	2	25.0				

Geosyntec Consultants			Date Recei	ved:			09/12/17
595 Market Street, Suite 610		,	Work Orde	r:			17-09-0821
San Francisco, CA 94105-2811			Preparation	n:			EPA 5030C
			Method:			S	RL 524M-TCP
			Units:				ug/L
Project: WR2274 / ESTCP Pendle	ton					Pa	age 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP10-43-45	17-09-0821-10-D	09/12/17 14:20	Aqueous	GC/MS M	09/19/17	09/19/17 21:39	170919L042
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-DUP1-09122017	17-09-0821-11-D	09/12/17 14:00	Aqueous	GC/MS M	09/19/17	09/19/17 22:08	170919L042
<u>Parameter</u>		Result	RL	1	DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-HP12-35-37	17-09-0821-12-D	09/12/17 14:45	Aqueous	GC/MS M	09/19/17	09/20/17 00:36	170919L042
Parameter		Result	RL	:	DF	Qua	alifiers
1,2,3-Trichloropropane		0.64	0.0	050	10.0		
EB-09122017	17-09-0821-13-F	09/12/17 15:30	Aqueous	GC/MS M	09/21/17	09/21/17 17:55	170921L064
<u>Parameter</u>		Result	RL	:	DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
Method Blank	099-10-022-1364	N/A	Aqueous	GC/MS M	09/19/17	09/19/17 19:40	170919L042
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
Method Blank	099-10-022-1366	N/A	Aqueous	GC/MS M	09/20/17	09/20/17 11:42	170920L049
<u>Parameter</u>		Result	RL	:	DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
Method Blank	099-10-022-1367	N/A	Aqueous	GC/MS M	09/21/17	09/21/17 17:25	170921L064
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
Method Blank	099-10-022-1368	N/A	Aqueous	GC/MS M	09/25/17	09/25/17 12:14	170925L030
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		

09/12/17

17-09-0821

Quality Control - Spike/Spike Duplicate

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Date Received:

Work Order:

Preparation:

Preparation: N/A Method: EPA 300.0

Project: WR2274 / ESTCP Pendleton Page 1 of 6

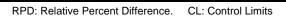
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analy	yzed	MS/MSD Ba	tch Number
CP22-HP07-39-41	Sample	Aqueous	IC 10	N/A	09/14/17 0	0:19	170913S01	
CP22-HP07-39-41	Matrix Spike	Aqueous	IC 10	N/A	09/13/17 1	5:33	170913S01	
CP22-HP07-39-41	Matrix Spike Duplica	ate Aqueous	IC 10	N/A	09/13/17 1	5:52	170913S01	
Parameter	<u>Sample</u> <u>Spike</u> <u>Conc.</u> <u>Adde</u>	MS d Conc.	MS MSD %Rec. Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chloride	146.4 50.00	224.2	156 224.0	155	80-120	0	0-20	3
Nitrite (as N)	ND 2.500	3.428	137 3.418	137	80-120	0	0-20	3
Nitrate (as N)	ND 5.000	4.896	98 4.890	98	80-120	0	0-20	
Sulfate	6.485 50.00	58.51	104 58.47	104	80-120	0	0-20	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/12/17 17-09-0821 Filtered EPA 200.7

Project: WR2274 / ESTCP Pendleton

Page 2 of 6

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
CP22-HP02-35-37	Sample		Aqueou	s ICI	P 7300	09/15/17	09/19/17	15:33	170915SA4	
CP22-HP02-35-37	Matrix Spike		Aqueou	s ICI	P 7300	09/15/17	09/19/17	15:29	170915SA4	
CP22-HP02-35-37	Matrix Spike	Duplicate	Aqueou	s ICI	P 7300	09/15/17	09/19/17	15:30	170915SA4	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	0.03333	0.5000	0.5697	107	0.5799	109	80-120	2	0-20	
Calcium	65.94	0.5000	72.53	4X	75.40	4X	80-120	4X	0-20	Q
Iron	ND	0.5000	0.5231	105	0.5295	106	80-120	1	0-20	
Manganese	0.7918	0.5000	1.348	111	1.358	113	80-120	1	0-20	
Silicon	13.78	0.5000	14.81	4X	14.94	4X	80-120	4X	0-20	Q



Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/12/17 17-09-0821 Filtered EPA 200.7

Project: WR2274 / ESTCP Pendleton

Page 3 of 6

Quality Control Sample ID	Туре		Matrix	Ir	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
CP22-HP12-35-37	Sample		Aqueous	s IC	CP 7300	09/15/17	09/19/17	15:44	170915SA4	4
CP22-HP12-35-37	Matrix Spike		Aqueous	s IC	CP 7300	09/15/17	09/19/17	15:31	170915SA4	4
CP22-HP12-35-37	Matrix Spike	Duplicate	Aqueous	s IC	CP 7300	09/15/17	09/19/17	15:32	170915SA4	4
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	0.02571	0.5000	0.5764	110	0.5735	110	80-120	1	0-20	
Calcium	57.12	0.5000	56.95	4X	53.79	4X	80-120	4X	0-20	Q
Iron	ND	0.5000	0.5181	104	0.5017	100	80-120	3	0-20	
Manganese	0.4097	0.5000	0.9176	102	0.8861	95	80-120	3	0-20	
Silicon	13.84	0.5000	13.89	4X	13.32	4X	80-120	4X	0-20	Q

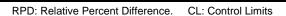


Geosyntec Consultants
Date Received:

09/12/17
595 Market Street, Suite 610
Work Order:
17-09-0821
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 4 of 6

Quality Control Sample ID	Type		Matrix	Ir	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-09-0822-4	Sample		Aqueou	s G	C/MS L	09/16/17	09/16/17	11:44	170916S001	
17-09-0822-4	Matrix Spike		Aqueou	s G	C/MS L	09/16/17	09/16/17	12:15	170916S001	
17-09-0822-4	Matrix Spike	Duplicate	Aqueou	s G	C/MS L	09/16/17	09/16/17	12:46	170916S001	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2-Dichloropropane	ND	10.00	10.04	100	10.18	102	75-125	1	0-20	
1,3-Dichloropropane	ND	10.00	9.679	97	10.04	100	75-125	4	0-20	
Allyl Chloride	ND	10.00	9.328	93	9.538	95	80-120	2	0-20	

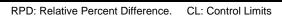


Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-0821
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
SRL 524M-TCP

Project: WR2274 / ESTCP Pendleton Page 5 of 6

Quality Control Sample ID	Type		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-09-0693-6	Sample		Aqueou	s G	C/MS M	09/20/17	09/20/17	13:23	170920S020	
17-09-0693-6	Matrix Spike		Aqueou	s G	C/MS M	09/20/17	09/20/17	14:52	170920S020	
17-09-0693-6	Matrix Spike D	uplicate	Aqueou	s G	C/MS M	09/20/17	09/20/17	15:22	170920S020	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.1646	0.01000	0.1934	288	0.1838	192	70-130	5	0-20	3



Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-0821
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
SRL 524M-TCP

Project: WR2274 / ESTCP Pendleton Page 6 of 6

Quality Control Sample ID	Type		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
17-09-1451-10	Sample		Aqueou	s GO	C/MS M	09/25/17	09/25/17	13:44	170925S012	
17-09-1451-10	Matrix Spike		Aqueou	s GO	C/MS M	09/25/17	09/25/17	15:13	170925S012	2
17-09-1451-10	Matrix Spike	Duplicate	Aqueou	s GO	C/MS M	09/25/17	09/25/17	15:42	170925S012	2
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.08910	0.005000	0.1007	232	0.09550	128	70-130	5	0-20	3

Quality Control - LCS/LCSD

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

17-09-0821 N/A

09/12/17

RSK-175M Page 1 of 9

Project: WR2274 / ESTCP Pendleton

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Dat	e Analyzed	LCS/LCSD B	atch Number
099-14-325-86	LCS	Aqı	leous	GC 52	N/A	09/	15/17 10:28	170915L01	
099-14-325-86	LCSD	Aqı	ueous	GC 52	N/A	09/	15/17 10:50	170915L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Propene	103.0	98.32	95	91.91	89	80-120	7	0-20	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

09/12/17 17-09-0821 N/A

EPA 300.0 Page 2 of 9

Project: WR2274 / ESTCP Pendleton

099-12-906-7906 LCS Aqueous IC 10 N/A 09/13/17 14:06 1709	913L01
Parameter Spike Added Conc. Recovered LCS %Rec. CL	Qualifiers
Chloride 50.00 48.10 96 90-110	
Nitrite (as N) 2.500 2.413 97 90-110	
Nitrate (as N) 5.000 4.934 99 90-110	
Sulfate 50.00 50.29 101 90-110	

Quality Control - LCS

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/12/17 17-09-0821 Filtered EPA 200.7

Project: WR2274 / ESTCP Pendleton

Page 3 of 9

O99-14-304-634 LCS Aqueous ICP 7300 09/15/17 09/19/17 12:09 170915LA4F Parameter Spike Added Conc. Recovered LCS %Rec. %Rec. CL Qualifiers Zinc 0.5000 0.5610 112 85-115 Calcium 0.5000 0.5411 108 85-115 Iron 0.5000 0.5203 104 85-115	Quality Control Sample ID	Type Matri	rix Instrument	t Date Prepared	Date Analyzed	LCS Batch Number
Zinc 0.5000 0.5610 112 85-115 Calcium 0.5000 0.5411 108 85-115	099-14-304-634	LCS Aque	ieous ICP 7300	09/15/17	09/19/17 12:09	170915LA4F
Calcium 0.5000 0.5411 108 85-115	<u>Parameter</u>	Spike Ad	dded Conc. Re	ecovered LCS %Re	c. %Rec.	CL Qualifiers
	Zinc	0.5000	0.5610	112	85-115	
Iron 0.5000 0.5203 104 85-115	Calcium	0.5000	0.5411	108	85-115	
1011	Iron	0.5000	0.5203	104	85-115	
Manganese 0.5000 0.5343 107 85-115	Manganese	0.5000	0.5343	107	85-115	
Silicon 0.5000 0.5213 104 85-115	Silicon	0.5000	0.5213	104	85-115	

Quality Control - LCS

 Geosyntec Consultants
 Date Received:
 09/12/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0821

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Project: WR2274 / ESTCP Pendleton
 Page 4 of 9

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-16-446-242	LCS	Aqueous	GC/MS L 0	09/16/17	09/16/17 10:39	170916L005
<u>Parameter</u>		Spike Added	Conc. Recovered	d LCS %Re	c. %Rec.	CL Qualifiers
1,2-Dichloropropane		10.00	9.742	97	74-122	2
1,3-Dichloropropane		10.00	9.674	97	74-128	3
Allyl Chloride		10.00	9.189	92	70-130)

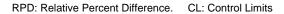
Quality Control - LCS/LCSD

Geosyntec Consultants

Date Received: 09/12/17

595 Market Street, Suite 610

Work Order: 17-09-0821


San Francisco, CA 94105-2811

Preparation: EPA 5030C

Method: EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 5 of 9

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-16-446-244	LCS	Aqı	ueous	GC/MS L	09/16/17	09/1	6/17 22:30	170916L018	
099-16-446-244	LCSD	Aqı	ueous	GC/MS L	09/16/17	09/1	6/17 23:01	170916L018	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2-Dichloropropane	10.00	9.332	93	9.107	91	74-122	2	0-23	
1,3-Dichloropropane	10.00	9.344	93	9.238	92	74-128	1	0-24	
Allyl Chloride	10.00	8.299	83	7.695	77	70-130	8	0-20	

09/12/17

17-09-0821

EPA 5030C

Project: WR2274 / ESTCP Pendleton

Quality Control - LCS/LCSD

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Date Received:

Work Order:

Preparation:

Method: SRL 524M-TCP Page 6 of 9

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1364	LCS	Aqı	ieous	GC/MS M	09/19/17	09/1	19/17 18:11	170919L042	
099-10-022-1364	LCSD	Aqι	ieous	GC/MS M	09/19/17	09/1	19/17 18:41	170919L042	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1.2.3-Trichloropropane	0.005000	0.005300	106	0.005000	100	80-120	6	0-20	

Quality Control - LCS

Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-0821
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
SRL 524M-TCP

Project: WR2274 / ESTCP Pendleton Page 7 of 9

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-10-022-1366	LCS	Aqueous	GC/MS M	09/20/17	09/20/17 11:10	170920L049
Parameter		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec.	CL Qualifiers
1,2,3-Trichloropropane		0.005000	0.005700	114	80-120	

09/12/17

17-09-0821

EPA 5030C

Quality Control - LCS/LCSD

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Date Received:

Work Order:

Preparation:

Method: SRL 524M-TCP

Project: WR2274 / ESTCP Pendleton Page 8 of 9

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1367	LCS	Aqu	eous	GC/MS M	09/21/17	09/2	1/17 15:56	170921L064	
099-10-022-1367	LCSD	Aqu	eous	GC/MS M	09/21/17	09/2	1/17 16:26	170921L064	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.004900	98	0.005700	114	80-120	15	0-20	

Quality Control - LCS/LCSD

Geosyntec Consultants
595 Market Street, Suite 610
San Francisco, CA 94105-2811

Date Received: Work Order: Preparation:

17-09-0821 EPA 5030C SRL 524M-TCP

09/12/17

Method:

Page 9 of 9

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1368	LCS	Aqu	ieous	GC/MS M	09/25/17	09/2	5/17 10:39	170925L030	
099-10-022-1368	LCSD	Aqu	ieous	GC/MS M	09/25/17	09/2	5/17 11:44	170925L030	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.005100	102	0.004600	92	80-120	10	0-20	

Sample Analysis Summary Report

Work Order: 17-09-0821				Page 1 of 1
<u>Method</u>	Extraction	Chemist ID	Instrument	Analytical Location
EPA 200.7	Filtered	935	ICP 7300	1
EPA 300.0	N/A	1027	IC 10	1
EPA 8260B	EPA 5030C	316	GC/MS L	2
RSK-175M	N/A	326	GC 52	2
RSK-175M	N/A	460	GC 52	2
RSK-175M	N/A	1078	GC 52	2
SRL 524M-TCP	EPA 5030C	486	GC/MS M	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 17-09-0821 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are

Approximately identified in 10CER Port 126.2 Table II that is designated as "applying immediately" with a helding time of 1. 15 minutes

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

200 17160 828 Rush: Time Date Date Time Time Date B カンサ Normal Pact vell Coscosynte.com 1. Received by 2. Received by (Signifure/Affiliation) 3. Received by (Signiture/Affiliation) (Signiture/Affiliation) 6 Date Oglin

Turn-around Time:

Special Instructions: Some analyses as 9/11/2017 samples, con. Tesults to Utane@gossynke.com

1445

1400

4-1022-100-101122017

Pr- F10 - 43-45 922 - HP10 - 39-4

42-1417-82-37

37

220

Time

Relinquished by/

(Signiture/Affiliation)

Relinquished by

(Signiture/Affiliation)

Date

Page 42 of 45

			ny sam	COD	2	Lab	Ō	Condi	Bot																
17-09-082	Page lof		White copy: to accompany sam	Yellow copy: field copy		mannania nepalamenta kata kata kata kata kata kata kata k			Comments		Advances de l'accessor de l														
Z																									
Request and Chain of Custody Record					<u>,,,</u>	ative																			
tody	/ses		0 ·	200	EPA	Bottle Type and Volume/Preservative	25		Number of Containers	_				,		_									
Ses	Required Analyses	42 (7)	77 2	.005	443	olume/F	222		Conta					نسي	_		_								
j C	luired	m2.f	?K-1.	7 597	mpo9	and Ve	*	11c /14cL	oer of	<u></u>		~		M	3	٣	M								
6	Rec	L-1	15 J.	75 K	4 4JT	le Type	\$ 3	3	* 134 M	FE ST	£ 2	¥ 3	# E	12m	3	3	Num	<u>ن</u> م	n	M		M	^	2	M,
Ē	**************************************		8270		SVOC	Bott				•															
esta	- Company of the Comp		<u>(</u>		yocs)		4	124		_		۲		~	1.2	_	_								
60	eduction of the state of the st		316				48		d)	7		*	~												
								Sample	Type	Grandrage															
Analysis	er سرت	A Cot	الم الا	stansk de djedinik kom stok kom programa programa pod se kom programa do se kom kom kom kom kom kom kom kom ko	ill No.				Time	0,050	0820	0030	0715	1025	1030	. Sho1	1215								
	Project Number しんひこみ	Project Contact	Lab Contact S. No Jak	Lab Phone	Carrier/Waybill No.				Date	かんり															
	Pro	Pro	Lab	Lab	Car					10	_														
	Project Name CSTCP Passly Lon	Samplers Names K. Rethve	Laboratory Name	Lab Address					Sample Name	LP22-HP02-55-37	CP22-出02-环野59-41	CP22 - HP12 - 43-45	4 CP22 - HPO7 -39-41	CP12-HP09-35-37	CP22-H809-59-4)	CP22-HP09-43-45	45-36-01410-224								
	Ŗ	Sa	٢	<u> </u>				KANDONIN'S			Į	<u>ی</u>	7	۲	<u>o</u>	<u> 킨</u>	기								

ondition of

Bottles

Lab Use

Only

samples

Document Number:, 10294

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 Time Time Date 3. Relinquished by (Signiture/Affiliation)

Geosyntec[®] consultants

Condition of Lab Use Bottles White copy: to accompany samples Time **16.30**Date 091217 Date 09 [12] 10 Continues (20 (0204 Yellow copy: field copy Page 2 of 2 ☐ Rush: Time Date Time Turn-around Time: Comments Normal Normal Document Number: はは Analysis Request and Chain of Custody Record **Number of Containers** Required Analyses 0.00E AB 1. Received by 2. Received by 3. Received by (Signiture/Affiliation) (Signiture/Affiliation) (Signiture/Affiliation) F.600 FN3 b 45F 64 57F Ŋ SAOCs by 8270 Date 09/12/17 477 Metals VOCs by Pelop Date Time Sample Date Time Type ノエマ していい Time Lab Coptact 8 LS Project Number Project Contact Carrier/Waybill No. 4171/6 19/19 Date se par Special Instructions: Relinquished by Sample Name Relinquished by Relinquished by roject Name -04122017 13-091220/A Geosyntec^o (Signiture/Affiliation) (Signiture/Affiliation) (Signiture/Affiliation) Samplers Names Laboratory Name ab Address

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586

consultants

Calscience

WORK ORDER NUMBER: 17-09-

SAMPLE RECEIPT CHECKLIST

COOLER _ OF _

CLIENT: GEOSYNTEC	DATE	: <u>09 / i</u>	<u> 2/ 2017</u>
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: +0.2°C); Temperature (w/o CF):3°C (w/ CF):3²°C (w/ CF):3²°C (w/ CF):3²°C (w/ CF):3²°C (w/ CF):3²°C (w/ CF):3²°C (w/ CF):3_²°C (w/ CF):3^²°C (w/ CF):3^³°C (w/ CF):3^3°C (w/ CF):3^3°		☑ Blank Checked	□ Sample
CUSTODY SEAL:			
	N/A N/A		by: <u>671</u> by: <u>1013</u>
SAMPLE CONDITION:		Yes	No N/A
Chain-of-Custody (COC) document(s) received with samples			
COC document(s) received complete			
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers			
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquish	ned time		
Sampler's name indicated on COC	<i></i>		
Sample container label(s) consistent with COC			
Sample container(s) intact and in good condition			
Proper containers for analyses requested			
Sufficient volume/mass for analyses requested			
Samples received within holding time		3	
Aqueous samples for certain analyses received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfide ☐ Dissolved Oxygen			
Proper preservation chemical(s) noted on COC and/or sample container			
Unpreserved aqueous sample(s) received for certain analyses			
☐ Volatile Organics ☐ Total Metals ☑ Dissolved Metals			
Acid/base preserved samples - pH within acceptable range			o ø
Container(s) for certain analysis free of headspace			
☑ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 4500)			
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)			
Tedlar™ bag(s) free of condensation			
CONTAINER TYPE: 4 (Trip Blank Lot	Number	: 1708	30C
Aqueous: UVOA UVOAh UVOAna2 U 100PJ U 100PJna2 U 125AGB U 125AGBh U 125AGBp			
□ 250AGB □ 250CGB □ 250CGBs (pH_2) □ 250PB □ 250PBπ (pH_2) □ 500AGB □ 500AGJ □ 1AGB □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □	□	[_
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () EnCores® () TerraCores® ()		□	_ 🗆
Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other Matrix (): □ _	□		
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Z	iploc/Rese	alable Bag	
Preservative: $\mathbf{b} = \text{buffered}$, $\mathbf{f} = \text{filtered}$, $\mathbf{h} = \text{HCI}$, $\mathbf{n} = \text{HNO}_3$, $\mathbf{na} = \text{NaOH}$, $\mathbf{na_2} = \text{Na}_2\text{S}_2\text{O}_3$, $\mathbf{p} = \text{H}_3\text{PO}_4$,	Labeled/	Checked	by: <u>/0/3</u>
$\mathbf{s} = H_2SO_4$, $\mathbf{u} = \text{ultra-pure}$, $\mathbf{x} = Na_2SO_3 + NaHSO_4$. H_2O , $\mathbf{znna} = Zn (CH_3CO_2)_2 + NaOH$	F	Reviewed I	by: <u>7) γ</u>

Calscience

SAMPLE ANOMALY REPORT

DATE: 09 / 12 / 2017

							··-· <u> </u>
SAMPLES, CONTAINERS, AN	D LABELS	S:		Commer	its		
☐ Sample(s) NOT RECEIVED but	listed on CC	C		***************************************		www.	
☐ Sample(s) received but NOT LIS	TED on CO	C		***************************************			
☐ Holding time expired (list client of	r ECI samp	le ID and anal	lysis)	***************************************			
☐ Insufficient sample amount for re	equested an	alysis (list ana	alysis)			<u></u>	
☐ Improper container(s) used (list a	analysis)						
☐ Improper preservative used (list	analysis)						
☐ pH outside acceptable range (lis	t analysis)						
☐ No preservative noted on COC of	or label (list a	analysis and r	notify lab)	***************************************			
☐ Sample container(s) not labeled				 			
☐ Client sample label(s) illegible (li	st container	type and ana	ılysis)				
☐ Client sample label(s) do not ma	tch COC (co	omment)					
☐ Project information				 			
☐ Client sample ID							
☐ Sampling date and/or time							
☐ Number of container(s)							
☐ Requested analysis				*****			
☐ Sample container(s) compromise	ed (commer	nt)					
☐ Broken						w	
☐ Water present in sample con	tainer			***************************************			
☐ Air sample container(s) compror	nised (comn	nent)			······································		
☐ Flat							
☐ Very low in volume							
☐ Leaking (not transferred; dup	licate bag s	ubmitted)					
☐ Leaking (transferred into ECI	Tedlar™ ba	ags*)					
☐ Leaking (transferred into clie	nt's Tedlar™	^м bags*)					
* Transferred at client's request.							
MISCELLANEOUS: (Describe)				Commer	nts		

HEADSPACE:							
(Containers with bubble > 6 mm or 1/4 inch for	volatile organi	c or dissolved gas	s analysis)	(Containers w	th bubble for othe	r analysis)	
ECI ECI Total Sample ID Container ID Number**	ECI Sample ID	ECI Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**	Requested Analysis
2 AB 2	,						
0 11							
<u> </u>							
5 1 9							
						<u> </u>	
Comments:							
						R	eported by: 1013 eviewed by: 778
** Record the total number of containers (i.e.	, vials or bottles	s) for the affected	sample.			Re	eviewed by: <u>778</u>

Calscience

WORK ORDER NUMBER: 17-09-0822

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: WR2274 / ESTCP Pendleton

Attention: Lea Kane

595 Market Street

Suite 610

San Francisco, CA 94105-2811

ResultLink >

Email your PM >

Approved for release on 09/21/2017 by: Stephen Nowak

Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	WR2274 / ESTCP Pendleton

Work Order Number: 17-09-0822

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 RSK-175M (Aqueous). 4.2 EPA 300.0 Anions (Aqueous). 4.3 EPA 200.7 ICP Metals (Aqueous). 4.4 EPA 8260B Volatile Organics (Aqueous). 4.5 SRL 524M-TCP 1,2,3-Trichloropropane (Aqueous).	7 7 9 13 16 20
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.5.2 LCS/LCSD.	22 22 27
6	Sample Analysis Summary	35
7	Glossary of Terms and Qualifiers	36
8	Chain-of-Custody/Sample Receipt Form	37

Work Order Narrative

Work Order: 17-09-0822 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/12/17. They were assigned to Work Order 17-09-0822.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

17-09-0822

09/12/17 18:30

Sample Summary

Client: Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Work Order: Project Name:

WR2274 / ESTCP Pendleton

PO Number:

Date/Time Received:

Number of 99

Containers:

Attn: Lea Kane

220205-MWX 17-09-0822-1 09/12/17 09:40 11 Aqueous	
CP22-PMW04 17-09-0822-2 09/12/17 14:02 11 Aqueous	
CP22-PMW06B 17-09-0822-3 09/12/17 12:20 11 Aqueous	
CP22-PMW07B 17-09-0822-4 09/12/17 11:31 11 Aqueous	
CP22-PMW08B 17-09-0822-5 09/12/17 10:40 11 Aqueous	
CP22-PMW09B 17-09-0822-6 09/12/17 13:13 11 Aqueous	
CP22-PMW10B 17-09-0822-7 09/12/17 14:54 11 Aqueous	
DUP-GW-091217 17-09-0822-8 09/12/17 14:15 11 Aqueous	
EB-GW-091217 17-09-0822-9 09/12/17 14:54 11 Aqueous	

Detections Summary

Client: Geosyntec Consultants Work Order: 17-09-0822

595 Market Street, Suite 610 Project Name: WR2274 / ESTCP Pendleton

San Francisco, CA 94105-2811 Received: 09/12/17

Attn: Lea Kane Page 1 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
220205-MWX (17-09-0822-1)						
Zinc	0.0880		0.0100	mg/L	EPA 200.7	Filtered
Calcium	72.7		0.100	mg/L	EPA 200.7	Filtered
Manganese	1.45		0.00500	mg/L	EPA 200.7	Filtered
Silicon	16.9		0.0500	mg/L	EPA 200.7	Filtered
Chloride	170		2.0	mg/L	EPA 300.0	N/A
Sulfate	98		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	7.0		0.50	ug/L	SRL 524M-TCP	EPA 5030C
CP22-PMW04 (17-09-0822-2)						
Zinc	0.181		0.0100	mg/L	EPA 200.7	Filtered
Calcium	63.7		0.100	mg/L	EPA 200.7	Filtered
Manganese	1.48		0.00500	mg/L	EPA 200.7	Filtered
Silicon	16.0		0.0500	mg/L	EPA 200.7	Filtered
Chloride	150		2.0	mg/L	EPA 300.0	N/A
Sulfate	87		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.054		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-PMW06B (17-09-0822-3)						
Zinc	0.0459		0.0100	mg/L	EPA 200.7	Filtered
Calcium	50.4		0.100	mg/L	EPA 200.7	Filtered
Manganese	1.14		0.00500	mg/L	EPA 200.7	Filtered
Silicon	15.2		0.0500	mg/L	EPA 200.7	Filtered
Chloride	150		2.0	mg/L	EPA 300.0	N/A
Sulfate	38		1.0	mg/L	EPA 300.0	N/A
CP22-PMW07B (17-09-0822-4)						
Zinc	0.0248		0.0100	mg/L	EPA 200.7	Filtered
Calcium	45.5		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.657		0.00500	mg/L	EPA 200.7	Filtered
Silicon	14.6		0.0500	mg/L	EPA 200.7	Filtered
Chloride	160		2.0	mg/L	EPA 300.0	N/A
Sulfate	99		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.022		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-PMW08B (17-09-0822-5)						
Zinc	0.0291		0.0100	mg/L	EPA 200.7	Filtered
Calcium	64.0		0.100	mg/L	EPA 200.7	Filtered
Manganese	1.49		0.00500	mg/L	EPA 200.7	Filtered
Silicon	15.9		0.0500	mg/L	EPA 200.7	Filtered
Chloride	170		2.0	mg/L	EPA 300.0	N/A
Sulfate	100		2.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.0056		0.0050	ug/L	SRL 524M-TCP	EPA 5030C

^{*} MDL is shown

Detections Summary

Client: Geosyntec Consultants Work Order: 17-09-0822

595 Market Street, Suite 610 Project Name: WR2274 / ESTCP Pendleton

San Francisco, CA 94105-2811 Received: 09/12/17

Attn: Lea Kane Page 2 of 2

Zinc 0.0909 0.0100 mg/L EPA 200.7 Filtered Calcium 68.9 0.100 mg/L EPA 200.7 Filtered Manganese 1.62 0.00500 mg/L EPA 200.7 Filtered Silicon 16.7 0.0500 mg/L EPA 200.7 Filtered Chloride 170 2.0 mg/L EPA 300.0 N/A Sulfate 98 2.0 mg/L EPA 300.0 N/A CP22-PMW10B (17-09-0822-7) Zinc 0.0514 0.0100 mg/L EPA 200.7 Filtered Calcium 17.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.0423 0.0500 mg/L EPA 200.7 Filtered Silicon 4.12 0.0500 mg/L EPA 300.0 N/A Sulfate 3.3 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.0164 0.0100 mg/L EPA 200.7 Filtered Calcium <th>Client SampleID</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Client SampleID						
Zinc 0.0909 0.0100 mg/L EPA 200.7 Filtered Calcium 68.9 0.100 mg/L EPA 200.7 Filtered Manganese 1.62 0.00500 mg/L EPA 200.7 Filtered Silicon 16.7 0.0500 mg/L EPA 200.7 Filtered Chloride 170 2.0 mg/L EPA 300.0 N/A Sulfate 98 2.0 mg/L EPA 300.0 N/A Sulfate 98 2.0 mg/L EPA 200.7 Filtered Calcium 17.9 0.0100 mg/L EPA 200.7 Filtered Manganese 0.0423 0.00500 mg/L EPA 200.7 Filtered Silicon 4.12 0.0500 mg/L EPA 200.7 Filtered Chloride 160 5.0 mg/L EPA 300.0 N/A Sulfate 3.3 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.01164 0.0100	<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
Calcium 68.9 0.100 mg/L EPA 200.7 Filtered Manganese 1.62 0.00500 mg/L EPA 200.7 Filtered Silicon 16.7 0.0500 mg/L EPA 200.7 Filtered Chloride 170 2.0 mg/L EPA 300.0 N/A Sulfate 98 2.0 mg/L EPA 300.0 N/A Sulfate 98 2.0 mg/L EPA 300.0 N/A SUBSCEPENMW10B (17-09-0822-7) V <td>CP22-PMW09B (17-09-0822-6)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	CP22-PMW09B (17-09-0822-6)						
Manganese 1.62 0.00500 mg/L EPA 200.7 Filtered Silicon 16.7 0.0500 mg/L EPA 200.7 Filtered Chloride 170 2.0 mg/L EPA 300.0 N/A Sulfate 98 2.0 mg/L EPA 300.0 N/A CP22-PMW10B (17-09-0822-7) VIA EPA 200.7 Filtered Zinc 0.0514 0.0100 mg/L EPA 200.7 Filtered Calcium 17.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.0423 0.0500 mg/L EPA 200.7 Filtered Silicon 4.12 0.0500 mg/L EPA 200.7 Filtered Chloride 160 5.0 mg/L EPA 300.0 N/A Sulfate 3.3 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.0164 0.0100 mg/L EPA 200.7 Filtered Manganese 1.49 0.0050 mg/L	Zinc	0.0909		0.0100	mg/L	EPA 200.7	Filtered
Silicon 16.7 0.0500 mg/L EPA 200.7 Filtered Chloride 170 2.0 mg/L EPA 300.0 N/A Sulfate 98 2.0 mg/L EPA 300.0 N/A CP22-PMW10B (17-09-0822-7) V V EPA 200.7 Filtered Calcium 17.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.0423 0.00500 mg/L EPA 200.7 Filtered Silicon 4.12 0.0500 mg/L EPA 200.7 Filtered Chloride 160 5.0 mg/L EPA 300.0 N/A Sulfate 3.3 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.011 0.0050 ug/L SRL 524M-TCP EPA 5030C 2UP-GW-091217 (17-09-0822-8) Zinc 0.0164 0.0100 mg/L EPA 200.7 Filtered Manganese 1.49 0.00500 mg/L EPA 200.7 Filtered Silicon	Calcium	68.9		0.100	mg/L	EPA 200.7	Filtered
Chloride Sulfate 170 2.0 mg/L EPA 300.0 N/A Sulfate 98 2.0 mg/L EPA 300.0 N/A CP22-PMW10B (17-09-0822-7) Unc 0.0514 0.0100 mg/L EPA 200.7 Filtered Calcium 17.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.0423 0.00500 mg/L EPA 200.7 Filtered Silicon 4.12 0.0500 mg/L EPA 200.7 Filtered Chloride 160 5.0 mg/L EPA 300.0 N/A Sulfate 3.3 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.011 0.0050 ug/L SRL 524M-TCP EPA 5030C DUP-GW-091217 (17-09-0822-8) Zinc 0.0164 0.0100 mg/L EPA 200.7 Filtered Manganese 1.49 0.00500 mg/L EPA 200.7 Filtered Silicon 16.5 0.0500 mg/L EPA 200.7 F	Manganese	1.62		0.00500	mg/L	EPA 200.7	Filtered
Sulfate 98 2.0 mg/L EPA 300.0 N/A CP22-PMW10B (17-09-0822-7) Zinc 0.0514 0.0100 mg/L EPA 200.7 Filtered Calcium 17.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.0423 0.00500 mg/L EPA 200.7 Filtered Silicon 4.12 0.0500 mg/L EPA 200.7 Filtered Chloride 160 5.0 mg/L EPA 300.0 N/A Sulfate 3.3 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.011 0.0050 ug/L SRL 524M-TCP EPA 5030C DUP-GW-091217 (17-09-0822-8) Zinc 0.0164 0.0100 mg/L EPA 200.7 Filtered Alanganese 1.49 0.00500 mg/L EPA 200.7 Filtered Silicon 16.5 0.0500 mg/L EPA 200.7 Filtered Chloride 180 2.0 mg/L EPA 300.0 N/	Silicon	16.7		0.0500	mg/L	EPA 200.7	Filtered
ZP22-PMW10B (17-09-0822-7) Zinc	Chloride	170		2.0	mg/L	EPA 300.0	N/A
Zinc 0.0514 0.0100 mg/L EPA 200.7 Filtered Calcium 17.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.0423 0.00500 mg/L EPA 200.7 Filtered Silicon 4.12 0.0500 mg/L EPA 200.7 Filtered Chloride 160 5.0 mg/L EPA 300.0 N/A Sulfate 3.3 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.011 0.0050 ug/L SRL 524M-TCP EPA 5030C DUP-GW-091217 (17-09-0822-8) Zinc 0.0164 0.0100 mg/L EPA 200.7 Filtered Calcium 64.0 0.0100 mg/L EPA 200.7 Filtered Manganese 1.49 0.00500 mg/L EPA 200.7 Filtered Silicon 16.5 0.0500 mg/L EPA 300.0 N/A Sulfate 88 1.0 mg/L EPA 300.0 N/A 1,2,	Sulfate	98		2.0	mg/L	EPA 300.0	N/A
Calcium 17.9 0.100 mg/L EPA 200.7 Filtered Manganese 0.0423 0.00500 mg/L EPA 200.7 Filtered Silicon 4.12 0.0500 mg/L EPA 200.7 Filtered Chloride 160 5.0 mg/L EPA 300.0 N/A Sulfate 3.3 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.011 0.0050 ug/L SRL 524M-TCP EPA 5030C DUP-GW-091217 (17-09-0822-8) V V SRL 524M-TCP EPA 5030C Zinc 0.0164 0.0100 mg/L EPA 200.7 Filtered Calcium 64.0 0.100 mg/L EPA 200.7 Filtered Manganese 1.49 0.00500 mg/L EPA 200.7 Filtered Silicon 16.5 0.0500 mg/L EPA 200.7 Filtered Chloride 180 2.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.054 <td>CP22-PMW10B (17-09-0822-7)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	CP22-PMW10B (17-09-0822-7)						
Manganese 0.0423 0.00500 mg/L EPA 200.7 Filtered Silicon 4.12 0.0500 mg/L EPA 200.7 Filtered Chloride 160 5.0 mg/L EPA 300.0 N/A Sulfate 3.3 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.011 0.0050 ug/L SRL 524M-TCP EPA 5030C DUP-GW-091217 (17-09-0822-8) 20 mg/L EPA 200.7 Filtered Calcium 64.0 0.0100 mg/L EPA 200.7 Filtered Manganese 1.49 0.00500 mg/L EPA 200.7 Filtered Silicon 16.5 0.0500 mg/L EPA 200.7 Filtered Chloride 180 2.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.054 0.0050 ug/L SRL 524M-TCP EPA 5030C EB-GW-091217 (17-09-0822-9) 20 0.0050 mg/L EPA 200.7 Filtered Calcium 12.1 0.100 mg/L EPA 200.7 Filtered	Zinc	0.0514		0.0100	mg/L	EPA 200.7	Filtered
Silicon 4.12 0.0500 mg/L EPA 200.7 Filtered Chloride 160 5.0 mg/L EPA 300.0 N/A Sulfate 3.3 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.011 0.0050 ug/L SRL 524M-TCP EPA 5030C DUP-GW-091217 (17-09-0822-8) EPA 200.7 Filtered Zinc 0.0164 0.0100 mg/L EPA 200.7 Filtered Calcium 64.0 0.100 mg/L EPA 200.7 Filtered Manganese 1.49 0.00500 mg/L EPA 200.7 Filtered Silicon 16.5 0.0500 mg/L EPA 200.7 Filtered Chloride 180 2.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.054 0.0050 ug/L SRL 524M-TCP EPA 5030C EB-GW-091217 (17-09-0822-9) Calcium 12.1 0.100 mg/L EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Chloride<	Calcium	17.9		0.100	mg/L	EPA 200.7	Filtered
Chloride 160 5.0 mg/L EPA 300.0 N/A Sulfate 3.3 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.011 0.0050 ug/L SRL 524M-TCP EPA 5030C DUP-GW-091217 (17-09-0822-8) 2.0 mg/L EPA 200.7 Filtered Calcium 64.0 0.100 mg/L EPA 200.7 Filtered Manganese 1.49 0.00500 mg/L EPA 200.7 Filtered Silicon 16.5 0.0500 mg/L EPA 200.7 Filtered Chloride 180 2.0 mg/L EPA 300.0 N/A Sulfate 88 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.054 0.0050 ug/L SRL 524M-TCP EPA 5030C EB-GW-091217 (17-09-0822-9) Calcium 12.1 0.100 mg/L EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered	Manganese	0.0423		0.00500	mg/L	EPA 200.7	Filtered
Sulfate 3.3 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.011 0.0050 ug/L SRL 524M-TCP EPA 5030C DUP-GW-091217 (17-09-0822-8) USAN SECTION STATE STA	Silicon	4.12		0.0500	mg/L	EPA 200.7	Filtered
1,2,3-Trichloropropane 0.011 0.0050 ug/L SRL 524M-TCP EPA 5030C DUP-GW-091217 (17-09-0822-8) DUP-GW-091217 (17-09-0822-8) EPA 200.7 Filtered Zinc 0.0164 0.0100 mg/L EPA 200.7 Filtered Calcium 64.0 0.100 mg/L EPA 200.7 Filtered Manganese 1.49 0.00500 mg/L EPA 200.7 Filtered Silicon 16.5 0.0500 mg/L EPA 200.7 Filtered Chloride 180 2.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.054 0.0050 ug/L SRL 524M-TCP EPA 5030C EB-GW-091217 (17-09-0822-9) EB-GW-091217 (17-09-0822-9) EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Chloride 4.3 1.0 mg/L EPA 300.0 N/A	Chloride	160		5.0	mg/L	EPA 300.0	N/A
DUP-GW-091217 (17-09-0822-8) Zinc 0.0164 0.0100 mg/L EPA 200.7 Filtered Calcium 64.0 0.100 mg/L EPA 200.7 Filtered Manganese 1.49 0.00500 mg/L EPA 200.7 Filtered Silicon 16.5 0.0500 mg/L EPA 200.7 Filtered Chloride 180 2.0 mg/L EPA 300.0 N/A Sulfate 88 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.054 0.0050 ug/L SRL 524M-TCP EPA 5030C EB-GW-091217 (17-09-0822-9) Calcium 12.1 0.100 mg/L EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Chloride 4.3 1.0 mg/L EPA 300.0 N/A	Sulfate	3.3		1.0	mg/L	EPA 300.0	N/A
Zinc 0.0164 0.0100 mg/L EPA 200.7 Filtered Calcium 64.0 0.100 mg/L EPA 200.7 Filtered Manganese 1.49 0.00500 mg/L EPA 200.7 Filtered Silicon 16.5 0.0500 mg/L EPA 200.7 Filtered Chloride 180 2.0 mg/L EPA 300.0 N/A Sulfate 88 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.054 0.0050 ug/L SRL 524M-TCP EPA 5030C EB-GW-091217 (17-09-0822-9) EB-GW-091217 (17-09-0822-9) EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Chloride 4.3 1.0 mg/L EPA 300.0 N/A	1,2,3-Trichloropropane	0.011		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
Calcium 64.0 0.100 mg/L EPA 200.7 Filtered Manganese 1.49 0.00500 mg/L EPA 200.7 Filtered Silicon 16.5 0.0500 mg/L EPA 200.7 Filtered Chloride 180 2.0 mg/L EPA 300.0 N/A Sulfate 88 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.054 0.0050 ug/L SRL 524M-TCP EPA 5030C EB-GW-091217 (17-09-0822-9) EB-GW-091217 (17-09-0822-9) EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Chloride 4.3 1.0 mg/L EPA 300.0 N/A	OUP-GW-091217 (17-09-0822-8)						
Manganese 1.49 0.00500 mg/L EPA 200.7 Filtered Silicon 16.5 0.0500 mg/L EPA 200.7 Filtered Chloride 180 2.0 mg/L EPA 300.0 N/A Sulfate 88 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.054 0.0050 ug/L SRL 524M-TCP EPA 5030C EB-GW-091217 (17-09-0822-9) EB-GW-091217 (17-09-0822-9) EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Chloride 4.3 1.0 mg/L EPA 300.0 N/A	Zinc	0.0164		0.0100	mg/L	EPA 200.7	Filtered
Silicon 16.5 0.0500 mg/L EPA 200.7 Filtered Chloride 180 2.0 mg/L EPA 300.0 N/A Sulfate 88 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.054 0.0050 ug/L SRL 524M-TCP EPA 5030C EB-GW-091217 (17-09-0822-9) EB-GW-091217 (17-09-0822-9) EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Chloride 4.3 1.0 mg/L EPA 300.0 N/A	Calcium	64.0		0.100	mg/L	EPA 200.7	Filtered
Chloride 180 2.0 mg/L EPA 300.0 N/A Sulfate 88 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.054 0.0050 ug/L SRL 524M-TCP EPA 5030C EB-GW-091217 (17-09-0822-9) Calcium 12.1 0.100 mg/L EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Chloride 4.3 1.0 mg/L EPA 300.0 N/A	Manganese	1.49		0.00500	mg/L	EPA 200.7	Filtered
Sulfate 88 1.0 mg/L EPA 300.0 N/A 1,2,3-Trichloropropane 0.054 0.0050 ug/L SRL 524M-TCP EPA 5030C EB-GW-091217 (17-09-0822-9) Calcium 12.1 0.100 mg/L EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Chloride 4.3 1.0 mg/L EPA 300.0 N/A	Silicon	16.5		0.0500	mg/L	EPA 200.7	Filtered
1,2,3-Trichloropropane 0.054 0.0050 ug/L SRL 524M-TCP EPA 5030C EB-GW-091217 (17-09-0822-9) Calcium 12.1 0.100 mg/L EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Chloride 4.3 1.0 mg/L EPA 300.0 N/A	Chloride	180		2.0	mg/L	EPA 300.0	N/A
EB-GW-091217 (17-09-0822-9) Calcium 12.1 0.100 mg/L EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Chloride 4.3 1.0 mg/L EPA 300.0 N/A	Sulfate	88		1.0	mg/L	EPA 300.0	N/A
Calcium 12.1 0.100 mg/L EPA 200.7 Filtered Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Chloride 4.3 1.0 mg/L EPA 300.0 N/A	1,2,3-Trichloropropane	0.054		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
Silicon 14.4 0.0500 mg/L EPA 200.7 Filtered Chloride 4.3 1.0 mg/L EPA 300.0 N/A	EB-GW-091217 (17-09-0822-9)						
Chloride 4.3 1.0 mg/L EPA 300.0 N/A	Calcium	12.1		0.100	mg/L	EPA 200.7	Filtered
•	Silicon	14.4		0.0500	mg/L	EPA 200.7	Filtered
Sulfate 7.0 1.0 mg/L EPA 300.0 N/A	Chloride	4.3		1.0	mg/L	EPA 300.0	N/A
	Sulfate	7.0		1.0	mg/L	EPA 300.0	N/A

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Geosyntec Consultants			Date Recei	ved:			09/12/17
595 Market Street, Suite 610			Work Order	•:			17-09-0822
San Francisco, CA 94105-2811			Preparation):			N/A
,			Method:				RSK-175M
			Units:				ug/L
Project: WR2274 / ESTCP Pendle	ton					Pa	ge 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
220205-MWX	17-09-0822-1-H	09/12/17 09:40	Aqueous	GC 61	N/A	09/14/17 15:01	170914L02
Parameter		Result	RL	1	DF	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-PMW04	17-09-0822-2-H	09/12/17 14:02	Aqueous	GC 61	N/A	09/14/17 15:26	170914L02
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-PMW06B	17-09-0822-3-H	09/12/17 12:20	Aqueous	GC 61	N/A	09/14/17 16:19	170914L02
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-PMW07B	17-09-0822-4-H	09/12/17 11:31	Aqueous	GC 61	N/A	09/14/17 17:51	170914L02
Parameter		Result	RL		DF	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-PMW08B	17-09-0822-5-H	09/12/17 10:40	Aqueous	GC 61	N/A	09/14/17 18:23	170914L02
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-PMW09B	17-09-0822-6-H	09/12/17 13:13	Aqueous	GC 61	N/A	09/14/17 18:47	170914L02
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-PMW10B	17-09-0822-7-H	09/12/17 14:54	Aqueous	GC 61	N/A	09/14/17 19:11	170914L02
Parameter		Result	RL		DF	Qua	alifiers
Propene		ND	1.0	00	1.00		
DUP-GW-091217	17-09-0822-8-H	09/12/17 14:15	Aqueous	GC 61	N/A	09/15/17 12:42	170915L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Propene		ND	1.0	0	1.00		

 Geosyntec Consultants
 Date Received:
 09/12/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0822

 San Francisco, CA 94105-2811
 Preparation:
 N/A

 Method:
 RSK-175M

 Units:
 ug/L

Project: WR2274 / ESTCP Pendleton Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EB-GW-091217	17-09-0822-9-H	09/12/17 14:54	Aqueous	GC 61	N/A	09/15/17 13:04	170915L02
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Propene		ND	1.00)	1.00		
Method Blank	099-14-325-85	N/A	Aqueous	GC 61	N/A	09/14/17 11:20	170914L02
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Propene		ND	1.00		1.00		

Method Blank	099-14-325-87	N/A	Aqueous GC 61	N/A	09/15/17 170915L02 10:49
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Propene		ND	1.00	1.00	

Chloride

Analytical Report

 Geosyntec Consultants
 Date Received:
 09/12/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0822

 San Francisco, CA 94105-2811
 Preparation:
 N/A

 Method:
 EPA 300.0

 Units:
 mg/L

Project: WR2274 / ESTCP Pendleton Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
220205-MWX	17-09-0822-1-J	09/12/17 09:40	Aqueous	IC 9	N/A	09/13/17 14:53	170913L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		98	1.0)	1.00		
220205-MWX	17-09-0822-1-J	09/12/17 09:40	Aqueous	IC 9	N/A	09/13/17 23:55	170913L01
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Chloride		170	2.0)	2.00		
CP22-PMW04	17-09-0822-2-J	09/12/17 14:02	Aqueous	IC 9	N/A	09/13/17 15:12	170913L01
Parameter Parame		Result	RL		<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		87	1.0)	1.00		
CP22-PMW04	17-09-0822-2-J	09/12/17 14:02	Aqueous	IC 9	N/A	09/14/17 00:14	170913L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Chloride		150	2.0)	2.00		
CP22-PMW06B	17-09-0822-3-J	09/12/17 12:20	Aqueous	IC 9	N/A	09/13/17 17:24	170913L01
Parameter Parame		Result	RL		<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		38	1.0)	1.00		
CP22-PMW06B	17-09-0822-3-J	09/12/17 12:20	Aqueous	IC 9	N/A	09/14/17 00:52	170913L01
Parameter Parame		Result	RL	:	<u>DF</u>	Qua	alifiers

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

2.0

2.00

150

Sulfate

Analytical Report

 Geosyntec Consultants
 Date Received:
 09/12/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0822

 San Francisco, CA 94105-2811
 Preparation:
 N/A

 Method:
 EPA 300.0

 Units:
 mg/L

 Project: WR2274 / ESTCP Pendleton
 Page 2 of 4

Lab Sample Number Date/Time Collected Date Prepared Date/Time Analyzed Client Sample Number Matrix QC Batch ID Instrument 09/12/17 11:31 09/13/17 17:43 CP22-PMW07B 17-09-0822-4-J IC 9 170913L01 Aqueous N/A <u>Parameter</u> Result <u>RL</u> <u>DF</u> Qualifiers ND Nitrite (as N) 0.10 1.00 ND Nitrate (as N) 0.10 1.00

1.0

1.00

CP22-PMW07B	17-09-0822-4-J	09/12/17 11:31	Aqueous IC 9	N/A	09/14/17 170913L01 01:11
<u>Parameter</u>		Result	<u>RL</u>	DF	<u>Qualifiers</u>
Chloride		160	2.0	2.00	

99

CP22-PMW08B	17-09-0822-5-J	09/12/17 10:40	Aqueous IC	C 9 N/A	09/13/17 170913L01 18:02
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Nitrite (as N)		ND	0.10	1.00	
Nitrate (as N)		ND	0.10	1.00	

CP22-PMW08B	17-09-0822-5-J	09/12/17 10:40	Aqueous IC 9	N/A	09/14/17 170913L01 01:29
<u>Parameter</u>		Result	<u>RL</u>	DF	<u>Qualifiers</u>
Chloride		170	2.0	2.00	
Sulfate		100	2.0	2.00	

CP22-PMW09B	17-09-0822-6-J	09/12/17 13:13	Aqueous IC 9	N/A	09/13/17 170913L01 18:21
<u>Parameter</u>		Result	<u>RL</u>	DF	<u>Qualifiers</u>
Nitrite (as N)		ND	0.10	1.00	
Nitrate (as N)		ND	0.10	1.00	

CP22-PMW09B	17-09-0822-6-J	09/12/17 13:13	Aqueous I	IC 9 N/A	09/14/17 1709 01:48	913L01
<u>Parameter</u>		Result	<u>RL</u>	DF	Qualifiers	
Chloride		170	2.0	2.00		
Sulfate		98	2.0	2.00		

 Geosyntec Consultants
 Date Received:
 09/12/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0822

 San Francisco, CA 94105-2811
 Preparation:
 N/A

 Method:
 EPA 300.0

 Units:
 mg/L

 Project: WR2274 / ESTCP Pendleton
 Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-PMW10B	17-09-0822-7-J	09/12/17 14:54	Aqueous	IC 9	N/A	09/13/17 15:30	170913L01
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		3.3	1.0)	1.00		
CP22-PMW10B	17-09-0822-7-J	09/12/17 14:54	Aqueous	IC 9	N/A	09/14/17 21:23	170914L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Chloride		160	5.0)	5.00		

DUP-GW-091217	17-09-0822-8-J	09/12/17 14:15	Aqueous IC 9	N/A	09/13/17 18:40	170913L01
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Quali</u>	<u>fiers</u>
Nitrite (as N)		ND	0.10	1.00		
Nitrate (as N)		ND	0.10	1.00		
Sulfate		88	1.0	1.00		

DUP-GW-091217	17-09-0822-8-J	09/12/17 14:15	Aqueous IC 9	N/A	09/14/17 02:07	170913L01
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qua	alifiers
Chloride		180	2.0	2.00		

EB-GW-091217	17-09-0822-9-J	09/12/17 14:54	Aqueous IC 9	N/A	09/13/17 17:05	170913L01
<u>Parameter</u>		Result	<u>RL</u>	DF	Qualif	<u>iers</u>
Chloride		4.3	1.0	1.00		
Nitrite (as N)		ND	0.10	1.00		
Nitrate (as N)		ND	0.10	1.00		
Sulfate		7.0	1.0	1.00		

Method Blank	099-12-906-7896	N/A	Aqueous IC 9	N/A	09/13/17 170913 13:47	BL01
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	
Chloride		ND	1.0	1.00		
Nitrite (as N)		ND	0.10	1.00		
Nitrate (as N)		ND	0.10	1.00		
Sulfate		ND	1.0	1.00		

 Geosyntec Consultants
 Date Received:
 09/12/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0822

 San Francisco, CA 94105-2811
 Preparation:
 N/A

 Method:
 EPA 300.0

 Units:
 mg/L

Project: WR2274 / ESTCP Pendleton Page 4 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-906-7901	N/A	Aqueous	IC 9	N/A	09/14/17 12:09	170914L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Chloride		ND	1.0)	1.00		

 Geosyntec Consultants
 Date Received:
 09/12/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0822

 San Francisco, CA 94105-2811
 Preparation:
 Filtered

 Method:
 EPA 200.7

 Units:
 mg/L

Project: WR2274 / ESTCP Pendleton Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
220205-MWX	17-09-0822-1-K	09/12/17 09:40	Aqueous	ICP 7300	09/15/17	09/19/17 15:46	170915LA6F
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Zinc		0.0880	0.0	100	1.00		
Calcium		72.7	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		1.45	0.0	0500	1.00		
Silicon		16.9	0.0	500	1.00		
CP22-PMW04	17-09-0822-2-K	09/12/17	Aqueous	ICP 7300	09/15/17	09/19/17	170915LA6F

CP22-PMW04	17-09-0822-2-K	09/12/17 14:02	Aqueous ICP 7300	09/15/17	09/19/17 15:50	170915LA6F
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		0.181	0.0100	1.00		
Calcium		63.7	0.100	1.00		
Iron		ND	0.100	1.00		
Manganese		1.48	0.00500	1.00		
Silicon		16.0	0.0500	1.00		

CP22-PMW06B	17-09-0822-3-K	09/12/17 12:20	Aqueous ICP 7300	09/15/17	09/19/17 170915LA6F 15:51
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		0.0459	0.0100	1.00	
Calcium		50.4	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		1.14	0.00500	1.00	
Silicon		15.2	0.0500	1.00	

CP22-PMW07B	17-09-0822-4-K	09/12/17 11:31	Aqueous ICP 7300	09/15/17	09/19/17 170915LA6F 15:52
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		0.0248	0.0100	1.00	
Calcium		45.5	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		0.657	0.00500	1.00	
Silicon		14.6	0.0500	1.00	

Geosyntec Consultants
Date Received:

Work Order:

17-09-0822

San Francisco, CA 94105-2811
Preparation:

Method:
Units:

mg/L

Project: WR2274 / ESTCP Pendleton Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-PMW08B	17-09-0822-5-K	09/12/17 10:40	Aqueous	ICP 7300	09/15/17	09/19/17 15:53	170915LA6F
Parameter		Result	RL		<u>DF</u>	Qua	lifiers
Zinc		0.0291	0.0	100	1.00		
Calcium		64.0	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		1.49	0.0	0500	1.00		
Silicon		15.9	0.0	500	1.00		

CP22-PMW09B	17-09-0822-6-K	09/12/17 13:13	Aqueous ICP 7300	09/15/17	09/19/17 15:54	170915LA6F
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		0.0909	0.0100	1.00		
Calcium		68.9	0.100	1.00		
Iron		ND	0.100	1.00		
Manganese		1.62	0.00500	1.00		
Silicon		16.7	0.0500	1.00		

CP22-PMW10B	17-09-0822-7-K	09/12/17 14:54	Aqueous ICP 7300	09/15/17	09/19/17 170915LA6F 15:55
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		0.0514	0.0100	1.00	
Calcium		17.9	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		0.0423	0.00500	1.00	
Silicon		4.12	0.0500	1.00	

DUP-GW-091217	17-09-0822-8-K	09/12/17 14:15	Aqueous ICP 7300	09/15/17	09/19/17 170915LA6F 15:56
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		0.0164	0.0100	1.00	
Calcium		64.0	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		1.49	0.00500	1.00	
Silicon		16.5	0.0500	1.00	

09/12/17 17-09-0822

Analytical Report

Geosyntec Consultants Date Received: 595 Market Street, Suite 610 Work Order: San Francisco, CA 94105-2811 Preparation:

Filtered Method: EPA 200.7 Units: mg/L

Page 3 of 3 Project: WR2274 / ESTCP Pendleton

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EB-GW-091217	17-09-0822-9-K	09/12/17 14:54	Aqueous	ICP 7300	09/15/17	09/19/17 15:57	170915LA6F
Parameter		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Zinc		ND	0.0)100	1.00		
Calcium		12.1	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		ND	0.0	00500	1.00		
Silicon		14.4	0.0)500	1.00		

Method Blank	099-14-304-635	N/A	Aqueous ICP 7300	09/15/17	09/19/17 12:12	170915LA6F
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		ND	0.0100	1.00		
Calcium		ND	0.100	1.00		
Iron		ND	0.100	1.00		
Manganese		ND	0.00500	1.00		
Silicon		ND	0.0500	1.00		

Geosyntec ConsultantsDate Received:09/12/17595 Market Street, Suite 610Work Order:17-09-0822San Francisco, CA 94105-2811Preparation:EPA 5030C

Method: EPA 8260B Units: ug/L

Project: WR2274 / ESTCP Pendleton Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
220205-MWX	17-09-0822-1-A	09/12/17 09:40	Aqueous	GC/MS L	09/15/17	09/16/17 06:57	170915L046
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>llifiers</u>
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		84	68	-120			
Dibromofluoromethane		107	80	-127			
1,2-Dichloroethane-d4		110	80	-128			
Toluene-d8		101	80	-120			

CP22-PMW04	17-09-0822-2-A	09/12/17 14:02	Aqueous GC/MS L	09/15/17	09/16/17 170915L046 07:26
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		86	68-120		
Dibromofluoromethane		109	80-127		
1,2-Dichloroethane-d4		109	80-128		
Toluene-d8		100	80-120		

CP22-PMW06B	17-09-0822-3-A	09/12/17 12:20	Aqueous GC/MS L	09/15/17	09/16/17 07:55	170915L046
<u>Parameter</u>		Result	RL	<u>DF</u>	Qu	alifiers
1,2-Dichloropropane		ND	0.50	1.00		
1,3-Dichloropropane		ND	1.0	1.00		
Allyl Chloride		ND	1.0	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene		84	68-120			
Dibromofluoromethane		119	80-127			
1,2-Dichloroethane-d4		110	80-128			
Toluene-d8		102	80-120			

Geosyntec ConsultantsDate Received:09/12/17595 Market Street, Suite 610Work Order:17-09-0822San Francisco, CA 94105-2811Preparation:EPA 5030C

Method: EPA 8260B Units: ug/L

Project: WR2274 / ESTCP Pendleton Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-PMW07B	17-09-0822-4-A	09/12/17 11:31	Aqueous	GC/MS L	09/16/17	09/16/17 11:44	170916L005
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		84	68	-120			
Dibromofluoromethane		103	80	-127			
1,2-Dichloroethane-d4		97	80	-128			
Toluene-d8		100	80	-120			

CP22-PMW08B	17-09-0822-5-A	09/12/17 10:40	Aqueous GC/MS L	09/16/17	09/16/17 170916L005 16:21
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		84	68-120		
Dibromofluoromethane		110	80-127		
1,2-Dichloroethane-d4		110	80-128		
Toluene-d8		100	80-120		

CP22-PMW09B	17-09-0822-6-A	09/12/17 13:13	Aqueous GC/MS I	_ 09/16/17	09/16/17 16:52	170916L005
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
1,2-Dichloropropane		ND	0.50	1.00		
1,3-Dichloropropane		ND	1.0	1.00		
Allyl Chloride		ND	1.0	1.00		
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		86	68-120			
Dibromofluoromethane		106	80-127			
1,2-Dichloroethane-d4		110	80-128			
Toluene-d8		100	80-120			

09/12/17

17-09-0822 EPA 5030C

Analytical Report

Geosyntec Consultants

Date Received:

Work Order:

San Francisco, CA 94105-2811

Preparation:

Method: EPA 8260B Units: ug/L

Project: WR2274 / ESTCP Pendleton Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-PMW10B	17-09-0822-7-A	09/12/17 14:54	Aqueous	GC/MS L	09/16/17	09/16/17 17:23	170916L005
Parameter		<u>Result</u>	Result RL		<u>DF</u>	Qua	<u>llifiers</u>
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		86	68	-120			
Dibromofluoromethane		118	80	-127			
1,2-Dichloroethane-d4		111	80	-128			
Toluene-d8		100	80	-120			

DUP-GW-091217	17-09-0822-8-A	09/12/17 14:15	Aqueous GC/MS L	09/16/17	09/16/17 170916L005 17:53
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		84	68-120		
Dibromofluoromethane		106	80-127		
1,2-Dichloroethane-d4		107	80-128		
Toluene-d8		101	80-120		

EB-GW-091217	17-09-0822-9-A	09/12/17 14:54	Aqueous GC/MS L	09/16/17	09/16/17 170916L005 18:24
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		91	68-120		
Dibromofluoromethane		108	80-127		
1,2-Dichloroethane-d4		109	80-128		
Toluene-d8		100	80-120		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

09/12/17 17-09-0822 EPA 5030C EPA 8260B

ug/L

Project: WR2274 / ESTCP Pendleton

Page 4 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-446-243	N/A	Aqueous	GC/MS L	09/15/17	09/15/17 22:13	170915L046
Parameter		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	alifiers
1,2-Dichloropropane		ND	0.5	0.50			
1,3-Dichloropropane		ND	1.0		1.00		
Allyl Chloride		ND	1.0		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		86	68	-120			
Dibromofluoromethane		105	80	80-127			
1,2-Dichloroethane-d4		104	80	80-128			
Toluene-d8		98	80	-120			

Method Blank	099-16-446-242	N/A	Aqueous GC/MS L	09/16/17	09/16/17 170916L005 11:11
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		84	68-120		
Dibromofluoromethane		104	80-127		
1,2-Dichloroethane-d4		103	80-128		
Toluene-d8		99	80-120		

Geosyntec Consultants			Date Recei	ved:			09/12/17		
595 Market Street, Suite 610			Work Order				17-09-0822		
San Francisco, CA 94105-2811			Preparation				EPA 5030C		
Carriancisco, CA 34103 2011			Method:			SRL 524M-TCP			
			Units:			O			
Project: WR2274 / ESTCP Pendle	aton		Offics.			D	ug/L age 1 of 2		
						Г	age 1 01 2		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
220205-MWX	17-09-0822-1-F	09/12/17 09:40	Aqueous	GC/MS T	09/19/17	09/20/17 04:09	170919L054		
<u>Parameter</u>		<u>Result</u>	RL	:	<u>DF</u>	Qu	<u>alifiers</u>		
1,2,3-Trichloropropane		7.0	0.5	50	100				
CP22-PMW04	17-09-0822-2-F	09/12/17 14:02	Aqueous	GC/MS T	09/19/17	09/20/17 00:57	170919L054		
<u>Parameter</u>		Result	RL		DF	Qu	alifiers		
1,2,3-Trichloropropane		0.054		0050	1.00				
CP22-PMW06B	17-09-0822-3-F	09/12/17 12:20	Aqueous	GC/MS T	09/19/17	09/20/17 01:24	170919L054		
Parameter		Result	RL	:	<u>DF</u>	Qu	alifiers		
1,2,3-Trichloropropane		ND	0.0	0050	1.00				
CP22-PMW07B	17-09-0822-4-F	09/12/17 11:31	Aqueous	GC/MS T	09/19/17	09/20/17 01:52	170919L054		
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qu	<u>alifiers</u>		
1,2,3-Trichloropropane		0.022	0.0	0050	1.00				
CP22-PMW08B	17-09-0822-5-F	09/12/17 10:40	Aqueous	GC/MS T	09/19/17	09/20/17 02:19	170919L054		
<u>Parameter</u>		Result	RL	:	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>		
1,2,3-Trichloropropane		0.0056	0.0	0050	1.00				
CP22-PMW09B	17-09-0822-6-F	09/12/17 13:13	Aqueous	GC/MS T	09/19/17	09/20/17 02:47	170919L054		
Parameter		Result	RL	:	<u>DF</u>	Qu	<u>alifiers</u>		
1,2,3-Trichloropropane		ND	0.0	0050	1.00				
CP22-PMW10B	17-09-0822-7-F	09/12/17 14:54	Aqueous	GC/MS T	09/19/17	09/20/17 03:14	170919L054		
Parameter		Result	RL	:	<u>DF</u>	Qu	<u>alifiers</u>		
1,2,3-Trichloropropane		0.011	0.0	0050	1.00				
DUP-GW-091217	17-09-0822-8-G	09/12/17 14:15	Aqueous	GC/MS T	09/19/17	09/20/17 03:41	170919L054		
Parameter		Result	RL		DF	Qu	alifiers		

 Geosyntec Consultants
 Date Received:
 09/12/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0822

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 SRL 524M-TCP

 Units:
 ug/L

Project: WR2274 / ESTCP Pendleton Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EB-GW-091217	17-09-0822-9-G	09/12/17 14:54	Aqueous	GC/MS T	09/19/17	09/20/17 00:30	170919L054
<u>Parameter</u>	·	Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		

Method Blank	099-10-022-1365	N/A	Aqueous G	GC/MS T 09/19/17	09/20/17 00:02	170919L054
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>ifiers</u>
1,2,3-Trichloropropane		ND	0.0050	0 1.00		

09/12/17

Quality Control - Spike/Spike Duplicate

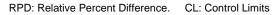
Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Date Received:

Work Order:

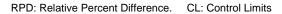

Preparation:

der: 17-09-0822 on: N/A EPA 300.0

Project: WR2274 / ESTCP Pendleton Page 1 of 5

Method:

Quality Control Sample ID	Туре		Matrix Instrumen		rument	Date Prepared	Date Analyzed		MS/MSD Batch Number	
CP22-PMW10B	Sample		Aqueous	IC 9)	N/A	09/13/17	15:30	170913S01	
CP22-PMW10B	Matrix Spike		Aqueous	s IC 9)	N/A	09/13/17	15:49	170913S01	
CP22-PMW10B	Matrix Spike	Duplicate	Aqueous	s IC 9)	N/A	09/13/17	16:08	170913S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chloride	192.7	50.00	253.4	121	254.4	123	80-120	0	0-20	3
Nitrite (as N)	ND	2.500	3.931	157	3.728	149	80-120	5	0-20	3
Nitrate (as N)	ND	5.000	4.571	91	4.634	93	80-120	1	0-20	
Sulfate	3.286	50.00	56.34	106	56.92	107	80-120	1	0-20	

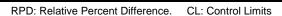

Quality Control - Spike/Spike Duplicate

Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-0822
San Francisco, CA 94105-2811
Preparation:
N/A
Method:
EPA 300.0

Project: WR2274 / ESTCP Pendleton Page 2 of 5

Quality Control Sample ID	Туре		Matrix Instrument		strument	Date Prepared	Date Analyzed		MS/MSD Batch Number	
17-09-0988-10	Sample		Aqueous IC 9		9	N/A	09/14/17 16:58		4/17 16:58 170914S01	
17-09-0988-10	Matrix Spike		Aqueous	s IC	9	N/A	09/14/17	17:17	170914S01	
17-09-0988-10	Matrix Spike Duplicate		Aqueous IC 9		N/A	09/14/17	17:36	170914S01		
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chloride	47.04	50.00	104.2	114	103.6	113	80-120	1	0-20	


Quality Control - Spike/Spike Duplicate

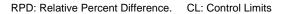
Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/12/17 17-09-0822 Filtered EPA 200.7

Project: WR2274 / ESTCP Pendleton

Page 3 of 5

Quality Control Sample ID	Туре	Туре		Matrix Instrum		ument Date Prepared		lyzed	MS/MSD Bat	ch Number
220205-MWX	Sample		Aqueou	s IC	P 7300	09/15/17	09/19/17	15:46	170915SA6	
220205-MWX	Matrix Spike		Aqueou	s IC	P 7300	09/15/17	09/19/17	15:48	170915SA6	
220205-MWX	Matrix Spike	Duplicate	Aqueou	s IC	P 7300	09/15/17	09/19/17	15:49	170915SA6	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	0.08804	0.5000	0.6540	113	0.5524	93	80-120	17	0-20	
Calcium	72.69	0.5000	69.75	4X	71.94	4X	80-120	4X	0-20	Q
Iron	ND	0.5000	0.4998	100	0.5033	101	80-120	1	0-20	
Manganese	1.450	0.5000	1.845	79	1.881	86	80-120	2	0-20	3
Silicon	16.85	0.5000	16.14	4X	16.50	4X	80-120	4X	0-20	Q

Quality Control - Spike/Spike Duplicate


Geosyntec Consultants
Date Received:

Work Order:

17-09-0822
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 4 of 5

Quality Control Sample ID	Туре		Matrix	li	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-09-0816-20	Sample		Aqueou	ıs G	GC/MS L	09/15/17	09/15/17	22:42	170915S039	
17-09-0816-20	Matrix Spike		Aqueou	ıs G	GC/MS L	09/15/17	09/15/17	23:11	170915S039	
17-09-0816-20	Matrix Spike	Duplicate	Aqueou	ıs G	GC/MS L	09/15/17	09/15/17	23:40	170915S039	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2-Dichloropropane	ND	10.00	8.549	85	7.500	75	75-125	13	0-20	
1,3-Dichloropropane	ND	10.00	8.190	82	7.615	76	75-125	7	0-20	
Allyl Chloride	ND	10.00	7.856	79	6.860	69	80-120	14	0-20	3

Quality Control - Spike/Spike Duplicate

Geosyntec Consultants
Date Received:

09/12/17
595 Market Street, Suite 610
Work Order:
17-09-0822
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 5 of 5

Quality Control Sample ID	Туре		Matrix	Ir	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
CP22-PMW07B	Sample		Aqueou	ıs G	C/MS L	09/16/17	09/16/17	11:44	170916S001	
CP22-PMW07B	Matrix Spike		Aqueou	us G	C/MS L	09/16/17	09/16/17	12:15	170916S001	
CP22-PMW07B	Matrix Spike	Duplicate	Aqueou	us G	C/MS L	09/16/17	09/16/17	12:46	170916S001	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2-Dichloropropane	ND	10.00	10.04	100	10.18	102	75-125	1	0-20	
1,3-Dichloropropane	ND	10.00	9.679	97	10.04	100	75-125	4	0-20	
Allyl Chloride	ND	10.00	9.328	93	9.538	95	80-120	2	0-20	

Geosyntec Consultants
595 Market Street, Suite 610
San Francisco, CA 94105-2811

Date Received: Work Order: Preparation: Method: 09/12/17 17-09-0822 N/A

RSK-175M

Project: WR2274 / ESTCP Pendleton

Page 1 of 8

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	epared Da	ate Analyzed	LCS/LCSD B	atch Number
099-14-325-85	LCS	Aqı	ueous	GC 61	N/A	09	9/14/17 09:56	170914L02	
099-14-325-85	LCSD	Aqu	ueous	GC 61	N/A	09	9/14/17 10:28	170914L02	
<u>Parameter</u>	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. C	CL RPD	RPD CL	Qualifiers
Propene	103.0	102.7	100	102.5	100	80-120	0	0-20	

Geosyntec Consultants
595 Market Street, Suite 610
San Francisco, CA 94105-2811

Date Received:
Work Order:
Preparation:
Method:

17-09-0822 N/A

RSK-175M

09/12/17

Page 2 of 8

Project: WR2274 / ESTCP Pendleton

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-14-325-87	LCS	Aqı	ieous	GC 61	N/A	09/1	5/17 10:02	170915L02	
099-14-325-87	LCSD	Aqı	ieous	GC 61	N/A	09/1	5/17 10:27	170915L02	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Propene	103.0	91.27	89	89.58	87	80-120	2	0-20	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/12/17 17-09-0822 N/A

EPA 300.0 Page 3 of 8

Project: WR2274 / ESTCP Pendleton

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	pared Date	Analyzed	LCS/LCSD B	atch Number
099-12-906-7896	LCS	Aqı	ieous	IC 9	N/A	09/13	3/17 14:06	170913L01	
099-12-906-7896	LCSD	Aqı	ueous	IC 9	N/A	09/13	3/17 20:14	170913L01	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Chloride	50.00	50.22	100	51.14	102	90-110	2	0-15	
Nitrite (as N)	2.500	2.669	107	2.606	104	90-110	2	0-15	
Nitrate (as N)	5.000	4.807	96	4.858	97	90-110	1	0-15	
Sulfate	50.00	52.01	104	52.60	105	90-110	1	0-15	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/12/17 17-09-0822 N/A

EPA 300.0 Page 4 of 8

Project: WR2274 / ESTCP Pendleton

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Dat	e Analyzed	LCS/LCSD B	atch Number
099-12-906-7901	LCS	Aqı	leous	IC 9	N/A	09/	14/17 12:28	170914L01	
099-12-906-7901	LCSD	Aqı	ueous	IC 9	N/A	09/	14/17 21:04	170914L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chloride	50.00	49.82	100	50.12	100	90-110	1	0-15	

Quality Control - LCS

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: 09/12/17 17-09-0822 Filtered EPA 200.7

Method:

Page 5 of 8

Project: WR2274 / ESTCP Pendleton

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-304-635	LCS	Aqueous	ICP 7300	09/15/17	09/20/17 10:44	170915LA6F
<u>Parameter</u>		Spike Added	Conc. Recovered	ed LCS %Re	<u>%Rec.</u>	CL Qualifiers
Zinc		0.5000	0.5438	109	85-115	
Calcium		0.5000	0.5369	107	85-115	
Iron		0.5000	0.5389	108	85-115	
Manganese		0.5000	0.5407	108	85-115	
Silicon		0.5000	0.5292	106	85-115	

Quality Control - LCS

Geosyntec Consultants
Date Received:

09/12/17
595 Market Street, Suite 610
Work Order:
17-09-0822
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 6 of 8

Quality Control Sample ID	Type	Matrix	Instrument [Date Prepared	Date Analyzed	LCS Batch Number
099-16-446-243	LCS	Aqueous	GC/MS L	09/15/17	09/15/17 21:44	170915L046
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,2-Dichloropropane		10.00	9.516	95	74-122	2
1,3-Dichloropropane		10.00	9.391	94	74-128	3
Allyl Chloride		10.00	9.553	96	70-130)

Quality Control - LCS

Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-0822
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 7 of 8

Quality Control Sample ID	Туре	Matrix	Instrument [Date Prepared	Date Analyzed	LCS Batch Number
099-16-446-242	LCS	Aqueous	GC/MS L	09/16/17	09/16/17 10:39	170916L005
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,2-Dichloropropane		10.00	9.742	97	74-12	2
1,3-Dichloropropane		10.00	9.674	97	74-12	8
Allyl Chloride		10.00	9.189	92	70-130	0

Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-0822
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
SRL 524M-TCP

Project: WR2274 / ESTCP Pendleton Page 8 of 8

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1365	LCS	Aqı	ieous	GC/MS T	09/19/17	09/19	9/17 22:40	170919L054	
099-10-022-1365	LCSD	Aqu	ieous	GC/MS T	09/19/17	09/19	9/17 23:08	170919L054	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.005400	108	0.005300	106	80-120	2	0-20	

Sample Analysis Summary Report

Work Order: 17-09-0822	Vork Order: 17-09-0822						
Method	Extraction	Chemist ID	Instrument	Analytical Location			
EPA 200.7	Filtered	935	ICP 7300	1			
EPA 300.0	N/A	1027	IC 9	1			
EPA 8260B	EPA 5030C	316	GC/MS L	2			
EPA 8260B	EPA 5030C	996	GC/MS L	2			
RSK-175M	N/A	326	GC 61	2			
RSK-175M	N/A	1078	GC 61	2			
SRL 524M-TCP	EPA 5030C	486	GC/MS T	2			

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 17-09-0822 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without furthe clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

- % Recovery and/or RPD out-of-range.
- Χ
- Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Condition of Lab Use Bottles White copy: to accompany samples 21/11/16 Date tog (スピア 820 17-09-0822 Yellow copy: field copy Page of ☐ Rush: Time Date Date Time Document Number:, 11064Turn-around Time: Comments B Normal FCI M, Seeyake an Analysis Request and Chain of Custody Record Special Instructions: Analysis sam as 7/11/17 samples. Con: I really be cknece gressynke. con L brockwelle 4 Bottle Type and Volume/Preservative Number of Containers Required Analyses 0.662 API 1. Received by 3. Received by 2. Received by (Signiture/Affiliation) (Signiture/Affiliation) (Signiture/Affiliation) 3 **M** <0 ςO 3 ζ() S S -MKS 182 69 471 9 رم ζ0 3 Ś SVOCs by 8270 Date Soli 2117 Likila Date 09-17-[7] 0FG/ 1930 ζ0 YOY 6 ص 3 Ś ح در 8 977 Time Time Date Time Sample Various Agg-Type 十9十 0401 古出 Time 04160 1220 1415 1402 1313 113 Project Contact Lab Contact Project Number **したな**3 子4 Carrier/Waybill No. 878 9-12-16 Lab Phone Date 1. Relinquished by milk Perstan DUP-GW-09121 6922-pmm08B CP22-pmw07B CP17-PMWOGB CP22- PMUS10B 220205-mwx EB-G-09121 1922-pmm060 Sample Name 3. Relinquished by Relinquished by toomud-Cod (Signiture/Affiliation) (Signiture/Affiliation) (Signiture/Affiliation) ESTC\$ aboratory Name Samplers Names **Calscienc** Lab Address Project Name

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax (858) 674-6586

Geosyntec^D consultants

Calscience

WORK ORDER NUMBER: 17-09-38 of 2822

SAMPLE RECEIPT CHECKLIST

COOLER 1 OF 1

CLIENT: GEOSYNTEC	DATE	≣: <u>09 /</u> j	2/2	017
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: +0.2°C); Temperature (w/o CF):3, 2°C (w/ CF):3 □ Sample(s) outside temperature criteria (PM/APM contacted by:) □ Sample(s) outside temperature criteria but received on ice/chilled on same day o □ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: □ Air □ Filter		Blank Checked	æ	ample
CUSTODY SEAL:				
Cooler	□ N/A □ N/A	Checked Checked	-	
SAMPLE CONDITION:		Yes	No	N/A
Chain-of-Custody (COC) document(s) received with samples				
COC document(s) received complete				
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers		*		
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relin	auished time			
Sampler's name indicated on COC				
•		1 / -		
Sample container label(s) consistent with COC Sample container(s) intact and in good condition		79112/17.		
Proper containers for analyses requested		• ,		
Sufficient volume/mass for analyses requested		-		П
Samples received within holding time				П
Aqueous samples for certain analyses received within 15-minute holding time	• • • • • • • • • • • • • • • • • • • •	7		_
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen				
Proper preservation chemical(s) noted on COC and/or sample container				<i>Р</i>
Unpreserved aqueous sample(s) received for certain analyses		7	_	
☐ Volatile Organics ☐ Total Metals ☑ Dissolved Metals				
Acid/base preserved samples - pH within acceptable range		П		
Container(s) for certain analysis free of headspace				7
Volatile Organics Dissolved Gases (RSK-175) Dissolved Oxygen (SM 45		. /	_	
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Ha				
Tedlar™ bag(s) free of condensation				
				<i></i>
CONTAINER TYPE: (a) (Trip Blan Aqueous: ☐ VOA ☑ VOAh ☐ VOAna₂ ☐ 100PJ ☐ 100PJna₂ ☐ 125AGB ☐ 125AGBh ☐ 125.	k Lot Numbe			
Aqueous: □ VOA				
□ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □				
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () EnCores® () TerraCores® ()				
Air: ☐ Tedlar™ ☐ Canister ☐ Sorbent Tube ☐ PUF ☐ Other Matrix (
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and				
Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ S ₂ O ₃ , p = H ₃ P				6
$\mathbf{s} = H_2SO_4$, $\mathbf{u} = \text{ultra-pure}$, $\mathbf{x} = Na_2SO_3 + NaHSO_4$. H_2O , $\mathbf{znna} = Zn (CH_3CO_2)_2 + NaCO_2$		Reviewed		F _

Calscience

WORK ORDER NUMBER: 17-09-0822

SAMPLE ANOMALY REPORT

DATE: 09 // 2017

SAMPLES, CONTAINERS, AND				Commer	its		
☐ Sample(s) NOT RECEIVED but list							
☐ Sample(s) received but NOT LISTE							
☐ Holding time expired (list client or E							
☐ Insufficient sample amount for requ	ested an	alysis (list ana	alysis)				
☐ Improper container(s) used (list and	alysis)			***************************************	,		
☐ Improper preservative used (list an	alysis)						
☐ pH outside acceptable range (list a	nalysis)			***************************************			
☐ No preservative noted on COC or la	abel (list a	analysis and r	notify lab)				
☐ Sample container(s) not labeled				***************************************			
☐ Client sample label(s) illegible (list o	container	type and ana	lysis)				
☐ Client sample label(s) do not match	COC (cc	omment)					Manage statement of the
☐ Project information							
☐ Client sample ID				***************************************		**********	
☐ Sampling date and/or time					was appearance to the control of the		
☐ Number of container(s)							1
☐ Requested analysis						*****	
☐ Sample container(s) compromised	(commen	it)		*******			MANAGEMENT CONTRACTOR OF THE C
☐ Broken							
☐ Water present in sample contain	ner			***************************************			
☐ Air sample container(s) compromis	ed (comn	nent)		***************************************			
□ Flat							
☐ Very low in volume				*(-1)101	-9) (o,	<u>llectio</u>	n year per
☐ Leaking (not transferred; duplication	ate bag si	ubmitted)				abel,	2017.
☐ Leaking (transferred into ECI Te	edlar™ ba	ags*)					
☐ Leaking (transferred into client's	Tedlar™	/ bags*)				······································	
* Transferred at client's request.							
MISCELLANEOUS: (Describe)				Commer	nts		
* Year							
HEADSPACE:							
(Containers with bubble > 6 mm or ¼ inch for vo	latile organic	c or dissolved gas	s analysis)	(Containers wi	th bubble for othe	r analysis)	
ECI ECI Total	ECI Comple ID	ECI Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**	Requested Analysis
Sample ID Container ID Number** S	Sample ID	Container 1D	Maniper	Sample 10	Outland 10	Number	Toquotos / maryor
Commente							_
Comments:						P	eported by: 778
** Record the total number of containers (i.e., via		\ for the offseted	oomnio			Re	eviewed by: 72 &

Calscience

WORK ORDER NUMBER: 17-09-0989

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: WR2274 / ESTCP Pendleton

Attention: Lea Kane

595 Market Street

Suite 610

San Francisco, CA 94105-2811

Email your PM >

ResultLink >

Approved for release on 09/27/2017 by:

Stephen Nowak Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Proj	ject Name:	WR2274 /	ESTCP Pendleton

Work Order Number: 17-09-0989

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 RSK-175M (Aqueous). 4.2 EPA 300.0 Anions (Aqueous). 4.3 EPA 200.7 ICP Metals (Aqueous). 4.4 EPA 8260B Volatile Organics (Aqueous). 4.5 SRL 524M-TCP 1,2,3-Trichloropropane (Aqueous).	8 10 15 19 26
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.	29 29 35
6	Sample Analysis Summary	45
7	Glossary of Terms and Qualifiers	46
8	Chain-of-Custody/Sample Receipt Form	47

Work Order Narrative

Work Order: 17-09-0989 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/13/17. They were assigned to Work Order 17-09-0989.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Work Order: Project Name:

WR2274 / ESTCP Pendleton

, ,

PO Number:

Date/Time Received:

Number of

Containers:

09/13/17 18:30

17-09-0989

152

Attn: Lea Kane

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
CP22-DUP2-091317	17-09-0989-1	09/13/17 11:00	11	Aqueous
CP22-DUP3-091317	17-09-0989-2	09/13/17 12:00	11	Aqueous
CP22-DUP4-091317	17-09-0989-3	09/13/17 14:00	11	Aqueous
TB-091317	17-09-0989-4	09/13/17 00:00	2	Aqueous
FB-091317	17-09-0989-5	09/13/17 11:30	2	Aqueous
CP22-HP12-39-41	17-09-0989-6	09/13/17 07:40	11	Aqueous
CP22-HP11-35-37	17-09-0989-7	09/13/17 08:30	11	Aqueous
CP22-HP11-39-41	17-09-0989-8	09/13/17 09:10	11	Aqueous
CP22-HP11-43-45	17-09-0989-9	09/13/17 10:00	11	Aqueous
CP22-HP08-35-37	17-09-0989-10	09/13/17 10:45	11	Aqueous
CP22-HP08-39-41	17-09-0989-11	09/13/17 12:45	3	Aqueous
CP22-HP08-43-45	17-09-0989-12	09/13/17 11:25	11	Aqueous
FB2-091317	17-09-0989-13	09/13/17 15:45	2	Aqueous
EB2-091317	17-09-0989-14	09/13/17 14:30	8	Aqueous
EB3-091317	17-09-0989-15	09/13/17 16:00	8	Aqueous
CP22-HP06-35-37	17-09-0989-16	09/13/17 13:30	11	Aqueous
CP22-HP06-39-41	17-09-0989-17	09/13/17 15:15	6	Aqueous
CP22-HP06-43-45	17-09-0989-18	09/13/17 15:30	11	Aqueous

Detections Summary

Client: Geosyntec Consultants Work Order: 17-09-0989

595 Market Street, Suite 610 Project Name: WR2274 / ESTCP Pendleton

San Francisco, CA 94105-2811 Received: 09/13/17

Attn: Lea Kane Page 1 of 3

Client SampleID						
Analyte	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
CD22 DUD2 004247 (47 00 0000 4)						
CP22-DUP2-091317 (17-09-0989-1)	0.0102		0.0400		EDA 200.7	Filtered
Zinc	0.0183		0.0100	mg/L	EPA 200.7	
Calcium	56.5		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.518		0.00500	mg/L	EPA 200.7	Filtered
Silicon	9.60		0.0500	mg/L	EPA 200.7	Filtered
Chloride	160		2.0	mg/L	EPA 300.0	N/A
Sulfate	69		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.36		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP22-DUP3-091317 (17-09-0989-2)						
Zinc	0.0127		0.0100	mg/L	EPA 200.7	Filtered
Calcium	55.3		0.100	mg/L	EPA 200.7	Filtered
Manganese	1.13		0.00500	mg/L	EPA 200.7	Filtered
Silicon	10.4		0.0500	mg/L	EPA 200.7	Filtered
Chloride	150		2.0	mg/L	EPA 300.0	N/A
Sulfate	60		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.075		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-DUP4-091317 (17-09-0989-3)						
Zinc	0.0133		0.0100	mg/L	EPA 200.7	Filtered
Calcium	63.4		0.100	mg/L	EPA 200.7	Filtered
Manganese	1.46		0.00500	mg/L	EPA 200.7	Filtered
Silicon	13.3		0.0500	mg/L	EPA 200.7	Filtered
Chloride	160		2.0	mg/L	EPA 300.0	N/A
Sulfate	95		1.0	mg/L	EPA 300.0	N/A
CP22-HP12-39-41 (17-09-0989-6)						
Zinc	0.0110		0.0100	mg/L	EPA 200.7	Filtered
Calcium	47.5		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.933		0.00500	mg/L	EPA 200.7	Filtered
Silicon	8.56		0.0500	mg/L	EPA 200.7	Filtered
Chloride	150		2.0	mg/L	EPA 300.0	N/A
Sulfate	61		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.076		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP11-35-37 (17-09-0989-7)				Ü		
Calcium	39.3		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.426		0.00500	mg/L	EPA 200.7	Filtered
Silicon	10.3		0.0500	mg/L	EPA 200.7	Filtered
Chloride	160		5.0	mg/L	EPA 300.0	N/A
Sulfate	75		1.0	mg/L	EPA 300.0	N/A
Sandio	. •			9/ ⊏	21 / 1 000.0	1 1// 1

^{*} MDL is shown

Detections Summary

Client: Geosyntec Consultants Work Order: 17-09-0989

595 Market Street, Suite 610 Project Name: WR2274 / ESTCP Pendleton

San Francisco, CA 94105-2811 Received: 09/13/17

Attn: Lea Kane Page 2 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
CP22-HP11-39-41 (17-09-0989-8)						
Zinc	0.0217		0.0100	mg/L	EPA 200.7	Filtered
Calcium	62.3		0.100	mg/L	EPA 200.7	Filtered
Manganese	1.01		0.00500	mg/L	EPA 200.7	Filtered
Silicon	11.3		0.0500	mg/L	EPA 200.7	Filtered
Chloride	150		2.0	mg/L	EPA 300.0	N/A
Sulfate	82		1.0	mg/L	EPA 300.0	N/A
Propene	5.46		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.15		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP11-43-45 (17-09-0989-9)						
Zinc	0.0141		0.0100	mg/L	EPA 200.7	Filtered
Calcium	67.5		0.100	mg/L	EPA 200.7	Filtered
Manganese	1.39		0.00500	mg/L	EPA 200.7	Filtered
Silicon	14.4		0.0500	mg/L	EPA 200.7	Filtered
Chloride	150		2.0	mg/L	EPA 300.0	N/A
Sulfate	91		1.0	mg/L	EPA 300.0	N/A
CP22-HP08-35-37 (17-09-0989-10)						
Calcium	56.6		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.501		0.00500	mg/L	EPA 200.7	Filtered
Silicon	13.7		0.0500	mg/L	EPA 200.7	Filtered
Chloride	160		2.0	mg/L	EPA 300.0	N/A
Sulfate	90		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.45		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP08-43-45 (17-09-0989-12)						
Calcium	68.1		0.100	mg/L	EPA 200.7	Filtered
Manganese	1.50		0.00500	mg/L	EPA 200.7	Filtered
Silicon	13.7		0.0500	mg/L	EPA 200.7	Filtered
Chloride	160		2.0	mg/L	EPA 300.0	N/A
Sulfate	95		1.0	mg/L	EPA 300.0	N/A
EB3-091317 (17-09-0989-15)						
Calcium	0.126		0.100	mg/L	EPA 200.7	Filtered
CP22-HP06-35-37 (17-09-0989-16)						
Zinc	0.0100		0.0100	mg/L	EPA 200.7	Filtered
Calcium	35.4		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.415		0.00500	mg/L	EPA 200.7	Filtered
Silicon	11.7		0.0500	mg/L	EPA 200.7	Filtered
Chloride	170		2.0	mg/L	EPA 300.0	N/A
Sulfate	80		1.0	mg/L	EPA 300.0	N/A

^{*} MDL is shown

Detections Summary

Client: Geosyntec Consultants

Work Order:

17-09-0989

595 Market Street, Suite 610

Project Name:

WR2274 / ESTCP Pendleton

San Francisco, CA 94105-2811

Received: 09/13/17

Attn: Lea Kane Page 3 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
CP22-HP06-39-41 (17-09-0989-17)						
Propene	1.94		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.12		0.010	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP06-43-45 (17-09-0989-18)						
Zinc	0.0170		0.0100	mg/L	EPA 200.7	Filtered
Calcium	71.2		0.100	mg/L	EPA 200.7	Filtered
Manganese	1.53		0.00500	mg/L	EPA 200.7	Filtered
Silicon	13.2		0.0500	mg/L	EPA 200.7	Filtered
Chloride	160		2.0	mg/L	EPA 300.0	N/A
Sulfate	93		2.0	mg/L	EPA 300.0	N/A

Subcontracted analyses, if any, are not included in this summary.

Geosyntec Consultants			Date Recei	ved:			09/13/17
595 Market Street, Suite 610		,	Work Orde	•:			17-09-0989
San Francisco, CA 94105-2811			Preparation	n:			N/A
			Method:				RSK-175M
			Units:				ug/L
Project: WR2274 / ESTCP Pendlet	on					Pa	ige 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-DUP2-091317	17-09-0989-1-I	09/13/17 11:00	Aqueous	GC 52	N/A	09/15/17 19:15	170915L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-DUP3-091317	17-09-0989-2-I	09/13/17 12:00	Aqueous	GC 52	N/A	09/16/17 14:30	170916L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-DUP4-091317	17-09-0989-3-I	09/13/17 14:00	Aqueous	GC 52	N/A	09/15/17 19:49	170915L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-HP12-39-41	17-09-0989-6-I	09/13/17 07:40	Aqueous	GC 52	N/A	09/15/17 20:15	170915L01
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-HP11-35-37	17-09-0989-7-I	09/13/17 08:30	Aqueous	GC 52	N/A	09/15/17 21:11	170915L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP11-39-41	17-09-0989-8-I	09/13/17 09:10	Aqueous	GC 52	N/A	09/15/17 21:36	170915L01
<u>Parameter</u>		Result	<u>RL</u>	:	<u>DF</u>	Qua	<u>alifiers</u>
Propene		5.46	1.0	00	1.00		
CP22-HP11-43-45	17-09-0989-9-I	09/13/17 10:00	Aqueous	GC 52	N/A	09/15/17 22:03	170915L01
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP08-35-37	17-09-0989-10-I	09/13/17 10:45	Aqueous	GC 52	N/A	09/15/17 22:29	170916L01
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
Propene		ND	1.0	00	1.00		

Geosyntec Consultants			Date Recei	ved:			09/13/17
595 Market Street, Suite 610		,	Work Ordei	·:			17-09-0989
San Francisco, CA 94105-2811			Preparation	n:			N/A
			Method:				RSK-175M
			Units:				ug/L
Project: WR2274 / ESTCP Pendlet	ton					Pa	ge 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP08-43-45	17-09-0989-12-I	09/13/17 11:25	Aqueous	GC 52	N/A	09/16/17 11:17	170916L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
EB2-091317	17-09-0989-14-E	09/13/17 14:30	Aqueous	GC 52	N/A	09/16/17 11:43	170916L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
EB3-091317	17-09-0989-15-E	09/13/17 16:00	Aqueous	GC 52	N/A	09/16/17 12:10	170916L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-HP06-35-37	17-09-0989-16-I	09/13/17 13:30	Aqueous	GC 52	N/A	09/16/17 12:37	170916L01
Parameter		Result	RL		DF	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-HP06-39-41	17-09-0989-17-I	09/13/17 15:15	Aqueous	GC 52	N/A	09/16/17 13:07	170916L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Propene		1.94	1.0	00	1.00		
CP22-HP06-43-45	17-09-0989-18-I	09/13/17 15:30	Aqueous	GC 52	N/A	09/16/17 13:35	170916L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
Method Blank	099-14-325-86	N/A	Aqueous	GC 52	N/A	09/15/17 12:05	170915L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
Method Blank	099-14-325-89	N/A	Aqueous	GC 52	N/A	09/16/17 10:43	170916L01
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
Propene		ND	1.0	00	1.00		

Geosyntec Consultants	Date Received:	09/13/17
595 Market Street, Suite 610	Work Order:	17-09-0989
San Francisco, CA 94105-2811	Preparation:	N/A
	Method:	EPA 300.0
	Units:	mg/L
Project: WR2274 / ESTCP Pendleton		Page 1 of 5

Project. WK22747 ESTCP	rendieton					Га	ige i di 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-DUP2-091317	17-09-0989-1-J	09/13/17 11:00	Aqueous	IC 15	N/A	09/14/17 19:21	170914L01
Parameter		Result	RL	•	<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	10	1.00		
Nitrate (as N)		ND	0.1	10	1.00		
Sulfate		69	1.0)	1.00		
CP22-DUP2-091317	17-09-0989-1-J	09/13/17 11:00	Aqueous	IC 15	N/A	09/15/17 23:24	170915L02
Parameter		Result	RL	=	<u>DF</u>	Qua	alifiers
Chloride		160	2.0)	2.00		
CP22-DUP3-091317	17-09-0989-2-J	09/13/17 12:00	Aqueous	IC 15	N/A	09/14/17 19:40	170914L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	10	1.00		
Nitrate (as N)		ND	0.1	10	1.00		
Sulfate		60	1.0)	1.00		
CP22-DUP3-091317	17-09-0989-2-J	09/13/17	Aqueous	IC 15	N/A	09/15/17	170915L02

		12:00			23:43	
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Chloride		150	2.0	2.00		
CP22-DUP4-091317	17-09-0989-3-J	09/13/17 14:00	Aqueous IC 15	N/A	09/14/17 19:58	170914L01
<u>Parameter</u>	·	Result	<u>RL</u>	DF	Qu	alifiers
Nitrite (as N)		ND	0.10	1.00		
Nitrate (as N)		ND	0.10	1.00		
Sulfate		95	1.0	1.00		
CP22-DUP4-091317	17-09-0989-3-J	09/13/17	Aqueous IC 15	N/A	09/16/17	170915L02

CP22-DUP4-091317	17-09-0989-3-J	09/13/17 14:00	Aqueous	IC 15	N/A	09/16/17 00:01	170915L02
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qualit	fiers
Chloride		160	2.0		2.00		

Sulfate

<u>Parameter</u>

Chloride

CP22-HP11-39-41

Analytical Report

Geosyntec Consultants	Date Received:	09/13/17
595 Market Street, Suite 610	Work Order:	17-09-0989
San Francisco, CA 94105-2811	Preparation:	N/A
	Method:	EPA 300.0
	Units:	ma/L

Project: WR2274 / ESTCP I	Pendleton					Pa	ge 2 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP12-39-41	17-09-0989-6-J	09/13/17 07:40	Aqueous	IC 15	N/A	09/14/17 22:06	170914L01
<u>Parameter</u>	,	Result	RL		<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		61	1.0)	1.00		
CP22-HP12-39-41	17-09-0989-6-J	09/13/17 07:40	Aqueous	IC 15	N/A	09/16/17 00:19	170915L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Chloride		150	2.0)	2.00		
CP22-HP11-35-37	17-09-0989-7-J	09/13/17 08:30	Aqueous	IC 15	N/A	09/14/17 22:25	170914L01
Parameter		Result	RL		DF	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		75	1.0)	1.00		
CP22-HP11-35-37	17-09-0989-7-J	09/13/17 08:30	Aqueous	IC 15	N/A	09/16/17 00:38	170915L02
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
Chloride		160	5.0)	5.00		
CP22-HP11-39-41	17-09-0989-8-J	09/13/17 09:10	Aqueous	IC 15	N/A	09/14/17 22:43	170914L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

17-09-0989-8-J

82

09/13/17 09:10

Result

150

1.0

<u>RL</u>

2.0

Aqueous

IC 15

1.00

09/16/17 00:56

170915L02

Qualifiers

N/A

<u>DF</u>

2.00

Geosyntec Consultants	Date Received:	09/13/17
595 Market Street, Suite 610	Work Order:	17-09-0989
San Francisco, CA 94105-2811	Preparation:	N/A
	Method:	EPA 300.0
	Units:	mg/L
Project: WR2274 / ESTCP Pendleton		Page 3 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP11-43-45	17-09-0989-9-J	09/13/17 10:00	Aqueous	IC 15	N/A	09/14/17 23:02	170914L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		91	1.0)	1.00		
CP22-HP11-43-45	17-09-0989-9-J	09/13/17 10:00	Aqueous	IC 15	N/A	09/16/17 01:15	170915L02
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Chloride		150	2.0)	2.00		
CP22-HP08-35-37	17-09-0989-10-J	09/13/17 10:45	Aqueous	IC 15	N/A	09/14/17 23:20	170914L01
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		90	1.0)	1.00		
CP22-HP08-35-37	17-09-0989-10-J	09/13/17 10:45	Aqueous	IC 15	N/A	09/16/17 01:33	170915L02
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Chloride		160	2.0)	2.00		
CP22-HP08-43-45	17-09-0989-12-J	09/13/17 11:25	Aqueous	IC 15	N/A	09/14/17 23:38	170914L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		95	1.0)	1.00		
CP22-HP08-43-45	17-09-0989-12-J	09/13/17 11:25	Aqueous	IC 15	N/A	09/16/17 01:51	170915L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Chloride		160	2.0)	2.00		

 Geosyntec Consultants
 Date Received:
 09/13/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0989

 San Francisco, CA 94105-2811
 Preparation:
 N/A

 Method:
 EPA 300.0

 Units:
 mg/L

Project: WR2274 / ESTCP I	Pendleton					Pa	ge 4 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EB2-091317	17-09-0989-14-J	09/13/17 14:30	Aqueous	IC 15	N/A	09/14/17 21:30	170914L01
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Chloride		ND	1.0)	1.00		
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		ND	1.0	1	1.00		
EB3-091317	17-09-0989-15-J	09/13/17 16:00	Aqueous	IC 15	N/A	09/14/17 21:48	170914L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Chloride		ND	1.0	1	1.00		
litrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		ND	1.0	1	1.00		
CP22-HP06-35-37	17-09-0989-16-J	09/13/17 13:30	Aqueous	IC 15	N/A	09/14/17 23:57	170914L01
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
litrite (as N)		ND	0.1		1.00		
litrate (as N)		ND	0.1	0	1.00		
Sulfate		80	1.0)	1.00		
CP22-HP06-35-37	17-09-0989-16-J	09/13/17 13:30	Aqueous	IC 15	N/A	09/16/17 02:10	170915L02
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
Chloride		170	2.0		2.00		
CP22-HP06-43-45	17-09-0989-18-J	09/13/17 15:30	Aqueous	IC 15	N/A	09/15/17 00:15	170914L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
litrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
CP22-HP06-43-45	17-09-0989-18-J	09/13/17 15:30	Aqueous	IC 15	N/A	09/16/17 03:41	170915L02
Parameter Parameter		Result	RL		DF	Qua	alifiers

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Sulfate

93

2.0

2.00

Page 5 of 5

Analytical Report

Geosyntec Consultants
Date Received:
09/13/17
595 Market Street, Suite 610
Work Order:
17-09-0989
San Francisco, CA 94105-2811
Preparation:
N/A
Method:
EPA 300.0

Units: mg/L

Project: WR2274 / ESTCP Pendleton

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-906-7913	N/A	Aqueous	IC 15	N/A	09/14/17 16:36	170914L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Chloride		ND	1.0	1	1.00		
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		ND	1.0	1	1.00		

Method Blank	099-12-906-7914	N/A	Aqueous IC	C 15 N/A	09/15/17 170915L02 22:29
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Chloride		ND	1.0	1.00	
Sulfate		ND	1.0	1.00	

Geosyntec Consultants

Date Received:

Work Order:

17-09-0989

San Francisco, CA 94105-2811

Preparation:

Method:

Units:

Date Received:

09/13/17

Filtered

Method:

EPA 200.7

Units:

mg/L

Project: WR2274 / ESTCP Pendleton Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-DUP2-091317	17-09-0989-1-K	09/13/17 11:00	Aqueous	ICP 7300	09/16/17	09/19/17 15:59	170916LA2F
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Zinc		0.0183	0.0	0100	1.00		
Calcium		56.5	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		0.518	0.0	00500	1.00		
Silicon		9.60	0.0	0500	1.00		

CP22-DUP3-091317	17-09-0989-2-K	09/13/17 12:00	Aqueous ICP 7300	09/16/17	09/19/17 15:17	170916LA2F
Parameter		Result	<u>RL</u>	DF	Qu	alifiers
Zinc		0.0127	0.0100	1.00		
Calcium		55.3	0.100	1.00		
Iron		ND	0.100	1.00		
Manganese		1.13	0.00500	1.00		
Silicon		10.4	0.0500	1.00		

CP22-DUP4-091317	17-09-0989-3-K	09/13/17 14:00	Aqueous ICP 7300	09/16/17	09/19/17 170916LA2F 15:18
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		0.0133	0.0100	1.00	
Calcium		63.4	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		1.46	0.00500	1.00	
Silicon		13.3	0.0500	1.00	

CP22-HP12-39-41	17-09-0989-6-K	09/13/17 07:40	Aqueous ICP 7300	09/16/17	09/19/17 15:19	170916LA2F
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		0.0110	0.0100	1.00		
Calcium		47.5	0.100	1.00		
Iron		ND	0.100	1.00		
Manganese		0.933	0.00500	1.00		
Silicon		8.56	0.0500	1.00		

Geosyntec Consultants

Date Received:

Work Order:

17-09-0989

San Francisco, CA 94105-2811

Preparation:

Method:

Units:

Date Received:

09/13/17

Filtered

Method:

EPA 200.7

Units:

mg/L

Project: WR2274 / ESTCP Pendleton Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP11-35-37	17-09-0989-7-K	09/13/17 08:30	Aqueous	ICP 7300	09/16/17	09/19/17 15:20	170916LA2F
Parameter	·	Result	RL	:	<u>DF</u>	Qua	alifiers
Zinc		ND	0.0	100	1.00		
Calcium		39.3	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		0.426	0.0	00500	1.00		
Silicon		10.3	0.0	500	1.00		

CP22-HP11-39-41	17-09-0989-8-K	09/13/17 09:10	Aqueous ICP 7300	09/16/17	09/19/17 15:21	170916LA2F
Parameter		Result	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		0.0217	0.0100	1.00		
Calcium		62.3	0.100	1.00		
Iron		ND	0.100	1.00		
Manganese		1.01	0.00500	1.00		
Silicon		11.3	0.0500	1.00		

CP22-HP11-43-45	17-09-0989-9-K	09/13/17 10:00	Aqueous ICP 7300	09/16/17	09/19/17 170916LA2F 15:22
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		0.0141	0.0100	1.00	
Calcium		67.5	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		1.39	0.00500	1.00	
Silicon		14.4	0.0500	1.00	

CP22-HP08-35-37	17-09-0989-10-K	09/13/17 10:45	Aqueous ICP 7300	09/16/17	09/19/17 15:23	170916LA2F
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Zinc		ND	0.0100	1.00		
Calcium		56.6	0.100	1.00		
Iron		ND	0.100	1.00		
Manganese		0.501	0.00500	1.00		
Silicon		13.7	0.0500	1.00		

Geosyntec Consultants
Date Received:

Work Order:

17-09-0989
San Francisco, CA 94105-2811
Preparation:

Method:
Units:

mg/L

Project: WR2274 / ESTCP Pendleton Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix In	nstrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
CP22-HP08-43-45	17-09-0989-12-K	09/13/17 11:25	Aqueous IC	CP 7300	09/16/17	09/19/17 15:24	170916LA2F	
Parameter		Result	RL		<u>DF</u>	Qua	Qualifiers	
Zinc		ND	0.0100	0	1.00			
Calcium		68.1	0.100		1.00			
Iron		ND	0.100		1.00			
Manganese		1.50	0.0050	00	1.00			
Silicon		13.7	0.0500		1.00			
EB2-091317	17-09-0989-14-K	09/13/17	Aqueous IC	CP 7300	09/16/17	09/19/17	170916LA2F	

EB2-091317	17-09-0989-14-K	09/13/17 14:30	Aqueous IC	P 7300 09/16/17	09/19/17 15:26	170916LA2F
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Zinc		ND	0.0100	1.00		
Calcium		ND	0.100	1.00		
Iron		ND	0.100	1.00		
Manganese		ND	0.0050	00 1.00		
Silicon		ND	0.0500	1.00		

EB3-091317	17-09-0989-15-K	09/13/17 16:00	Aqueous ICP 7300	09/16/17	09/19/17 170916LA2F 15:27
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		ND	0.0100	1.00	
Calcium		0.126	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		ND	0.00500	1.00	
Silicon		ND	0.0500	1.00	

CP22-HP06-35-37	17-09-0989-16-K	09/13/17 13:30	Aqueous ICP 7300	09/16/17	09/19/17 170916LA2F 15:28
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		0.0100	0.0100	1.00	
Calcium		35.4	0.100	1.00	
Iron		ND	0.100	1.00	
Manganese		0.415	0.00500	1.00	
Silicon		11.7	0.0500	1.00	

Geosyntec Consultants Date Received: 09/13/17 17-09-0989 595 Market Street, Suite 610 Work Order: Filtered San Francisco, CA 94105-2811 Preparation:

> Method: EPA 200.7 Units: mg/L

Page 4 of 4 Project: WR2274 / ESTCP Pendleton

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP06-43-45	17-09-0989-18-K	09/13/17 15:30	Aqueous	ICP 7300	09/16/17	09/19/17 16:00	170916LA2F
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>lifiers</u>
Zinc		0.0170	0.0	100	1.00		
Calcium		71.2	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		1.53	0.0	00500	1.00		
Silicon		13.2	0.0	500	1.00		

Method Blank	099-14-304-636	N/A	Aqueous ICP 7300	09/16/17	09/19/17 12:33	170916LA2F
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		ND	0.0100	1.00		
Calcium		ND	0.100	1.00		
Iron		ND	0.100	1.00		
Manganese		ND	0.00500	1.00		
Silicon		ND	0.0500	1.00		

09/13/17

17-09-0989 EPA 5030C

Analytical Report

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Date Received:

Work Order:

Preparation:

Method: EPA 8260B Units: ug/L

Project: WR2274 / ESTCP Pendleton Page 1 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-DUP2-091317	17-09-0989-1-A	09/13/17 11:00	Aqueous	GC/MS L	09/16/17	09/17/17 05:41	170916L018
Parameter		<u>Result</u>	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		89	68	-120			
Dibromofluoromethane		103	80	-127			
1,2-Dichloroethane-d4		111	80	-128			
Toluene-d8		101	80	-120			

CP22-DUP3-091317	17-09-0989-2-A	09/13/17 12:00	Aqueous GC/MS L	09/16/17	09/17/17 170916L018 06:11
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		84	68-120		
Dibromofluoromethane		103	80-127		
1,2-Dichloroethane-d4		111	80-128		
Toluene-d8		99	80-120		

CP22-DUP4-091317	17-09-0989-3-A	09/13/17 14:00	Aqueous GC/MS L	. 09/16/17	09/17/17 06:42	170916L018
Parameter		Result	<u>RL</u>	DF	Qu	alifiers
1,2-Dichloropropane		ND	0.50	1.00		
1,3-Dichloropropane		ND	1.0	1.00		
Allyl Chloride		ND	1.0	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene		86	68-120			
Dibromofluoromethane		102	80-127			
1,2-Dichloroethane-d4		113	80-128			
Toluene-d8		101	80-120			

 Geosyntec Consultants
 Date Received:
 09/13/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0989

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: WR2274 / ESTCP Pendleton Page 2 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
TB-091317	17-09-0989-4-A	09/13/17 00:00	Aqueous	GC/MS L	09/16/17	09/17/17 07:13	170916L018
<u>Parameter</u>		Result	<u>RL</u>	1	<u>DF</u>	Qua	<u>llifiers</u>
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
1,4-Bromofluorobenzene		85	68	-120			
Dibromofluoromethane		113	80	-127			
1,2-Dichloroethane-d4		108	80	-128			
Toluene-d8		102	80	-120			

FB-091317	17-09-0989-5-A	09/13/17 11:30	Aqueous GC/MS L	09/16/17	09/17/17 170916L018 07:43
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene		83	68-120		
Dibromofluoromethane		110	80-127		
1,2-Dichloroethane-d4		108	80-128		
Toluene-d8		103	80-120		

CP22-HP12-39-41	17-09-0989-6-A	09/13/17 07:40	Aqueous GC/MS L	09/16/17	09/17/17 170916L018 08:14
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		88	68-120		
Dibromofluoromethane		104	80-127		
1,2-Dichloroethane-d4		108	80-128		
Toluene-d8		101	80-120		

 Geosyntec Consultants
 Date Received:
 09/13/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0989

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: WR2274 / ESTCP Pendleton Page 3 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP11-35-37	17-09-0989-7-A	09/13/17 08:30	Aqueous	GC/MS L	09/16/17	09/17/17 08:45	170916L018
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		85	68	-120			
Dibromofluoromethane		107	80	-127			
1,2-Dichloroethane-d4		111	80	-128			
Toluene-d8		101	80	-120			

CP22-HP11-39-41	17-09-0989-8-A	09/13/17 09:10	Aqueous GC/MS L	09/16/17	09/17/17 170916L018 09:16
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		87	68-120		
Dibromofluoromethane		103	80-127		
1,2-Dichloroethane-d4		108	80-128		
Toluene-d8		100	80-120		

CP22-HP11-43-45	17-09-0989-9-A	09/13/17 10:00	Aqueous GC/MS L	09/16/17	09/17/17 170916L018 09:46
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		86	68-120		
Dibromofluoromethane		105	80-127		
1,2-Dichloroethane-d4		111	80-128		
Toluene-d8		99	80-120		

Toluene-d8

Analytical Report

 Geosyntec Consultants
 Date Received:
 09/13/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0989

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: WR2274 / ESTCP Pendleton

raye 4 Ul I	Page	4	of	7
-------------	------	---	----	---

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP08-35-37	17-09-0989-10-A	09/13/17 10:45	Aqueous	GC/MS L	09/19/17	09/19/17 18:24	170919L002
Parameter		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
1,2-Dichloropropane		ND	0.5	0	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		86	68-	-120			
Dibromofluoromethane		104	80-	-127			
1,2-Dichloroethane-d4		114	80-	-128			
Toluene-d8		100	80-	-120			

CP22-HP08-43-45	17-09-0989-12-B	09/13/17 11:25	Aqueous GC/N	MS L 09/19/17	09/19/17 18:55	170919L002
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifie	<u>ers</u>
1,2-Dichloropropane		ND	0.50	1.00		
1,3-Dichloropropane		ND	1.0	1.00		
Allyl Chloride		ND	1.0	1.00		
Surrogate		Rec. (%)	Control L	imits Qualifiers		
1,4-Bromofluorobenzene		87	68-120			
Dibromofluoromethane		107	80-127			
1,2-Dichloroethane-d4		113	80-128			

80-120

101

FB2-091317	17-09-0989-13-A	09/13/17 15:45	Aqueous (GC/MS L	09/19/17	09/19/17 19:26	170919L002
Parameter		Result	RL		<u>DF</u>	Qu	alifiers
1,2-Dichloropropane		ND	0.50		1.00		
1,3-Dichloropropane		ND	1.0		1.00		
Allyl Chloride		ND	1.0		1.00		
Surrogate		Rec. (%)	Cont	rol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		83	68-12	20			
Dibromofluoromethane		114	80-12	27			
1,2-Dichloroethane-d4		112	80-12	28			
Toluene-d8		101	80-12	20			

Geosyntec Consultants
Date Received:
09/13/17
595 Market Street, Suite 610
Work Order:
17-09-0989
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Units: ug/L Page 5 of 7

Project: WR2274 / ESTCP Pendleton

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EB2-091317	17-09-0989-14-A	09/13/17 14:30	Aqueous	GC/MS L	09/19/17	09/19/17 19:57	170919L002
Parameter		Result	RL	=	<u>DF</u>	Qua	alifiers
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		85	68	-120			
Dibromofluoromethane		115	80	-127			
1,2-Dichloroethane-d4		114	80	-128			
Toluene-d8		100	80	-120			

EB3-091317	17-09-0989-15-A	09/13/17 16:00	Aqueous GC/MS L	09/19/17	09/19/17 170919L002 20:27
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		85	68-120		
Dibromofluoromethane		115	80-127		
1,2-Dichloroethane-d4		113	80-128		
Toluene-d8		100	80-120		

CP22-HP06-35-37	17-09-0989-16-A	09/13/17 13:30	Aqueous GC/MS L	09/19/17	09/20/17 170919L036 08:14
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		84	68-120		
Dibromofluoromethane		101	80-127		
1,2-Dichloroethane-d4		110	80-128		
Toluene-d8		100	80-120		

Page 6 of 7

Analytical Report

Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-0989
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Units: ug/L

Project: WR2274 / ESTCP Pendleton

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP06-43-45	17-09-0989-18-A	09/13/17 15:30	Aqueous	GC/MS L	09/19/17	09/20/17 08:45	170919L036
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
<u>Surrogate</u>		Rec. (%)	Co	ontrol Limits	Qualifiers		
1,4-Bromofluorobenzene		87	68	-120			
Dibromofluoromethane		106	80	-127			
1,2-Dichloroethane-d4		113	80	-128			
Toluene-d8		98	80	-120			

Method Blank	099-16-446-244	N/A	Aqueous GC/MS L	09/16/17	09/17/17 00:03	170916L018
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
1,2-Dichloropropane		ND	0.50	1.00		
1,3-Dichloropropane		ND	1.0	1.00		
Allyl Chloride		ND	1.0	1.00		
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		84	68-120			
Dibromofluoromethane		109	80-127			
1,2-Dichloroethane-d4		108	80-128			
Toluene-d8		99	80-120			

Method Blank	099-16-446-246	N/A	Aqueous GC/MS L	09/19/17	09/19/17 10:06	170919L002
Parameter		Result	<u>RL</u>	<u>DF</u>	Qua	alifiers
1,2-Dichloropropane		ND	0.50	1.00		
1,3-Dichloropropane		ND	1.0	1.00		
Allyl Chloride		ND	1.0	1.00		
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		85	68-120			
Dibromofluoromethane		105	80-127			
1,2-Dichloroethane-d4		100	80-128			
Toluene-d8		96	80-120			

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

17-09-0989 EPA 5030C EPA 8260B

09/13/17

ug/L

Project: WR2274 / ESTCP Pendleton

Page 7 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-446-247	N/A	Aqueous	GC/MS L	09/19/17	09/19/17 22:30	170919L036
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	<u>alifiers</u>
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	Co	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		83	68	-120			
Dibromofluoromethane		103	80	-127			
1,2-Dichloroethane-d4		101	80	-128			
Toluene-d8		97	80	-120			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

S95 Market Street, Suite 610 Work Order: 17-09-0989 17-09-0989 San Francisco, CA 94105-2811 Preparation: EPA 5030C Method: SRL 524M-TCP Units: ug/L Project: WR2274 / ESTCP Pendleton Date Time Method: SRL 524M-TCP Units: ug/L Page 1 of 3	Geosyntec Consultants			Date Recei	ved.			09/13/17	
Preparation: Preparation: EPA 5030C Method: Units: Unit	•								
Method:									
Project: WR2274 / ESTCP Pendleton	San Francisco, CA 94105-2611			•	1.				
Project: WR2274 / ESTCP Pendleton							5		
Client Sample Number Lab Sample Number Collected Matrix Instrument Prepared Collected Prepared Collected Collected				Units:				_	
Number Collected Prepared Analyzed CP22-DUP2-091317 17-09-0989-1-E 09/13/17 11-00 09/13/17 11-00 09/13/17 11-00 09/13/17 11-00 09/13/17 11-00 09/13/17 11-00 09/13/17 11-00 09/13/17 11-00 09/13/17 11-00 09/13/17 11-00 09/13/17 11-00 09/13/17 11-00 09/13/17 11-00 09/13/17 11-00 09/13/17 09/13/17 11-00 09/13/17 09/13/17 11-00 09/13/17	Project: WR2274 / ESTCP Pendle	eton					Pa	age 1 of 3	
11:00 12:00 13:18 13:00 13:18 14:00 14:	Client Sample Number			Matrix	Instrument			QC Batch ID	
1,2,3-Trichloropropane 0,36 0,∪∑ 5,00 CP22-DUP3-091317 17-09-0989-2-E 09/3/17 Aqueous GC/MS M 09/21/17 20/21/20 170921L064 Parameter 1,2,3-Trichloropropane 0,075 0,0075 0,0075 1,00 09/21/17 170921L064 Parameter 1,2,3-Trichloropropane Result 14,00 RL DE Qualifiers L2,3-Trichloropropane 09/3/17 Aqueous GC/MS M 09/21/17 170921L064 Parameter 1,2,3-Trichloropropane 09/3/17 Aqueous GC/MS M 09/21/17 170921L064 Parameter 1,2,3-Trichloropropane Result	CP22-DUP2-091317	17-09-0989-1-E		Aqueous	GC/MS M	09/21/17		170921L064	
CP22-DUP3-091317 17-09-0989-2-E 09/13/17 12:00 Aqueous GC/MS M 09/21/17 21:22	<u>Parameter</u>		Result	RL	:	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>	
Parameter	1,2,3-Trichloropropane		0.36	0.0)25	5.00			
1,2,3-Trichloropropane 0.075 0.0050 1.00 CP22-DUP4-091317 17-09-0989-3-E 09/13/17 14:00 Aqueous 14:00 GC/MS M 09/21/17 19:24 09/21/17 19:24 170921L064 Parameter 1,2,3-Trichloropropane Result ND 0.0050 RL DE 09/21/17 21:52 Qualifiers CP22-HP12-39-41 17-09-0989-6-E 09/13/17 0.0050 Aqueous 06/MS M 09/21/17 21:52 09/21/17 21:52 170921L064 Parameter 1,2,3-Trichloropropane Result RL DE 09/3/17 08:30 QUalifiers 0.076 0.0050 1.00 09/21/17 09/21/17 09/21/17 170921L064 Parameter 1,2,3-Trichloropropane Result Result RL DE 09/3/17 09/21/17	CP22-DUP3-091317	17-09-0989-2-E		Aqueous	GC/MS M	09/21/17		170921L064	
1,2,3-Trichloropropane 0.075 0.0050 1.00 CP22-DUP4-091317 17-09-0989-3-E 09/13/17 14:00 Aqueous 14:00 GC/MS M 09/21/17 19:24 09/21/17 19:24 170921L064 Parameter 1,2,3-Trichloropropane Result ND 0.0050 RL DE 2:152 Qualifiers CP22-HP12-39-41 17-09-0989-6-E 07:30 Aqueous 2G/MS M 09/21/17 21:52 09/21/17 21:52 170921L064 21:52 Parameter 1,2,3-Trichloropropane Result RL DE 2:21 DE 09/21/17 09/21/17 170921L064 22:21 Qualifiers CP22-HP11-35-37 17-09-0989-7-E 09/13/17 08:30 Aqueous 3G/MS M 09/21/17 09/21/17 09/21/17 170921L064 22:21 DE 09/21/17 09/21/17 170921L064 22:21 Parameter 1,2,3-Trichloropropane Result RL DE 09/31/17 09/31/17 09/31/17 09/31/17 09/32/17 170921L064 19:53 Qualifiers CP22-HP11-39-41 17-09-0989-8-E 09/13/17 09/31/17 Aqueous 3G/MS M 09/21/17 09/21/17 09/32/17 170921L064 19:53 Qualifiers Parameter 1,2,3-Trichloropropane Result RL DE 09/21/17 09/21/17 09/21/17 170921L064 19:53 Qualifiers CP22-HP11-43-45 17-09-0989-9-E 09/13/17 Aqueous 3G/MS M 09/21/17 09/21/17 09/21/17 19:53 Qualifiers CP22-HP10-35-37 17-09-0989-10-D 09/13/17 09/13/17 09/13/17 09/13/17 09/13/17 09/13/17 09/13/17 09/13/17 09/13/17 09/13/17 09/13	Parameter		Result	RL		DF	Qu	alifiers	
14:00 19:24 Parameter 1,2,3-Trichloropropane Result ND RL ODE 0.0050 DE 0.0050 Qualifiers CP22-HP12-39-41 17-09-0989-6-E 07-34/17 07-407 Aqueous OC/MS M 09/21/17 21:52 DE 09/21/17 21:52 Qualifiers Parameter 1,2,3-Trichloropropane Result 0.0076 0.0050 1.00 DE 0.0050 1.00 Qualifiers CP22-HP11-35-37 17-09-0989-7-E 09/13/17 08:30 Aqueous GC/MS M 09/21/17 09/21/17 22:21 170921L064 22:21 Parameter 1,2,3-Trichloropropane Result RL DE 0.0050 1.00 DE 0.0050 1.00 Qualifiers CP22-HP11-39-41 17-09-0989-8-E 09/13/17 09:10 Aqueous GC/MS M 09/21/17 09/22/17 03:48 170921L064 03:48 Parameter 1,2,3-Trichloropropane Result RL DE 0.0050 5.00 DE 0.0050 5.00 Qualifiers CP22-HP11-43-45 17-09-0989-9-E 09/13/17 10:00 Aqueous GC/MS M 09/21/17 09/21/17 19:53 170921L064 19:53 Parameter 1,2,3-Trichloropropane Result RL DE 0.0050 1.00 DE 0.0050 1.00 Qualifiers CP22-HP08-35-37 17-09-0989-10-D 09/13/17 10:45 Aqueous GC/MS M 09/21/17 09/22/17 09/22/17 04:18 17-09-11.064 04:18 Earameter 1,2,3-Trichloropropane Result RL DE 0.0050 1.00	1,2,3-Trichloropropane		0.075	0.0	0050	1.00			
1,2,3-Trichloropropane ND 0.0050 1.00 CP22-HP12-39-41 17-09-0989-6-E 09/13/17 07-40 Aqueous OC/MS M 09/21/17 09/21/17 21:52 21:	CP22-DUP4-091317	17-09-0989-3-E		Aqueous	GC/MS M	09/21/17		170921L064	
1,2,3-Trichloropropane ND	Parameter		Result	RL		DF	Qu	alifiers	
CP22-HP12-39-41 17-09-0989-6-E 09/13/17 07:407 07	·				=				
Parameter 1,2,3-Trichloropropane Result 0,076 RL 0,0050 DE 0,0050 Qualifiers CP22-HP11-35-37 17-09-0989-7-E 08:30 09/13/17 08:30 Aqueous GC/MS M 09/21/17 09/21/17 170921L064 22:21 17-0921L064 22:21 17-0921L064 22:21 DE 0,0050 Qualifiers Parameter 1,2,3-Trichloropropane Result ND 0,0050 RL DE 0,0050 09/21/17 09/22/17 170921L064 03:48 17-09-0989-8-E 09/13/17 Aqueous GC/MS M 09/21/17 09/22/17 170921L064 03:48 DF 0,0050 Qualifiers Parameter 1,2,3-Trichloropropane 0.15 0.025 5.00 5.00 09/21/17 09/21/17 170921L064 19:53 CP22-HP11-43-45 17-09-0989-9-E 09/13/17 Aqueous GC/MS M 09/21/17 09/21/17 19:53 09/21/17 19:53 17-0921L064 19:53 Parameter 1,2,3-Trichloropropane Result RL DE 00/13/17									
1,2,3-Trichloropropane 0.076 0.0050 1.00 CP22-HP11-35-37 17-09-0989-7-E 09/13/17 08:30 Aqueous GC/MS M 09/21/17 22:21 170921L064 Parameter 1,2,3-Trichloropropane Result ND RL DE Qualifiers 1,2,3-Trichloropropane ND 0.0050 1.00 CP22-HP11-39-41 17-09-0989-8-E 09/13/17 09:10 Aqueous GC/MS M 09/21/17 09/22/17 170921L064 170921L064 Parameter 1,2,3-Trichloropropane Result RL DE Qualifiers CP22-HP11-43-45 17-09-0989-9-E 09/13/17 10:00 Aqueous GC/MS M 09/21/17 09/21/17 19:53 170921L064 Parameter Result RL DE Qualifiers DE Qualifiers 1,2,3-Trichloropropane ND 0.0050 1.00 CP22-HP08-35-37 17-09-0989-10-D 09/13/17 10:45 Aqueous GC/MS M 09/21/17 09/22/17 04:18 09/22/17 170921L064 Parameter Result RL DE Qualifiers DE Qualifiers	CP22-HP12-39-41	17-09-0989-6-E		Aqueous	GC/MS M	09/21/17		170921L064	
CP22-HP11-35-37 17-09-0989-7-E 09/13/17 08:30 Aqueous GC/MS M 09/21/17 09/21/17 22:21 170921L064 22:21 Parameter 1,2,3-Trichloropropane Result ND RL DE Oualifiers Qualifiers CP22-HP11-39-41 17-09-0989-8-E 09/13/17 09:10 Aqueous GC/MS M 09/21/17 09/22/17 03:48 170921L064 03:48 Parameter 1,2,3-Trichloropropane Result RL DE Oualifiers DE Oualifiers CP22-HP11-43-45 17-09-0989-9-E 09/13/17 10:00 Aqueous GC/MS M 09/21/17 19:53 170921L064 19:53 Parameter 1,2,3-Trichloropropane Result RL DE Oualifiers DE Oualifiers CP22-HP08-35-37 17-09-0989-10-D 09/13/17 10:45 Aqueous GC/MS M 09/21/17 09/22/17 04:18 09/22/17 04:18 Parameter Result RL DE Oualifiers DE Oualifiers Oualifiers	<u>Parameter</u>		Result	RL	:	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>	
Parameter Result 1,2,3-Trichloropropane Result ND Result 0,0050 M DF 0,0050 Qualifiers CP22-HP11-39-41 17-09-0989-8-E 09/13/17 09:10 09/13/17 Aqueous GC/MS M 09/21/17 03/48 09/22/17 03/48 170921L064 Parameter 1,2,3-Trichloropropane Result RL DF 0.025 DE 0.025 Qualifiers CP22-HP11-43-45 17-09-0989-9-E 10:00 09/13/17 Aqueous GC/MS M 09/21/17 19:53 170921L064 Parameter 1,2,3-Trichloropropane Result RL DE 0.0050 DE 0.0050 Qualifiers CP22-HP08-35-37 17-09-0989-10-D 09/13/17 10:45 Aqueous GC/MS M 09/21/17 09/22/17 04:18 170921L064 04:18 Parameter Result RL DE 0.04:18 DE 0.0050 0.0050 0.0050	1,2,3-Trichloropropane		0.076	0.0	0050	1.00			
1,2,3-Trichloropropane ND 0.0050 1.00 CP22-HP11-39-41 17-09-0989-8-E 09/13/17 09:10 Aqueous Parameter GC/MS M 09/21/17 09:22/17 03:48 170921L064 Parameter 1,2,3-Trichloropropane Result 0.15 RL DE Qualifiers CP22-HP11-43-45 17-09-0989-9-E 09/13/17 10:00 Aqueous GC/MS M 09/21/17 19:53 170921L064 Parameter 1,2,3-Trichloropropane Result RL DE Qualifiers DE Qualifiers 1,2,3-Trichloropropane ND 0.0050 1.00 CP22-HP08-35-37 17-09-0989-10-D 09/13/17 10:45 Aqueous GC/MS M 09/21/17 09/22/17 04:18 09/22/17 04:18 Parameter Result RL DE Qualifiers DE Qualifiers	CP22-HP11-35-37	17-09-0989-7-E		Aqueous	GC/MS M	09/21/17		170921L064	
CP22-HP11-39-41 17-09-0989-8-E 09/13/17 09:10 Aqueous GC/MS M 09/21/17 09:21/17 09:21/17 09:21/1064 17-0921L064 Parameter 1,2,3-Trichloropropane Result 0.15 RL DF 0.025 Qualifiers CP22-HP11-43-45 17-09-0989-9-E 10:00 10:00 Aqueous GC/MS M 09/21/17 19:53 17-09-21L064 19:53 Parameter 1,2,3-Trichloropropane Result RL DE Qualifiers Qualifiers CP22-HP08-35-37 17-09-0989-10-D 09/13/17 10:45 Aqueous GC/MS M 09/21/17 09/22/17 04:18 17-0921L064 10:45 Parameter Result RL DE Qualifiers Qualifiers Qualifiers	<u>Parameter</u>		Result	RL	į	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>	
Parameter 1,2,3-Trichloropropane Result 1,2,3-Trichloropropane Result 2,3-Trichloropropane Result 3,3-Trichloropropane Result 3,3-Trichloropropane Result 10:00 Aqueous 3,3-Trichloropropane GC/MS M 309/21/17 309/21/17 19:53 170921L064 19:53 Parameter 1,2,3-Trichloropropane Result 8,2-Trichloropropane DF Qualifiers 1,00 Qualifiers 1,00 CP22-HP08-35-37 17-09-0989-10-D 10:45 Aqueous 3,00 GC/MS M 309/21/17 309/22/17 309/22/17 304:18 170921L064 304:18 Parameter 10:45 Result 8,2-Trichloropropane DF 3,00 Qualifiers 3,00	1,2,3-Trichloropropane		ND	0.0	0050	1.00			
1,2,3-Trichloropropane 0.15 0.025 5.00 CP22-HP11-43-45 17-09-0989-9-E 09/13/17 10:00 Aqueous GC/MS M Poly 1/17 19:53 09/21/17 17:53 170921L064 Parameter 1,2,3-Trichloropropane Result ND ND 0.0050 1.00 09/21/17 09/22/17 17:0921L064 CP22-HP08-35-37 17-09-0989-10-D 10:45 09/13/17 Aqueous GC/MS M 09/21/17 04:18 09/22/17 04:18 170921L064 Parameter Result RL DE Qualifiers	CP22-HP11-39-41	17-09-0989-8-E		Aqueous	GC/MS M	09/21/17		170921L064	
CP22-HP11-43-45 17-09-0989-9-E 09/13/17 10:00 Aqueous GC/MS M 09/21/17 09/21/17 19:53 170921L064 Parameter 1,2,3-Trichloropropane Result ND RL DE Qualifiers Qualifiers CP22-HP08-35-37 17-09-0989-10-D 09/13/17 10:45 Aqueous GC/MS M 09/21/17 09/22/17 04:18 09/22/17 04:18 170921L064 Parameter Result RL DE Qualifiers	Parameter		Result	RL	<u></u>	DF	Qu	alifiers	
Parameter Result RL DF Qualifiers 1,2,3-Trichloropropane ND 0.0050 1.00 CP22-HP08-35-37 17-09-0989-10-D 10:45 09/13/17 Aqueous Aqueous Aqueous BC/MS M 09/21/17 04:18 09/21/17 04:18 170921L064 04:18 Parameter Result REsult DF Qualifiers	1,2,3-Trichloropropane		0.15	0.0)25	5.00			
1,2,3-Trichloropropane ND 0.0050 1.00 CP22-HP08-35-37 17-09-0989-10-D 10:45 09/13/17 10:45 Aqueous Aqueous Aqueous Aqueous Office	CP22-HP11-43-45	17-09-0989-9-E		Aqueous	GC/MS M	09/21/17	09/21/17 19:53	170921L064	
CP22-HP08-35-37 17-09-0989-10-D 09/13/17 10:45 Aqueous GC/MS M 09/21/17 04:18 09/22/17 04:18 170921L064 Parameter Result RL DF Qualifiers	Parameter		Result	RL		DF	Qu	alifiers	
10:45 04:18 Parameter Result RL DF Qualifiers	1,2,3-Trichloropropane		ND	0.0	0050	1.00			
	CP22-HP08-35-37	17-09-0989-10-D		Aqueous	GC/MS M	09/21/17		170921L064	
1,2,3-Trichloropropane 0.45 0.025 5.00	Parameter		Result	RL		DF	Qu	alifiers	
	1,2,3-Trichloropropane		0.45	0.0)25	5.00			

Geosyntec Consultants			Date Recei	ved:			09/13/17
595 Market Street, Suite 610		,	Work Orde	r:			17-09-0989
San Francisco, CA 94105-2811			Preparation	n:			EPA 5030C
			Method:			S	RL 524M-TCP
			Units:				ug/L
Project: WR2274 / ESTCP Pendle	ton					Pa	age 2 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP08-39-41	17-09-0989-11-B	09/13/17 12:45	Aqueous	GC/MS M	09/25/17	09/25/17 13:14	170925L030
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-HP08-43-45	17-09-0989-12-D	09/13/17 11:25	Aqueous	GC/MS M	09/21/17	09/21/17 22:51	170921L064
<u>Parameter</u>		Result	RL	1	DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
EB2-091317	17-09-0989-14-D	09/13/17 14:30	Aqueous	GC/MS M	09/21/17	09/21/17 20:23	170921L064
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
EB3-091317	17-09-0989-15-C	09/13/17 16:00	Aqueous	GC/MS M	09/21/17	09/21/17 20:53	170921L064
<u>Parameter</u>		Result	RL	:	DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-HP06-35-37	17-09-0989-16-D	09/13/17 13:30	Aqueous	GC/MS M	09/21/17	09/22/17 02:19	170921L064
<u>Parameter</u>		Result	<u>RL</u>	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-HP06-39-41	17-09-0989-17-B	09/13/17 15:15	Aqueous	GC/MS M	09/25/17	09/25/17 14:13	170925L030
<u>Parameter</u>		Result	<u>RL</u>	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		0.12	0.0)10	2.00		
CP22-HP06-43-45	17-09-0989-18-D	09/13/17 15:30	Aqueous	GC/MS M	09/21/17	09/22/17 02:49	170921L064
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
Method Blank	099-10-022-1367	N/A	Aqueous	GC/MS M	09/21/17	09/21/17 17:25	170921L064
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		

 Geosyntec Consultants
 Date Received:
 09/13/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0989

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

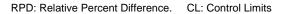
 Method:
 SRL 524M-TCP

 Units:
 ug/L

Project: WR2274 / ESTCP Pendleton Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-022-1368	N/A	Aqueous	GC/MS M	09/25/17	09/25/17 12:14	170925L030
<u>Parameter</u>		Result	RL		<u>DF</u> Qua		<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		

N/A


Quality Control - Spike/Spike Duplicate

Geosyntec Consultants Date Received: 09/13/17 17-09-0989 595 Market Street, Suite 610 Work Order: Preparation: San Francisco, CA 94105-2811

> Method: EPA 300.0

Project: WR2274 / ESTCP Pendleton Page 1 of 6

Quality Control Sample ID	Туре	Matrix	Instrumer	nt Date Prepared	Date Analyz	ed MS/MSD Ba	tch Number
17-09-0972-18	Sample	Aqueous	IC 15	N/A	09/14/17 18	:44 170914S01	
17-09-0972-18	Matrix Spike	Aqueous	IC 15	N/A	09/14/17 20	:16 170914S01	
17-09-0972-18	Matrix Spike Duplica	ite Aqueous	IC 15	N/A	09/14/17 20	:35 170914S01	
Parameter	<u>Sample</u> <u>Spike</u> <u>Conc.</u> <u>Adde</u>	MS d Conc.	MS MS %Rec. Co	SD MSD onc. %Rec.	%Rec. CL F	RPD RPD CL	Qualifiers
Chloride	45.99 50.00	101.9	112 10	1.9 112	80-120 0	0-20	
Nitrite (as N)	ND 2.500	3.021	121 3.0)22 121	80-120 0	0-20	3
Nitrate (as N)	12.95 5.000	18.86	118 18	.87 118	80-120 0	0-20	
Sulfate	239.6 50.00	306.3	133 30	6.2 133	80-120 0	0-20	3

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811

Project: WR2274 / ESTCP Pendleton

Date Received: Work Order: Preparation: Method: 09/13/17 17-09-0989 Filtered

ethod: EPA 200.7 Page 2 of 6

Quality Control Sample ID	Туре	Туре		Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
CP22-HP11-35-37	Sample	Sample		Aqueous ICP 73		09/16/17	09/19/17 15:20		170916SA2	
CP22-HP11-35-37	Matrix Spike	Matrix Spike		Aqueous ICP		09/16/17	09/19/17 14:54		170916SA2	
CP22-HP11-35-37	Matrix Spike	Duplicate	Aqueou	s IC	P 7300	09/16/17	09/19/17	14:55	170916SA2	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	ND	0.5000	0.6008	120	0.6022	120	80-120	0	0-20	
Calcium	39.25	0.5000	47.26	4X	46.47	4X	80-120	4X	0-20	Q
Iron	ND	0.5000	0.5607	112	0.5606	112	80-120	0	0-20	
Manganese	0.4259	0.5000	1.020	119	1.017	118	80-120	0	0-20	
Silicon	10.28	0.5000	11.38	4X	11.30	4X	80-120	4X	0-20	Q

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: 09/13/17 17-09-0989 Filtered

Method:

EPA 200.7 Page 3 of 6

Project: WR2274 / ESTCP Pendleton

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
CP22-HP08-43-45	Sample	Sample		Aqueous ICI		09/16/17	09/19/17	15:24	170916SA2A	4
CP22-HP08-43-45	Matrix Spike		Aqueou	s IC	P 7300	09/16/17	09/19/17	15:15	170916SA2A	4
CP22-HP08-43-45	Matrix Spike	Duplicate	Aqueou	s IC	P 7300	09/16/17	09/19/17	15:16	170916SA2A	4
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	ND	0.5000	0.5630	113	0.5482	110	80-120	3	0-20	
Calcium	68.07	0.5000	68.28	4X	66.04	4X	80-120	4X	0-20	Q
Iron	ND	0.5000	0.5121	102	0.5100	102	80-120	0	0-20	
Manganese	1.499	0.5000	1.978	96	1.939	88	80-120	2	0-20	
Silicon	13.74	0.5000	13.79	4X	13.50	4X	80-120	4X	0-20	Q

Geosyntec Consultants
Date Received:
09/13/17
595 Market Street, Suite 610
Work Order:
17-09-0989
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

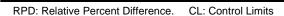
Project: WR2274 / ESTCP Pendleton Page 4 of 6

Quality Control Sample ID	Туре		Matrix Instru		strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-09-0959-1	Sample		Aqueou	ıs G	C/MS L	09/19/17	09/19/17	10:42	170919S035	
17-09-0959-1	Matrix Spike		Aqueou	ıs G	C/MS L	09/19/17	09/19/17	12:14	170919S035	
17-09-0959-1	Matrix Spike	Duplicate	Aqueou	ıs G	C/MS L	09/19/17	09/19/17	12:45	170919S035	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2-Dichloropropane	ND	10.00	9.521	95	10.08	101	75-125	6	0-20	
1,3-Dichloropropane	ND	10.00	9.369	94	9.883	99	75-125	5	0-20	
Allyl Chloride	ND	10.00	8.878	89	10.79	108	80-120	19	0-20	

Geosyntec Consultants
Date Received:
09/13/17
595 Market Street, Suite 610
Work Order:
17-09-0989
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 5 of 6

Quality Control Sample ID	Type	Туре		In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-09-0976-18	Sample	Sample		Aqueous GC		09/19/17	09/19/17 23:32		170919S036	
17-09-0976-18	Matrix Spike	Matrix Spike		ıs G	C/MS L	09/19/17	09/20/17 00:0		170919S036	
17-09-0976-18	Matrix Spike	Duplicate	Aqueou	us G	C/MS L	09/19/17	09/20/17	00:33	170919S036	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2-Dichloropropane	ND	10.00	8.875	89	8.969	90	75-125	1	0-20	
1,3-Dichloropropane	ND	10.00	9.051	91	9.171	92	75-125	1	0-20	
Allyl Chloride	ND	10.00	9.283	93	9.125	91	80-120	2	0-20	



Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-0989
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
SRL 524M-TCP

Project: WR2274 / ESTCP Pendleton Page 6 of 6

Quality Control Sample ID	Туре	Туре		Matrix Instrumer		nent Date Prepared		lyzed	MS/MSD Bat	tch Number
17-09-1451-10	Sample	Sample		s G	C/MS M	09/25/17	09/25/17	13:44	170925S012	
17-09-1451-10	Matrix Spike		Aqueous	s G	C/MS M	09/25/17	09/25/17	15:13	170925S012	
17-09-1451-10	Matrix Spike Duplicate		Aqueous GC/MS M		C/MS M	09/25/17	09/25/17	15:42	170925S012	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.08910	0.005000	0.1007	232	0.09550	128	70-130	5	0-20	3

09/13/17

N/A

Quality Control - LCS/LCSD

Geosyntec Consultants Date Received: 17-09-0989 595 Market Street, Suite 610 Work Order: Preparation: San Francisco, CA 94105-2811

> Method: **RSK-175M**

Project: WR2274 / ESTCP Pendleton Page 1 of 10

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	ared Date	Analyzed	LCS/LCSD Ba	atch Number
099-14-325-86	LCS	Aqı	ieous	GC 52	N/A	09/15	5/17 10:28	170915L01	
099-14-325-86	LCSD	Aqı	ueous	GC 52	N/A	09/15	5/17 10:50	170915L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Propene	103.0	98.32	95	91.91	89	80-120	7	0-20	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

Geosyntec Consultants
595 Market Street, Suite 610
San Francisco, CA 94105-2811

Date Received: Work Order: Preparation: Method:

17-09-0989 N/A

09/13/17

RSK-175M

Project: WR2274 / ESTCP Pendleton

Page 2 of 10

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD B	atch Number
099-14-325-89	LCS	Aqı	ieous	GC 52	N/A	09/1	6/17 09:43	170916L01	
099-14-325-89	LCSD	Aqı	ieous	GC 52	N/A	09/1	6/17 10:09	170916L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Propene	103.0	98.79	96	100.1	97	80-120	1	0-20	

Quality Control - LCS

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/13/17 17-09-0989 N/A

EPA 300.0

Project: WR2274 / ESTCP Pendleton

Page 3 of 10

Quality Control Sample ID	Туре	Matrix	Instrument	Date	e Prepared Date	Analyzed LCS Ba	tch Number
099-12-906-7913	LCS	Aqueous	IC 15	N/A	09/14	/17 16:54 170914	L01
Parameter		Spike Added	Conc. Recov	vered	LCS %Rec.	%Rec. CL	<u>Qualifiers</u>
Chloride		50.00	50.50		101	90-110	
Nitrite (as N)		2.500	2.479		99	90-110	
Nitrate (as N)		5.000	4.996		100	90-110	
Sulfate		50.00	51.13		102	90-110	

Quality Control - LCS/LCSD

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

17-09-0989 N/A

09/13/17

EPA 300.0

Project: WR2274 / ESTCP Pendleton

Page 4 of 10

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	epared Date	Analyzed	LCS/LCSD B	atch Number
099-12-906-7914	LCS	Aqı	ieous	IC 15	N/A	09/1	5/17 22:47	170915L02	
099-12-906-7914	LCSD	Aqı	ieous	IC 15	N/A	09/1	5/17 23:06	170915L02	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Chloride	50.00	49.44	99	49.50	99	90-110	0	0-15	
Sulfate	50.00	51.00	102	50.96	102	90-110	0	0-15	

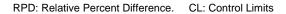
Quality Control - LCS

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/13/17 17-09-0989 Filtered EPA 200.7

Project: WR2274 / ESTCP Pendleton

Page 5 of 10

Quality Control Sample ID	Туре	Matrix	Instrument I	Date Prepared	Date Analyzed	LCS Batch Number
099-14-304-636	LCS	Aqueous	ICP 7300	09/16/17	09/19/17 12:34	170916LA2F
Parameter		Spike Added	Conc. Recovere	d LCS %Re	ec. %Rec	CL Qualifiers
Zinc		0.5000	0.5547	111	85-115	5
Calcium		0.5000	0.5367	107	85-115	5
Iron		0.5000	0.5133	103	85-115	5
Manganese		0.5000	0.5280	106	85-115	5
Silicon		0.5000	0.5129	0.5129 103		5



Quality Control - LCS/LCSD

Geosyntec Consultants
Date Received:
09/13/17
595 Market Street, Suite 610
Work Order:
17-09-0989
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 6 of 10

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-16-446-244	LCS	Aqı	ieous	GC/MS L	09/16/17	09/1	6/17 22:30	170916L018	
099-16-446-244	LCSD	Aqı	ieous	GC/MS L	09/16/17	09/1	6/17 23:01	170916L018	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
1,2-Dichloropropane	10.00	9.332	93	9.107	91	74-122	2	0-23	
1,3-Dichloropropane	10.00	9.344	93	9.238	92	74-128	1	0-24	
Allyl Chloride	10.00	8.299	83	7.695	77	70-130	8	0-20	

Quality Control - LCS

 Geosyntec Consultants
 Date Received:
 09/13/17


 595 Market Street, Suite 610
 Work Order:
 17-09-0989

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Project: WR2274 / ESTCP Pendleton
 Page 7 of 10

Quality Control Sample ID	Type	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-16-446-246	LCS	Aqueous	GC/MS L 0	09/19/17	09/19/17 09:20	170919L002
<u>Parameter</u>		Spike Added	Conc. Recovered	d LCS %Re	ec. %Rec.	CL Qualifiers
1,2-Dichloropropane		10.00	10.10	101	74-122	2
1,3-Dichloropropane		10.00	9.686	97	74-128	3
Allyl Chloride		10.00	9.687	97	70-130)

Quality Control - LCS

 Geosyntec Consultants
 Date Received:
 09/13/17

 595 Market Street, Suite 610
 Work Order:
 17-09-0989

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Project: WR2274 / ESTCP Pendleton
 Page 8 of 10

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-16-446-247	LCS	Aqueous	GC/MS L 0	09/19/17	09/19/17 22:00	170919L036
Parameter		Spike Added	Conc. Recovered	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,2-Dichloropropane		10.00	9.798	98	74-122	2
1,3-Dichloropropane		10.00	9.762	98	74-128	3
Allyl Chloride		10.00	9.447	94	70-130)

09/13/17

17-09-0989

EPA 5030C

Project: WR2274 / ESTCP Pendleton

Quality Control - LCS/LCSD

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Preparation:

Method:

Method: SRL 524M-TCP Page 9 of 10

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1367	LCS	Aqı	ieous	GC/MS M	09/21/17	09/2	1/17 15:56	170921L064	
099-10-022-1367	LCSD	Aqı	ieous	GC/MS M	09/21/17	09/2	1/17 16:26	170921L064	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1.2.3-Trichloropropane	0.005000	0.004900	98	0.005700	114	80-120	15	0-20	

09/13/17

17-09-0989

EPA 5030C

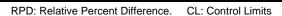
Quality Control - LCS/LCSD

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Date Received:


Work Order:

Preparation:

Method: SRL 524M-TCP

Project: WR2274 / ESTCP Pendleton Page 10 of 10

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1368	LCS	Aqı	ieous	GC/MS M	09/25/17	09/2	5/17 10:39	170925L030	
099-10-022-1368	LCSD	Aqı	ieous	GC/MS M	09/25/17	09/2	5/17 11:44	170925L030	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.005100	102	0.004600	92	80-120	10	0-20	

Sample Analysis Summary Report

Work Order: 17-09-0989				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 200.7	Filtered	935	ICP 7300	1
EPA 300.0	N/A	1027	IC 15	1
EPA 8260B	EPA 5030C	316	GC/MS L	2
RSK-175M	N/A	460	GC 52	2
RSK-175M	N/A	1078	GC 52	2
SRL 524M-TCP	EPA 5030C	486	GC/MS M	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 17-09-0989 Page 1 of 1

Qualifiers	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
	Greater than the indicated value.
>	
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- Χ % Recovery and/or RPD out-of-range.
- Ζ

SG

Analyte presence was not confirmed by second column or GC/MS analysis.

The sample extract was subjected to Silica Gel treatment prior to analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Document Number:, 11061

X

Analysis Request and Chain of Custody Record

	*****************	510450000000000	NAME OF THE OWNER, OWNER, OWNER, OWNER, OWNER, OWNER,	water and the same of the same	·····	1	T 4	_		r	<u> </u>				Γ		T						T _	Pa	20
989	~	ŝ	any samples	d copy	:	Lab Use	Only	Bottles		ر د	₹	+	2		o	7	හ	0	0)	-,		:	7112117	しなり	
17-09-0989	Page of		White copy: to accompany samples	Yellow copy: field copy		MONTH OF THE PROPERTY OF THE P		Comments					78	21/13							Turn-around Time:	Normal □ Rush:	Date 09	EQ Time	
lest and Chain of Custody Record						rvative		S													~	brocked) Caesonia. an	2		
ustod	Required Analyses	(La	11 1 7 111	75 € 777 7882		1 23 17	1300 literal	Number of Containers	Į Į	()					1	}	_	-	_		il results to Lkan Ogessynte, com	Prock.	d by	ion)	
و 2	ired A	usei.		الرام		nd Volu	\$ 12 \$	er of C	~	>	~				٤	3	~	۰,	M		284534		1. Received by	(Signiture/Affiliation)	100
<u> </u>	Requ	d Wh	্য হোম	15 ⁵ 9	থা	e Type	* *	Numb	~	3	>				3	~	~	~	~	~	Lkand		1. Re	(Signit	, כ
D E			0728		Metal	Bottl		and the factor of the contract									-				क्		d.		
		Æ	(A) 25°PO		VOCs		14 14 14 14 14 14 14 14 14 14 14 14 14 1	Courtement	3	~	8	7	2		~	~	~	~	~		J. J. A.S.L.		चाधार	(645)	(
s Red							Sample	Type	كالم											→	-ples. En		Date	Time	Doto
Analysis Requ		•	. 6		0.			Time		1,200	700	•	1130		0740	0830	1)60	1000	tons	וצאצו	多七三	TO THE PERSON NAMED IN THE			
	Project Number UC2274	Project Contact	Lab Contact	Lab Phone	Carrier/Waybill No.			Date .	नाशान् ।		-		-		Ö	0	ò	∘ 2	ž	<u>-</u> >	malyses as 9			<u> </u>	
	Project Name ESTY Comp Por Mark		Laboratory Name Calscient	Lab Address	ĮΟ			Sample Name	CP22 - DUP2 - 091317	CP22- DVP3-091317	COLL- DUF4 - 091817	TB-091317	FB - 091317	E8-01(313	CP22-HI2-59-41	CP22-14911-35-37	CA22- HP11 - 39-4)	CP22-HP11-43-45	CPUL-14P08-35-37	(P22- HP05-39-4)	Special Instructions: Sam and say of 1117 samples.		1. Relinquished by	(Signiture/Affiliation)	2 Dolinginghod by

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 Geosyntec[®]

3. Received by (Signiture/Affiliation)

2. Received by (Signiture/Affiliation)/

Date Od

Time

Date Time

3. Relinquished by

(Signiture/Affiliation)

consultants

2. Relinquished by (Signiture/Affiliation)

Date 0억 (31.7

以以

Time

Date Time

	**************************************	y samples	. Kdo		Lab Use Only	Condition of	Bottles	ا ا	(3	土	15	16	17	200					age	48	UI U	J
9886	Page 2 of 2	White copy: to accompany samples	Yellow copy: field copy				Comments									-						
ō. D																						
/ Rec	apramaparina de de deservações processos de deservações de deserva	***************************************			vative		10															
stody	lyses	l	,00£ £	103	Bottle Type and Volume/Preservative		Number of Containers			_	-	_	·									
Š	J Ana	(LMI7	497) 6-002 t	403	/olume		f Con	_		_	_	~		_								
5	Required Analyses		لم الم	shy	e and \	T HEE	ber o	~		8	7	1	~	~								
S S	Re	mus.		भा	te Typ	五	Num	<u>~</u>		7	7	^	\sim	3								
5	Workstrans	0728	els S (d s O	Syon	Bot					-												
est	THE OWNER OF THE OWNER OF THE OWNER	(4ny 8097)			Aon	778		~	2	7	7	~		~								
Analysis Request and Chain of Custody Record						Sample	Type	Vatr	Lake	100												
Analy			ber 24				Time	1125	ShSI	1450	1 600	1330	1515	1530						the section of the se		
			Project Number				Date	4/18/2017						-y-						***************************************		
		Continued from Document Number:	Project Name				Sample Name	Cp22-14808-43-45	FB2-091317	582-091317	EBS-091317	CP12-14806-35-37	CP12- HRO6-31-4)	345b-jod# < 220)								

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 Geosyntec^o

Return to Contents

Calscience

WORK ORDER NUMBER: 17-09-05989

SAMPLE RECEIPT CHECKLIST

COOLER | OF |

CLIENT: GEOSYNTEC DAT	E: <u>09 /</u>	13/2	<u>2017</u>
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: +0.2°C); Temperature (w/o CF):°C (w/ CF):°C; □ Sample(s) outside temperature criteria (PM/APM contacted by:) □ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling □ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: □ Air □ Filter	☑ Blank Checked	,	sample
7 Thibline 1 Grippiratare. II 7 The 1			
CUSTODY SEAL: Cooler	Checked Checked		
SAMPLE CONDITION:	Yes	No	N/A
Chain-of-Custody (COC) document(s) received with samples	🗹		
COC document(s) received complete			
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers			
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished tim	е		
Sampler's name indicated on COC			
Sample container label(s) consistent with COC			
Sample container(s) intact and in good condition			
Proper containers for analyses requested			
Sufficient volume/mass for analyses requested	_		
Samples received within holding time			
Aqueous samples for certain analyses received within 15-minute holding time			
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	🗆		
Proper preservation chemical(s) noted on COC and/or sample container			
Unpreserved aqueous sample(s) received for certain analyses			
☐ Volatile Organics ☐ Total Metals ☐ Dissolved Metals			
Acid/base preserved samples - pH within acceptable range	🛭		
Container(s) for certain analysis free of headspace			
☐ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 4500)			
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)			_
Tedlar™ bag(s) free of condensation	🗆		
CONTAINER TYPE		0830	C)
Aqueous: UVOA VOAh UVOAna2 U 100PJ U 100PJna2 U 125AGB U 125AGBh U 125AGBp U 125			
□ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □ □ _			
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () EnCores® () TerraCores® ()			
Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other Matrix (): □		_ □	
Container: $A = Amber$, $B = Bottle$, $C = Clear$, $E = Envelope$, $G = Glass$, $J = Jar$, $P = Plastic$, and $Z = Ziploc/Records$	esealable Ba	.g	
Preservative: \mathbf{b} = buffered, \mathbf{f} = filtered, \mathbf{h} = HCl, \mathbf{n} = HNO ₃ , \mathbf{na} = NaOH, $\mathbf{na_2}$ = Na ₂ S ₂ O ₃ , \mathbf{p} = H ₃ PO ₄ , Label			
$\mathbf{s} = H_2SO_4$, $\mathbf{u} = \text{ultra-pure}$, $\mathbf{x} = Na_2SO_3 + NaHSO_4$. H_2O , $\mathbf{znna} = Zn (CH_3CO_2)_2 + NaOH$	Reviewed	d by: <u> </u>	<u> </u>

Calscience

SAMPLE ANOMALY REPORT

DATE: 09 / 13 / 2017

SAMPLES, CONTAINERS, AND	LABELS:		Commer	nts		
☐ Sample(s) NOT RECEIVED but list	ted on COC					
☐ Sample(s) received but NOT LISTE	ED on COC					
☐ Holding time expired (list client or E	ECI sample ID and ana	lysis)				
☐ Insufficient sample amount for requ	uested analysis (list ana	alysis)				
☐ Improper container(s) used (list and	alysis)					
☐ Improper preservative used (list an	alysis)					
□ pH outside acceptable range (list a	nalysis)					·····
☐ No preservative noted on COC or Is	abel (list analysis and r	notify lab)				
☐ Sample container(s) not labeled			 			
☐ Client sample label(s) illegible (list	container type and ana	ılysis)	<u></u>		, , , , , , , , , , , , , , , , , , ,	
☐ Client sample label(s) do not match	n COC (comment)					
☐ Project information						_
☐ Client sample ID						
☐ Sampling date and/or time						
☐ Number of container(s)			·		······································	
☐ Requested analysis						
☐ Sample container(s) compromised	(comment)				***************************************	
☐ Broken						
☐ Water present in sample contain	ner					
☐ Air sample container(s) compromis	ed (comment)					44.4
□ Flat						
☐ Very low in volume						
☐ Leaking (not transferred; duplication	ate bag submitted)					
☐ Leaking (transferred into ECI Te	edlar™ bags*)					
☐ Leaking (transferred into client's	s Tedlar™ bags*)			*************		
* Transferred at client's request.						
MISCELLANEOUS: (Describe)			Commer	nts		
			4.			
HEADSPACE:						
(Containers with bubble > 6 mm or ¼ inch for vol	latile organic or dissolved gas	s analysis)	(Containers wi	ith bubble for othe	r analysis)	
ECI ECI Total Sample ID Container ID Number**	ECI ECI Sample ID Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**	Requested Analysis
1 A,B,C,G 9	17 F	9				
2 I 9						
8 C,I 9						
16 B,C,I 9						
		·			<u> </u>	
Comments:		***************************************			D	eported by: 1050
	to anti-put No. 11	t				eviewed by: 1017
** Record the total number of containers (i.e., via	ais or bottles) for the affected	sample.			R	eviewed by

Calscience

Supplemental Report 1

The original report has been revised/corrected.

WORK ORDER NUMBER: 17-09-1116

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: WR2274 / ESTCP Pendleton

Attention: Lea Kane

595 Market Street

Suite 610

San Francisco, CA 94105-2811

Approved for release on 10/02/2017 by:

Stephen Nowak Project Manager

Email your PM >

ResultLink >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Work Order Narrative

Work Order: 17-09-1116 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/14/17. They were assigned to Work Order 17-09-1116.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: Geosyntec Consultants

Work Order:

17-09-1116

595 Market Street, Suite 610

Project Name:

WR2274 / ESTCP Pendleton

San Francisco, CA 94105-2811 PO Number:

Date/Time

09/14/17 19:05

Received:

Number of 78

Containers:

Attn: Lea Kane

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
EB4-091417	17-09-1116-1	09/14/17 10:45	8	Aqueous
TB-091417	17-09-1116-2	09/14/17 00:00	2	Aqueous
FB3-091417	17-09-1116-3	09/14/17 08:20	2	Aqueous
FB4-091417	17-09-1116-4	09/14/17 10:00	2	Aqueous
CP22-HP03-35-37	17-09-1116-5	09/14/17 07:40	14	Aqueous
CP22-HP03-39-41	17-09-1116-6	09/14/17 07:20	13	Aqueous
CP22-HP03-43-45	17-09-1116-7	09/14/17 08:10	11	Aqueous
CP22-HP01-35-37	17-09-1116-8	09/14/17 09:00	11	Aqueous
CP22-HP01-39-41	17-09-1116-9	09/14/17 09:45	11	Aqueous
CP22-IDW-091417	17-09-1116-10	09/14/17 10:30	4	Aqueous

Detections Summary

Client: Geosyntec Consultants Work Order: 17-09-1116

595 Market Street, Suite 610 Project Name: WR2274 / ESTCP Pendleton

San Francisco, CA 94105-2811 Received: 09/14/17

Attn: Lea Kane Page 1 of 2

<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
EB4-091417 (17-09-1116-1)						
Zinc	0.0149		0.0100	mg/L	EPA 200.7	Filtered
CP22-HP03-35-37 (17-09-1116-5)				3		
Zinc	0.0520		0.0100	mg/L	EPA 200.7	Filtered
Calcium	41.2		0.100	mg/L	EPA 200.7	Filtered
Iron	0.594		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.368		0.00500	mg/L	EPA 200.7	Filtered
Silicon	8.90		0.0500	mg/L	EPA 200.7	Filtered
Chloride	170		2.0	mg/L	EPA 300.0	N/A
Sulfate	85		1.0	mg/L	EPA 300.0	N/A
Propene	1.63		1.00	ug/L	RSK-175M	N/A
CP22-HP03-39-41 (17-09-1116-6)				•		
Zinc	0.0101		0.0100	mg/L	EPA 200.7	Filtered
Calcium	58.2		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.518		0.00500	mg/L	EPA 200.7	Filtered
Silicon	4.20		0.0500	mg/L	EPA 200.7	Filtered
Chloride	180		2.0	mg/L	EPA 300.0	N/A
Sulfate	65		1.0	mg/L	EPA 300.0	N/A
Propene	13.6		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.041		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP03-43-45 (17-09-1116-7)						
Zinc	0.0333		0.0100	mg/L	EPA 200.7	Filtered
Calcium	78.4		0.100	mg/L	EPA 200.7	Filtered
Iron	0.169		0.100	mg/L	EPA 200.7	Filtered
Manganese	1.50		0.00500	mg/L	EPA 200.7	Filtered
Silicon	12.6		0.0500	mg/L	EPA 200.7	Filtered
Chloride	170		2.0	mg/L	EPA 300.0	N/A
Sulfate	95		2.0	mg/L	EPA 300.0	N/A
CP22-HP01-35-37 (17-09-1116-8)						
Calcium	69.4		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.739		0.00500	mg/L	EPA 200.7	Filtered
Silicon	14.4		0.0500	mg/L	EPA 200.7	Filtered
Chloride	170		2.0	mg/L	EPA 300.0	N/A
Sulfate	93		1.0	mg/L	EPA 300.0	N/A

^{*} MDL is shown

Detections Summary

Client: Geosyntec Consultants Work Order: 17-09-1116

595 Market Street, Suite 610 Project Name: WR2274 / ESTCP Pendleton

San Francisco, CA 94105-2811 Received: 09/14/17

Attn: Lea Kane Page 2 of 2

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
CP22-HP01-39-41 (17-09-1116-9)						
Zinc	0.0275		0.0100	mg/L	EPA 200.7	Filtered
Calcium	74.3		0.100	mg/L	EPA 200.7	Filtered
Iron	0.141		0.100	mg/L	EPA 200.7	Filtered
Manganese	0.867		0.00500	mg/L	EPA 200.7	Filtered
Silicon	9.14		0.0500	mg/L	EPA 200.7	Filtered
Chloride	170		2.0	mg/L	EPA 300.0	N/A
Sulfate	99		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.054		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-IDW-091417 (17-09-1116-10)						
Barium	0.0797		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Copper	0.0240		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Molybdenum	0.0122		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Vanadium	0.0121		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Zinc	0.0715		0.0100	mg/L	EPA 6010B	EPA 3010A Total

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Geosyntec Consultants	Geosyntec Consultants				Date Received:				
595 Market Street, Suite 610		Work Ordei	17-09-1116						
San Francisco, CA 94105-2811		Preparation		N/A					
			Method:				RSK-175M		
			Units:				ug/L		
Project: WR2274 / ESTCP Pendle	eton					Pa	ige 1 of 1		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
EB4-091417	17-09-1116-1-E	09/14/17 10:45	Aqueous	GC 52	N/A	09/18/17 20:35	170918L01		
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers		
Propene		ND	1.00		1.00				
CP22-HP03-35-37	17-09-1116-5-E	09/14/17 07:40	Aqueous	GC 52	N/A	09/18/17 21:01	170918L01		
Parameter		Result	RL		<u>DF</u>	Qua	alifiers		
Propene		1.63	1.00		1.00				
CP22-HP03-39-41	17-09-1116-6-L	09/14/17 07:20	Aqueous	GC 52	N/A	09/18/17 21:28	170918L01		
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers		
Propene		13.6	1.0	00	1.00				
CP22-HP03-43-45	17-09-1116-7-H	09/14/17 08:10	Aqueous	GC 52	N/A	09/19/17 11:45	170919L02		
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers		
Propene		ND	1.0	00	1.00				
CP22-HP01-35-37	17-09-1116-8-H	09/14/17 09:00	Aqueous	GC 52	N/A	09/19/17 12:24	170919L02		
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers		
Propene		ND	1.0	00	1.00				
CP22-HP01-39-41	17-09-1116-9-H	09/14/17 09:45	Aqueous	GC 52	N/A	09/19/17 12:56	170919L02		
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers		
Propene		ND	1.0	00	1.00				
Method Blank	099-14-325-92	N/A	Aqueous	GC 52	N/A	09/18/17 12:33	170918L01		
Parameter		Result	<u>RL</u>		<u>DF</u>	<u>Qualifiers</u>			
Propene		ND	1.00		1.00				
Method Blank	099-14-325-90	N/A	Aqueous	GC 52	N/A	09/19/17 10:45	170919L02		
Parameter		Result	RL		<u>DF</u>	Qua	alifiers		
Propene		ND	1.0		1.00				

Geosyntec Consultants Date Received: 09/14/17 Work Order: 17-09-1116 595 Market Street, Suite 610 Preparation: N/A San Francisco, CA 94105-2811 Method: EPA 300.0 Units: mg/L Project: WR2274 / ESTCP Pendleton Page 1 of 3 Lab Sample Number Client Sample Number Date/Time Matrix Instrument Date Date/Time QC Batch ID Prepared Collected Analyzed 09/14/17 10:45 09/15/17 14:39 EB4-091417 17-09-1116-1-G Aqueous IC 9 N/A 170915L01 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers Chloride ND 1.0 1.00 ND 1.00 Nitrite (as N) 0.10 ND Nitrate (as N) 0.10 1.00 Sulfate ND 1.0 1.00 CP22-HP03-35-37 17-09-1116-5-M 09/14/17 Aqueous IC 9 N/A 09/15/17 170915L01 07:40 14:57 Parameter RL DF Qualifiers Result Nitrite (as N) ND 0.10 1.00 Nitrate (as N) ND 0.10 1.00 Sulfate 85 1.0 1.00 CP22-HP03-35-37 17-09-1116-5-M 09/14/17 Aqueous IC 9 N/A 09/15/17 170915L01 07:40 19:03 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers Chloride 170 2.0 2.00 CP22-HP03-39-41 17-09-1116-6-M 09/14/17 Aqueous IC9 N/A 09/18/17 170918L01 07:20 12:01 <u>RL</u> <u>DF</u> Qualifiers <u>Parameter</u> Result ND 1.00 BU Nitrite (as N) 0.10 BU Nitrate (as N) ND 0.10 1.00 Sulfate 65 1.0 1.00 09/14/17 07:20 09/18/17 16:50 CP22-HP03-39-41 17-09-1116-6-M Aqueous IC 9 N/A 170918L01 <u>DF</u> <u>Parameter</u> Result <u>RL</u> Qualifiers Chloride 180 2.0 2.00 CP22-HP03-43-45 17-09-1116-7-J 09/14/17 Aqueous IC9 N/A 09/15/17 170915L01 08:10 **Parameter** Result <u>RL</u> DF Qualifiers Nitrite (as N) ND 0.10 1.00

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Nitrate (as N)

0.10

1.00

ND

Geosyntec Consultants					09/14/17		
595 Market Street, Suite 610			Work Order	:			17-09-1116
San Francisco, CA 94105-2811			Preparation	:			N/A
			Method:				EPA 300.0
			Units:				mg/L
Project: WR2274 / ESTCP Pendleto	on					Pa	ige 2 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP03-43-45	17-09-1116-7-J	09/14/17 08:10	Aqueous	IC 9	N/A	09/15/17 19:22	170915L01
Parameter		Result	RL	•	DF	Qua	<u>alifiers</u>
Chloride		170	2.0		2.00		
Sulfate		95	2.0		2.00		
CP22-HP01-35-37	17-09-1116-8-J	09/14/17 09:00	Aqueous	IC 9	N/A	09/15/17 15:35	170915L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		93	1.0		1.00		
CP22-HP01-35-37	17-09-1116-8-J	09/14/17 09:00	Aqueous	IC 9	N/A	09/15/17 19:41	170915L01
Parameter		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Chloride		170	2.0		2.00		
CP22-HP01-39-41	17-09-1116-9-J	09/14/17 09:45	Aqueous	IC 9	N/A	09/15/17 15:54	170915L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		99	1.0		1.00		
CP22-HP01-39-41	17-09-1116-9-J	09/14/17 09:45	Aqueous	IC 9	N/A	09/15/17 20:00	170915L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Chloride		170	2.0		2.00		
Method Blank	099-12-906-7917	N/A	Aqueous	IC 9	N/A	09/15/17 11:35	170915L01
<u>Parameter</u>		Result	RL		DF	Qua	<u>alifiers</u>
Chloride		ND	1.0		1.00		
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		ND	1.0		1.00		

 Geosyntec Consultants
 Date Received:
 09/14/17

 595 Market Street, Suite 610
 Work Order:
 17-09-1116

 San Francisco, CA 94105-2811
 Preparation:
 N/A

 Method:
 EPA 300.0

 Units:
 mg/L

Project: WR2274 / ESTCP Pendleton Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-906-7921	N/A	Aqueous	IC 9	N/A	09/18/17 11:14	170918L01
Parameter		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Chloride		ND	1.0)	1.00		
Nitrite (as N)		ND	0.1	0	1.00		
Nitrate (as N)		ND	0.1	0	1.00		
Sulfate		ND	1.0)	1.00		

 Geosyntec Consultants
 Date Received:
 09/14/17

 595 Market Street, Suite 610
 Work Order:
 17-09-1116

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: WR2274 / ESTCP Pendleton Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-IDW-091417	17-09-1116-10-D	09/14/17 10:30	Aqueous	GC 48	09/19/17	09/19/17 16:06	170919B05
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
C6		ND	91		1.00		
C7		ND	91		1.00		
C8		ND	91		1.00		
C9-C10		ND	91		1.00		
C11-C12		ND	91		1.00		
C13-C14		ND	91		1.00		
C15-C16		ND	91		1.00		
C17-C18		ND	91		1.00		
C19-C20		ND	91		1.00		
C21-C22		ND	91		1.00		
C23-C24		ND	91		1.00		
C25-C28		ND	91		1.00		
C29-C32		ND	91		1.00		
C33-C36		ND	91		1.00		
C37-C40		ND	91		1.00		
C41-C44		ND	91		1.00		
C6-C44 Total		ND	91		1.00		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
n-Octacosane		93	68-1	140			

 Geosyntec Consultants
 Date Received:
 09/14/17

 595 Market Street, Suite 610
 Work Order:
 17-09-1116

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: WR2274 / ESTCP Pendleton Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-498-536	N/A	Aqueous	GC 48	09/19/17	09/19/17 12:58	170919B05
<u>Parameter</u>		Result	RL	:	DF	Qua	<u>llifiers</u>
C6		ND	100	0	1.00		
C7		ND	100	0	1.00		
C8		ND	100	0	1.00		
C9-C10		ND	100	0	1.00		
C11-C12		ND	100	0	1.00		
C13-C14		ND	100	0	1.00		
C15-C16		ND	100	0	1.00		
C17-C18		ND	100	0	1.00		
C19-C20		ND	100	0	1.00		
C21-C22		ND	100	0	1.00		
C23-C24		ND	100	0	1.00		
C25-C28		ND	100	0	1.00		
C29-C32		ND	100	0	1.00		
C33-C36		ND	100	0	1.00		
C37-C40		ND	100	0	1.00		
C41-C44		ND	100	0	1.00		
C6-C44 Total		ND	100	0	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		112	68-	-140			

Geosyntec Consultants	Date Received:	09/14/17
595 Market Street, Suite 610	Work Order:	17-09-1116
San Francisco, CA 94105-2811	Preparation:	Filtered
	Method:	EPA 200.7
	Units:	mg/L
Droingt, MD0074 / ECTCD Dandleton		Daga 4 of 0

							2.7.200.
			Units:				mg/
Project: WR2274 / ESTCP F	Pendleton					Pa	ge 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EB4-091417	17-09-1116-1-H	09/14/17 10:45	Aqueous	ICP 7300	09/19/17	09/20/17 14:39	170919LA8F
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qualifiers	
Zinc		0.0149	0.0)100	1.00		
Calcium		ND	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		ND	0.0	00500	1.00		
Silicon		ND	0.0)500	1.00		
CP22-HP03-35-37	17-09-1116-5-N	09/14/17 07:40	Aqueous	ICP 7300	09/19/17	09/20/17 14:40	170919LA8F
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Zinc		0.0520	0.0	0100	1.00		
Calcium		41.2	0.1	00	1.00		
Iron		0.594	0.1	00	1.00		
Manganese		0.368	0.0	00500	1.00		
Silicon		8.90	0.0	0500	1.00		
CP22-HP03-39-41	17-09-1116-6-M	09/14/17 07:20	Aqueous	ICP 7300	09/19/17	09/20/17 14:41	170919LA8F
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	llifiers
Zinc		0.0101	0.0)100	1.00		
Calcium		58.2	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		0.518	0.0	00500	1.00		
Silicon		4.20	0.0	0500	1.00		
CP22-HP03-43-45	17-09-1116-7-K	09/14/17 08:10	Aqueous	ICP 7300	09/19/17	09/20/17 14:42	170919LA8F
<u>Parameter</u>		Result			<u>DF</u>	Qua	<u>llifiers</u>
Zinc		0.0333)100	1.00	_	
Calcium		78.4	0.1		1.00		
Iron		0.169	0.1	00	1.00		
			_				
Manganese		1.50	0.0	00500	1.00		

Silicon

Analytical Report

Geosyntec Consultants Date Received: 09/14/17 Work Order: 17-09-1116 595 Market Street, Suite 610 Filtered San Francisco, CA 94105-2811 Preparation: EPA 200.7 Method: Units: mg/L

Project: WR2274 / ESTCP I	Pendleton					Pa	ge 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP01-35-37	17-09-1116-8-K	09/14/17 09:00	Aqueous	ICP 7300	09/19/17	09/20/17 14:43	170919LA8F
<u>Parameter</u>	·	Result	RL	•	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		ND	0.0)100	1.00		
Calcium		69.4	0.1	00	1.00		
Iron		ND	0.1	0.100			
Manganese		0.739	0.00500		1.00		
Silicon		14.4	0.0)500	1.00		
CP22-HP01-39-41	17-09-1116-9-K	09/14/17 09:45	Aqueous	ICP 7300	09/19/17	09/20/17 14:44	170919LA8F
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Zinc		0.0275	0.0)100	1.00		
Calcium		74.3	0.1	00	1.00		
Iron		0.141	0.1	00	1.00		
Manganese		0.867	0.0	00500	1.00		
Silicon		9.14	0.0)500	1.00		
Method Blank	099-14-304-639	N/A	Aqueous	ICP 7300	09/19/17	09/20/17 12:50	170919LA8F
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Zinc		ND	0.0	100	1.00		
Calcium		ND	0.1	00	1.00		
Iron		ND	0.1	00	1.00		
Manganese		ND	0.0	00500	1.00		

ND

0.0500

1.00

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

09/14/17 17-09-1116 EPA 3010A Total EPA 6010B mg/L

Project: WR2274 / ESTCP Pendleton

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-IDW-091417	17-09-1116-10-C	09/14/17 10:30	Aqueous	ICP 7300	09/19/17	09/20/17 14:46	170919LA5
Parameter		Result	RL	=	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0	0150	1.00		
Arsenic		ND	0.0	0100	1.00		
Barium		0.0797	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		0.0240	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		0.0122	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0	0150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0	0150	1.00		
Vanadium		0.0121	0.0	0100	1.00		
Zinc		0.0715	0.0	0100	1.00		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

09/14/17 17-09-1116 EPA 3010A Total EPA 6010B mg/L

Project: WR2274 / ESTCP Pendleton

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-003-16615	N/A	Aqueous	ICP 7300	09/19/17	09/20/17 12:41	170919LA5
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0)150	1.00		
Arsenic		ND	0.0	0100	1.00		
Barium		ND	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		ND	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		ND	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0	0150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		ND	0.0	0100	1.00		
Zinc		ND	0.0)100	1.00		

Geosyntec ConsultantsDate Received:09/14/17595 Market Street, Suite 610Work Order:17-09-1116San Francisco, CA 94105-2811Preparation:EPA 7470A Total

Method: EPA 7470A Units: mg/L

Project: WR2274 / ESTCP Pendleton Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-IDW-091417	17-09-1116-10-C	09/14/17 10:30	Aqueous	Mercury 07	09/20/17	09/21/17 15:00	170920LA3
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>llifiers</u>
Mercury		ND	0.0	000500	1.00		

Method Blank	099-04-008-8335	N/A	Aqueous Mercury 07	09/20/17	09/21/17 170920LA3 11:13
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Mercury		ND	0.000500	1.00	

Geosyntec ConsultantsDate Received:09/14/17595 Market Street, Suite 610Work Order:17-09-1116San Francisco, CA 94105-2811Preparation:EPA 5030C

Method: EPA 8260B Units: ug/L

Project: WR2274 / ESTCP Pendleton Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EB4-091417	17-09-1116-1-A	09/14/17 10:45	Aqueous	GC/MS UU	09/19/17	09/20/17 00:54	170919L058
Parameter		Result	RL	=	<u>DF</u>	Qua	alifiers
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		94	68	-120			
Dibromofluoromethane		103	80	-127			
1,2-Dichloroethane-d4		108	80	-128			
Toluene-d8		99	80	-120			

TB-091417	17-09-1116-2-A	09/14/17 00:00	Aqueous GC/MS UU	09/19/17	09/20/17 170919L058 01:24
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		92	68-120		
Dibromofluoromethane		104	80-127		
1,2-Dichloroethane-d4		110	80-128		
Toluene-d8		98	80-120		

FB3-091417	17-09-1116-3-A	09/14/17 08:20	Aqueous GC/MS UU	09/19/17	09/20/17 170919L058 01:54
Parameter		Result	<u>RL</u>	DF	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		93	68-120		
Dibromofluoromethane		106	80-127		
1,2-Dichloroethane-d4		109	80-128		
Toluene-d8		99	80-120		

 Geosyntec Consultants
 Date Received:
 09/14/17

 595 Market Street, Suite 610
 Work Order:
 17-09-1116

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: WR2274 / ESTCP Pendleton Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FB4-091417	17-09-1116-4-A	09/14/17 10:00	Aqueous	GC/MS UU	09/19/17	09/20/17 02:24	170919L058
Parameter		Result	RL	•	<u>DF</u>	Qua	alifiers
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		92	68	-120			
Dibromofluoromethane		105	80	-127			
1,2-Dichloroethane-d4		106	80	-128			
Toluene-d8		98	80	-120			
CP22-HP03-35-37	17-09-1116-5-A	09/14/17 07·40	Aqueous	GC/MS UU	09/19/17	09/20/17 03·24	170919L058

CP22-HP03-35-37	17-09-1116-5-A	09/14/17 07:40	Aqueous GC/MS UU	09/19/17	09/20/17 170919L058 03:24
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
<u>Surrogate</u>		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		93	68-120		
Dibromofluoromethane		93	80-127		
1,2-Dichloroethane-d4		110	80-128		
Toluene-d8		98	80-120		

CP22-HP03-39-41	17-09-1116-6-F	09/14/17 07:20	Aqueous GC/MS UU	09/20/17	09/20/17 170920L052 21:05
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene		92	68-120		
Dibromofluoromethane		99	80-127		
1,2-Dichloroethane-d4		108	80-128		
Toluene-d8		98	80-120		

Geosyntec Consultants

Date Received:

Work Order:

17-09-1116

San Francisco, CA 94105-2811

Preparation:

Method:

EPA 8260B

Units:

ug/L

Project: WR2274 / ESTCP Pendleton Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP03-43-45	17-09-1116-7-A	09/14/17 08:10	Aqueous	GC/MS UU	09/19/17	09/20/17 02:54	170919L058
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
<u>Surrogate</u>		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
1,4-Bromofluorobenzene		91	68-	-120			
Dibromofluoromethane		99	80-	-127			
1,2-Dichloroethane-d4		108	80-	-128			
Toluene-d8		99	80-	-120			
CP22-HP01-35-37	17-09-1116-8-B	09/14/17 09:00	Aqueous	GC/MS UU	09/20/17	09/20/17 20:35	170920L052
Parameter		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>

CP22-HP01-35-37	17-09-1116-8-B	09/14/17 09:00	Aqueous GC/MS UU	09/20/17	09/20/17 20:35	170920L052
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
1,2-Dichloropropane		ND	0.50	1.00		
1,3-Dichloropropane		ND	1.0	1.00		
Allyl Chloride		ND	1.0	1.00		
<u>Surrogate</u>		Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene		90	68-120			
Dibromofluoromethane		95	80-127			
1,2-Dichloroethane-d4		112	80-128			
Toluene-d8		99	80-120			

CP22-HP01-39-41	17-09-1116-9-D	09/14/17 09:45	Aqueous GC/MS UU	09/19/17	09/20/17 170919L058 03:54
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,2-Dichloropropane		ND	0.50	1.00	
1,3-Dichloropropane		ND	1.0	1.00	
Allyl Chloride		ND	1.0	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene		94	68-120		
Dibromofluoromethane		98	80-127		
1,2-Dichloroethane-d4		108	80-128		
Toluene-d8		99	80-120		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811

Dibromofluoromethane

1,2-Dichloroethane-d4

Toluene-d8

Date Received: Work Order: Preparation: Method:

17-09-1116 EPA 5030C EPA 8260B

09/14/17

Units:

ug/L

Project: WR2274 / ESTCP F			Page 4 of 4				
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-446-248	N/A	Aqueous	GC/MS UU	09/19/17	09/20/17 00:24	170919L058
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	Co	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		92	68	-120			
Dibromofluoromethane		103	80	-127			
1,2-Dichloroethane-d4		106	80	-128			
Toluene-d8		99	80	-120			
Method Blank	099-16-446-250	N/A	Aqueous	GC/MS UU	09/20/17	09/20/17 10:59	170920L052
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
Allyl Chloride		ND	1.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		92	68	-120			

104

108

99

80-127

80-128

80-120

09/14/17

Analytical Report

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Date Received:
Work Order:
Preparation:

Work Order: 17-09-1116
Preparation: EPA 5030C
Method: EPA 8260B

Units: ug/L Page 1 of 6

Project: WR2274 / ESTCP Pendleton

Parameter Result RI	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Acetone ND 10 1.00 Benzene ND 0.50 1.00 Bromobenzene ND 0.50 1.00 Bromochloromethane ND 1.0 1.00 Bromodrichloromethane ND 0.50 1.00 Bromoferm ND 0.50 1.00 Bromomethane ND 1.0 1.00 2-Butanone ND 5.0 1.00 -Butylbenzene ND 0.50 1.00 sec-Butylbenzene ND 0.50 1.00 tert-Butylbenzene ND 0.50 1.00 Carbon Disuffide ND 0.50 1.00 Carbon Disuffide ND 0.50 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 0.50 1.00 Chlorobenzene ND 0.50 1.00 Chlorotoliuene ND 0.50 1.00 4-Chlorotoliuene ND 0.50 1	CP22-IDW-091417	17-09-1116-10-A		Aqueous	GC/MS UU	09/19/17		170919L058
Benzene ND 0.50 1.00 Bromochorene ND 0.50 1.00 Bromochichoromethane ND 1.0 1.00 Bromochichoromethane ND 0.50 1.00 Bromodichiloromethane ND 0.50 1.00 Bromomethane ND 1.0 1.00 2-Butanone ND 0.50 1.00 n-Butylbenzene ND 0.50 1.00 sec-Butylbenzene ND 0.50 1.00 sec-Butylbenzene ND 0.50 1.00 Carbon Disulfide ND 0.50 1.00 Carbon Tetrachloride ND 0.50 1.00 Chloroethane ND 0.50 1.00 Chloroethane ND 0.50 1.00 Chloroethyl Vinyl Ether ND 0.50 1.00 Chlorotoluene ND 0.50 1.00 Chlorotoluene ND 0.50 1.00 Dibromochloromethane ND	Parameter	·	Result	RL	•	<u>DF</u>	Qua	alifiers
Bromobenzene ND 0.50 1.00 Bromochloromethane ND 1.0 1.00 Bromodichloromethane ND 0.50 1.00 Bromoderm ND 0.50 1.00 Bromomethane ND 1.0 1.00 2-Butanone ND 5.0 1.00 -Butylbenzene ND 0.50 1.00 sec-Butylbenzene ND 0.50 1.00 terr-Butylbenzene ND 0.50 1.00 Carbon Disulfide ND 0.50 1.00 Carbon Disulfide ND 0.50 1.00 Carbon Disulfide ND 0.50 1.00 Chioroethane ND 0.50 1.00 Chioroethane ND 0.50 1.00 Chloroethane ND 0.50 1.00 Chloroethane ND 0.50 1.00 Chloroethane ND 0.50 1.00 Chloroethane ND 0.50 1.	Acetone		ND	10		1.00		
Bromochloromethane ND 1.0 1.00 Bromoform ND 0.50 1.00 Bromoform ND 0.50 1.00 Bromomethane ND 1.0 1.00 2-Butanone ND 5.0 1.00 n-Butylbenzene ND 0.50 1.00 ser-Butylbenzene ND 0.50 1.00 letr-Butylbenzene ND 0.50 1.00 Carbon Disulfide ND 0.50 1.00 Carbon FlaterAlbride ND 0.50 1.00 Chlorobenzene ND 0.50 1.00 Chloroberhane ND 0.50 1.00 Chlorobethyl Vinyl Ether ND 0.50 1.00 Chlorobrofin ND 0.50 1.00 Chlorobrofin ND 0.50 1.00 Chlorobrofin ND 0.50 1.00 Chlorobrofin ND 0.50 1.00 Lj-2-Dibromo-S-Chloropropane ND 0.50	Benzene		ND	0.5	50	1.00		
Bromodichloromethane ND 0.50 1.00 Bromoform ND 0.50 1.00 Bromomethane ND 1.0 1.00 2-Butanone ND 5.0 1.00 n-Butylbenzene ND 0.50 1.00 sec-Butylbenzene ND 0.50 1.00 Carbon Disulfide ND 0.50 1.00 Carbon Tetrachloride ND 0.50 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 0.50 1.00 Chlorobenzene ND 0.50 1.00 Chloroform ND 0.50 1.00 Chloroform ND 0.50 1.00 Chlorotoluene ND 0.50 1.00 2-Chlorotoluene ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 1.00 1,2-Dichlorobenzene ND <td>Bromobenzene</td> <td></td> <td>ND</td> <td>0.5</td> <td>50</td> <td>1.00</td> <td></td> <td></td>	Bromobenzene		ND	0.5	50	1.00		
Bromoform ND 0.50 1.00 Bromomethane ND 1.0 1.00 2-Butanone ND 5.0 1.00 n-Butylbenzene ND 0.50 1.00 sec-Butylbenzene ND 0.50 1.00 tert-Butylbenzene ND 0.50 1.00 Carbon Tetrachloride ND 0.50 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 0.50 1.00 Chlorobethare ND 0.50 1.00 Chlorochthyl Viyl Ether ND 0.50 1.00 Chlorochtyl Viyl Ether ND 0.50 1.00 Chlorochtuene ND 0.50 1.00 Chlorothuene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 1,2-Dibromo-S-Chloropropane ND 0.50 1.00 1,2-Dichromo-S-Chloropropane	Bromochloromethane		ND	1.0)	1.00		
Bromomethane ND 1.0 1.00 2-Butanone ND 5.0 1.00 n-Butylbenzene ND 0.50 1.00 sec-Butylbenzene ND 0.50 1.00 tert-Butylbenzene ND 0.50 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 0.50 1.00 Chloroethane ND 0.50 1.00 Chloroethane ND 0.50 1.00 Chloroethyl Viryl Ether ND 0.50 1.00 Chloroethune ND 0.50 1.00 Chloroethune ND 0.50 1.00 Chloroethune ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 1.00 1,2-Dibromo-4-Chloroethane ND 0.50 1.00 1,2-Dichloroethane ND	Bromodichloromethane		ND	0.5	50	1.00		
2-Butanone ND 5.0 1.00 n-Butylbenzene ND 0.50 1.00 sec-Butylbenzene ND 0.50 1.00 tert-Butylbenzene ND 0.50 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 0.50 1.00 Chloroethane ND 0.50 1.00 2-Chloroethyl Vinyl Ether ND 0.50 1.00 Chloroethane ND 0.50 1.00 Chloroethane ND 0.50 1.00 Chloroethyl Vinyl Ether ND 0.50 1.00 Chloroethane ND 0.50 1.00 Chloroethane ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 1,2-Dibromo-S-Chloropropane ND 0.50 1.00 1,2-Dibromo-S-Chloropropane	Bromoform		ND	0.5	50	1.00		
n-Butylbenzene ND 0.50 1.00 sec-Butylbenzene ND 0.50 1.00 tert-Butylbenzene ND 0.50 1.00 Carbon Disulfide ND 0.50 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 0.50 1.00 Chloroethane ND 0.50 1.00 Chloroform ND 0.50 1.00 Chloroform ND 0.50 1.00 Chlororothane ND 0.50 1.00 2-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 1.00 1,2-Dibromoethane ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene	Bromomethane		ND	1.0)	1.00		
sec-Butylbenzene ND 0.50 1.00 tert-Butylbenzene ND 0.50 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 0.50 1.00 Chloroethare ND 0.50 1.00 Chloroethane ND 0.50 1.00 2-Chloroethyl Vinyl Ether ND 5.0 1.00 Chloroform ND 0.50 1.00 Chloroethane ND 0.50 1.00 2-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenz	2-Butanone		ND	5.0)	1.00		
tert-Butylbenzene ND 0.50 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 0.50 1.00 Chloroebnzene ND 0.50 1.00 Chloroethane ND 5.0 1.00 2-Chloroethyl Vinyl Ether ND 5.0 1.00 Chloroform ND 0.50 1.00 Chloroethane ND 0.50 1.00 Chloroethane ND 0.50 1.00 2-Chlorotoluene ND 0.50 1.00 2-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 1/2-Dibromo-3-Chloropropane ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 1,1-Dichloroetha	n-Butylbenzene		ND	0.5	50	1.00		
Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 0.50 1.00 Chloroethane ND 0.50 1.00 Chloroethyl Vinyl Ether ND 5.0 1.00 Chloroform ND 0.50 1.00 Chloroethane ND 0.50 1.00 Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 1.00 1,2-Dibromoethane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 1,4-Dichloroethane ND 0.50 1.00 1,1-Dichloroethane	sec-Butylbenzene		ND	0.5	50	1.00		
Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 0.50 1.00 Chloroethane ND 0.50 1.00 2-Chloroethyl Vinyl Ether ND 5.0 1.00 Chloroform ND 0.50 1.00 Chloromethane ND 0.50 1.00 2-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 1,2-Dibromoethane ND 0.50 1.00 1,2-Dibromoethane ND 0.50 1.00 1,2-Dibromoethane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichloroethane ND 0.50 1.00 1,1-Dichloroethane ND 0.50 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene	tert-Butylbenzene		ND	0.5	50	1.00		
Chlorobenzene ND 0.50 1.00 Chloroethane ND 0.50 1.00 2-Chloroethyl Vinyl Ether ND 5.0 1.00 Chloroform ND 0.50 1.00 Chloromethane ND 0.50 1.00 2-Chlorotoluene ND 0.50 1.00 4-Chlorothoromethane ND 0.50 1.00 1/2-Dibromo-3-Chloropropane ND 0.50 1.00 1,2-Dibromoethane ND 0.50 1.00 1,2-Dibromomethane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 1,1-Dichlorothane ND 0.50 1.00 1,1-Dichlorothane ND 0.50 1.00 1,1-Dichlorothane ND 0.50 1.00 1,1-Dichlorothene ND 0.50 1.00 1,1-Dichloro	Carbon Disulfide		ND	1.0)	1.00		
Chloroethane ND 0.50 1.00 2-Chloroethyl Vinyl Ether ND 5.0 1.00 Chloroform ND 0.50 1.00 Chlorothane ND 0.50 1.00 2-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 Dibromochloromethane ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 1.00 1,2-Dibromoethane ND 0.50 1.00 1,2-Dibromoethane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 1,4-Dichloroethane ND 0.50 1.00 1,1-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 c-1,2-Dichlor	Carbon Tetrachloride		ND	0.5	50	1.00		
2-Chloroethyl Vinyl Ether ND 5.0 1.00 Chloroform ND 0.50 1.00 Chloromethane ND 0.50 1.00 2-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 Dibromochloromethane ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 1.00 1,2-Dibromoethane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 1,1-Dichloroethane ND 0.50 1.00 1,1-Dichloroethane ND 0.50 1.00 1,2-Dichloroethene ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 1,2-Dichloroethe	Chlorobenzene		ND	0.5	50	1.00		
Chloroform ND 0.50 1.00 Chloromethane ND 0.50 1.00 2-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 1,2-Dibromochloromethane ND 0.50 1.00 1,2-Dibromoethane ND 0.50 1.00 1,2-Dibromoethane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 1,1-Dichloroethane ND 0.50 1.00 1,1-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 1,2-Dichloroethene ND 0.50 1.00 1,2-Dichloroeth	Chloroethane		ND	0.5	50	1.00		
Chloromethane ND 0.50 1.00 2-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 Dibromochloromethane ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 0.50 1.00 1,2-Dibromoethane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 1,1-Dichloroethane ND 0.50 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00	2-Chloroethyl Vinyl Ether		ND	5.0)	1.00		
2-Chlorotoluene ND 0.50 1.00 4-Chlorotoluene ND 0.50 1.00 Dibromochloromethane ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 0.50 1.00 Dibromomethane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 1,1-Dichloroethane ND 0.50 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 1-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 t-1,2-D	Chloroform		ND	0.5	50	1.00		
4-Chlorotoluene ND 0.50 1.00 Dibromochloromethane ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 0.50 1.00 Dibromomethane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 Dichlorodifluoromethane ND 0.50 1.00 1,1-Dichloroethane ND 0.50 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 -1,2-Dichloroethene ND 0.50 1.00 -1,2-Dichloroethene ND 0.50 1.00 4-Zebichloroethene ND 0.50 1.00 -1,2-Dichloroethene ND 0.50 1.00 -1,2-Dichloroethene ND 0.50 1.00 -1,2-Dichloroethene ND 0.50 1.00 -1	Chloromethane		ND	0.5	50	1.00		
Dibromochloromethane ND 0.50 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 0.50 1.00 Dibromomethane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 Dichlorodifluoromethane ND 0.50 1.00 1,1-Dichloroethane ND 0.50 1.00 1,2-Dichloroethene ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 Acetonitrile ND 10 1.00	2-Chlorotoluene		ND	0.5	50	1.00		
1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 0.50 1.00 Dibromomethane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 0.50 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 Acetonitrile ND 0.50 1.00	4-Chlorotoluene		ND	0.5	50	1.00		
1,2-Dibromoethane ND 0.50 1.00 Dibromomethane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 0.50 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 Acetonitrile ND 1.0 1.00	Dibromochloromethane		ND	0.5	50	1.00		
Dibromomethane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 0.50 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 Acetonitrile ND 0.50 1.00	1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
Dibromomethane ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 0.50 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 Acetonitrile ND 0.50 1.00	1,2-Dibromoethane		ND	0.5	50	1.00		
1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 0.50 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 Acetonitrile ND 10 1.00	Dibromomethane		ND	0.5	50	1.00		
1,4-Dichlorobenzene ND 0.50 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 0.50 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 Acetonitrile ND 10 1.00	1,2-Dichlorobenzene					1.00		
1,4-Dichlorobenzene ND 0.50 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 0.50 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 Acetonitrile ND 10 1.00	1,3-Dichlorobenzene		ND	0.5	50	1.00		
Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 0.50 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 Acetonitrile ND 10 1.00	1,4-Dichlorobenzene		ND			1.00		
1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 Acetonitrile ND 10 1.00	•							
1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 Acetonitrile ND 10 1.00	1,1-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene ND 0.50 1.00 c-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 Acetonitrile ND 10 1.00								
c-1,2-Dichloroethene ND 0.50 1.00 t-1,2-Dichloroethene ND 0.50 1.00 Acetonitrile ND 10 1.00								
t-1,2-Dichloroethene ND 0.50 1.00 Acetonitrile ND 10 1.00								
Acetonitrile ND 10 1.00	·							
	•							
	1,2-Dichloropropane		ND			1.00		

 Geosyntec Consultants
 Date Received:
 09/14/17

 595 Market Street, Suite 610
 Work Order:
 17-09-1116

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: WR2274 / ESTCP Pendleton
 Page 2 of 6

Parameter Result <u>RL</u> <u>DF</u> Qualifiers ND 20 1.00 Acrolein Acrylonitrile ND 10 1.00 1,3-Dichloropropane ND 1.0 1.00 2,2-Dichloropropane ND 1.0 1.00 Allyl Chloride ND 1.0 1.00 1,1-Dichloropropene ND 0.50 1.00 c-1,3-Dichloropropene ND 0.50 1.00 t-1,3-Dichloropropene ND 0.50 1.00 Ethylbenzene ND 0.50 1.00 2-Hexanone ND 10 1.00 Isopropylbenzene ND 0.50 1.00 p-Isopropyltoluene ND 0.50 1.00 Methylene Chloride ND 1.0 1.00 4-Methyl-2-Pentanone ND 5.0 1.00 Naphthalene ND 1.00 1.0 n-Propylbenzene ND 0.50 1.00 Styrene ND 0.50 1.00 Chloroprene ND 0.50 1.00 1,1,1,2-Tetrachloroethane ND 0.50 1.00 1,1,2,2-Tetrachloroethane ND 0.50 1.00 Tetrachloroethene ND 0.50 1.00 Toluene ND 0.50 1.00 1,2,3-Trichlorobenzene ND 0.50 1.00 Ethyl Methacrylate ND 1.00 5.0 1,2,4-Trichlorobenzene ND 0.50 1.00 1,1,1-Trichloroethane ND 0.50 1.00 Hexachloro-1,3-Butadiene ND 2.0 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 1.00 1,1,2-Trichloroethane ND 0.50 1.00 Iodomethane ND 10 1.00 Trichloroethene ND 0.50 1.00 Trichlorofluoromethane ND 0.50 1.00 Isobutyl Alcohol ND 10 1.00 1,2,3-Trichloropropane ND 1.0 1.00 1,2,4-Trimethylbenzene ND 0.50 1.00 ND Methacrylonitrile 10 1.00 Methyl Methacrylate ND 5.0 1.00 ND 1,3,5-Trimethylbenzene 0.50 1.00 Vinyl Acetate ND 5.0 1.00

Toluene-d8

Analytical Report

Geosyntec Consultants		Date Received:	09/14/17	
595 Market Street, Suite 610		Work Order:		17-09-1116
San Francisco, CA 94105-2811		Preparation:		EPA 5030C
		Method:		EPA 8260B
		Units:		ug/L
Project: WR2274 / ESTCP Pendleton		Office.		Page 3 of 6
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	0.50	1.00	
o-Xylene	ND	0.50	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1.00	
t-1,4-Dichloro-2-Butene	ND	5.0	1.00	
Tetrahydrofuran	ND	5.0	1.00	
Propionitrile	ND	10	1.00	
Tert-Butyl Alcohol (TBA)	ND	10	1.00	
Diisopropyl Ether (DIPE)	ND	0.50	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.50	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.50	1.00	
Ethanol	ND	50	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	92	68-120		
Dibromofluoromethane	106	80-127		
1,2-Dichloroethane-d4	109	80-128		

100

80-120

Geosyntec ConsultantsDate Received:09/14/17595 Market Street, Suite 610Work Order:17-09-1116San Francisco, CA 94105-2811Preparation:EPA 5030C

Method: EPA 8260B Units: ug/L

Project: WR2274 / ESTCP Pendleton Page 4 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-446-248	N/A	Aqueous	GC/MS UU	09/19/17	09/20/17 00:24	170919L058
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	10		1.00		
Benzene		ND	0.5	0	1.00		
Bromobenzene		ND	0.5	0	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	0.5	0	1.00		
Bromoform		ND	0.5	0	1.00		
Bromomethane		ND	1.0	1	1.00		
2-Butanone		ND	5.0	1	1.00		
n-Butylbenzene		ND	0.5	0	1.00		
sec-Butylbenzene		ND	0.5	0	1.00		
tert-Butylbenzene		ND	0.5	0	1.00		
Carbon Disulfide		ND	1.0		1.00		
Carbon Tetrachloride		ND	0.5	0	1.00		
Chlorobenzene		ND	0.5	0	1.00		
Chloroethane		ND	0.5	0	1.00		
2-Chloroethyl Vinyl Ether		ND	5.0)	1.00		
Chloroform		ND	0.5	0	1.00		
Chloromethane		ND	0.5	0	1.00		
2-Chlorotoluene		ND	0.5	0	1.00		
4-Chlorotoluene		ND	0.5	0	1.00		
Dibromochloromethane		ND	0.5	0	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0	1	1.00		
1,2-Dibromoethane		ND	0.5	0	1.00		
Dibromomethane		ND	0.5	0	1.00		
1,2-Dichlorobenzene		ND	0.5	0	1.00		
1,3-Dichlorobenzene		ND	0.5	0	1.00		
1,4-Dichlorobenzene		ND	0.5	0	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	0.5	0	1.00		
1,2-Dichloroethane		ND	0.5	0	1.00		
1,1-Dichloroethene		ND	0.5	0	1.00		
c-1,2-Dichloroethene		ND	0.5	0	1.00		
t-1,2-Dichloroethene		ND	0.5		1.00		
Acetonitrile		ND	10		1.00		
1,2-Dichloropropane		ND	0.5	0	1.00		

 Geosyntec Consultants
 Date Received:
 09/14/17

 595 Market Street, Suite 610
 Work Order:
 17-09-1116

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: WR2274 / ESTCP Pendleton
 Page 5 of 6

Project. WR22/4/ESTCP Pendleton				Page 5 01 6
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Acrolein	ND	20	1.00	
Acrylonitrile	ND	10	1.00	
1,3-Dichloropropane	ND	1.0	1.00	
2,2-Dichloropropane	ND	1.0	1.00	
Allyl Chloride	ND	1.0	1.00	
1,1-Dichloropropene	ND	0.50	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	0.50	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	0.50	1.00	
p-Isopropyltoluene	ND	0.50	1.00	
Methylene Chloride	ND	1.0	1.00	
4-Methyl-2-Pentanone	ND	5.0	1.00	
Naphthalene	ND	1.0	1.00	
n-Propylbenzene	ND	0.50	1.00	
Styrene	ND	0.50	1.00	
Chloroprene	ND	0.50	1.00	
1,1,1,2-Tetrachloroethane	ND	0.50	1.00	
1,1,2,2-Tetrachloroethane	ND	0.50	1.00	
Tetrachloroethene	ND	0.50	1.00	
Toluene	ND	0.50	1.00	
1,2,3-Trichlorobenzene	ND	0.50	1.00	
Ethyl Methacrylate	ND	5.0	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
1,1,1-Trichloroethane	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.50	1.00	
1,1,2-Trichloroethane	ND	0.50	1.00	
Iodomethane	ND	10	1.00	
Trichloroethene	ND	0.50	1.00	
Trichlorofluoromethane	ND	0.50	1.00	
Isobutyl Alcohol	ND	10	1.00	
1,2,3-Trichloropropane	ND	1.0	1.00	
1,2,4-Trimethylbenzene	ND	0.50	1.00	
Methacrylonitrile	ND	10	1.00	
Methyl Methacrylate	ND	5.0	1.00	
1,3,5-Trimethylbenzene	ND	0.50	1.00	
Vinyl Acetate	ND	5.0	1.00	

Toluene-d8

Analytical Report

Geosyntec Consultants	Da		09/14/17			
595 Market Street, Suite 610	Wo	ork Order:		17-09-1116		
San Francisco, CA 94105-2811	Pre	eparation:		EPA 5030C		
·	Me	thod:		EPA 8260B		
	Un	its:		ug/L		
Project: WR2274 / ESTCP Pendleton				Page 6 of 6		
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers		
Vinyl Chloride	ND	0.50	1.00			
p/m-Xylene	ND	0.50	1.00			
o-Xylene	ND	0.50	1.00			
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1.00			
t-1,4-Dichloro-2-Butene	ND	5.0	1.00			
Tetrahydrofuran	ND	5.0	1.00			
Propionitrile	ND	10	1.00			
Tert-Butyl Alcohol (TBA)	ND	10	1.00			
Diisopropyl Ether (DIPE)	ND	0.50	1.00			
Ethyl-t-Butyl Ether (ETBE)	ND	0.50	1.00			
Tert-Amyl-Methyl Ether (TAME)	ND	0.50	1.00			
Ethanol	ND	50	1.00			
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	92	68-120				
Dibromofluoromethane	103	80-127				
1,2-Dichloroethane-d4	106	80-128				

99

80-120

Geosyntec Consultants			Date Recei	ved:			09/14/17
595 Market Street, Suite 610			Work Orde	:			17-09-1116
San Francisco, CA 94105-2811			Preparation	1:			EPA 5030C
ŕ			Method:			S	RL 524M-TCP
			Units:				ug/L
Project: WR2274 / ESTCP Pendle	eton					Pa	ge 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EB4-091417	17-09-1116-1-D	09/14/17 10:45	Aqueous	GC/MS M	09/25/17	09/25/17 18:41	170925L030
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	050	1.00		
CP22-HP03-35-37	17-09-1116-5-H	09/14/17 07:40	Aqueous	GC/MS M	09/25/17	09/25/17 19:11	170925L030
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	050	1.00		
CP22-HP03-39-41	17-09-1116-6-J	09/14/17 07:20	Aqueous	GC/MS M	09/26/17	09/26/17 11:49	170926L042
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		0.041	0.0	0050	1.00		
CP22-HP03-43-45	17-09-1116-7-F	09/14/17 08:10	Aqueous	GC/MS M	09/26/17	09/26/17 12:19	170926L042
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	050	1.00		
CP22-HP01-35-37	17-09-1116-8-F	09/14/17 09:00	Aqueous	GC/MS M	09/26/17	09/26/17 12:49	170926L042
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-HP01-39-41	17-09-1116-9-F	09/14/17 09:45	Aqueous	GC/MS M	09/26/17	09/26/17 13:18	170926L042
<u>Parameter</u>		Result	RL	:	<u>DF</u>	<u>Qua</u>	<u>alifiers</u>
1,2,3-Trichloropropane		0.054	0.0	050	1.00		
Method Blank	099-10-022-1368	N/A	Aqueous	GC/MS M	09/25/17	09/25/17 12:14	170925L030
<u>Parameter</u>		Result	RL		DF	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	050	1.00		
Method Blank	099-10-022-1369	N/A	Aqueous	GC/MS M	09/26/17	09/26/17 11:07	170926L042
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers

Geosyntec Consultants
Date Received:

Work Order:

17-09-1116
San Francisco, CA 94105-2811
Preparation:

N/A
Method:

Date Received:

09/14/17
Non-1116
Non-1116
Preparation:

N/A
Method:

EPA 300.0

Project: WR2274 / ESTCP Pendleton Page 1 of 8

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
17-09-1105-1	Sample		Aqueous	s IC	9	N/A	09/15/17	20:38	170915S01	
17-09-1105-1	Matrix Spike		Aqueous	s IC	9	N/A	09/15/17	17:48	170915S01	
17-09-1105-1	Matrix Spike	Duplicate	Aqueous	s IC	9	N/A	09/15/17	18:07	170915S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chloride	4020	50.00	5319	2597	5147	2254	80-120	3	0-20	3
Nitrite (as N)	ND	2.500	34.12	1365	33.33	1333	80-120	2	0-20	3
Nitrate (as N)	ND	5.000	3.520	70	3.440	69	80-120	2	0-20	3
Sulfate	51.03	50.00	132.6	163	130.5	159	80-120	2	0-20	3

Geosyntec Consultants
Date Received:

Work Order:

17-09-1116
San Francisco, CA 94105-2811
Preparation:

Method:

Date Received:

09/14/17

N/A

Method:

EPA 300.0

Project: WR2274 / ESTCP Pendleton Page 2 of 8

Quality Control Sample ID	Туре		Matrix	Inst	ument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
CP22-HP03-39-41	Sample		Aqueous	IC 9		N/A	09/18/17	16:50	170918S01	
CP22-HP03-39-41	Matrix Spike		Aqueous	IC 9		N/A	09/18/17	12:57	170918S01	
CP22-HP03-39-41	Matrix Spike	Duplicate	Aqueous	IC 9		N/A	09/18/17	13:16	170918S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chloride	177.2	50.00	249.0	144	255.2	156	80-120	2	0-20	3
Nitrite (as N)	ND	2.500	4.869	195	4.905	196	80-120	1	0-20	3
Nitrate (as N)	ND	5.000	4.552	91	4.652	93	80-120	2	0-20	
Sulfate	65.15	50.00	128.6	127	132.9	135	80-120	3	0-20	3

Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-1116
San Francisco, CA 94105-2811
Preparation:
Method:
EPA 200.7

Project: WR2274 / ESTCP Pendleton Page 3 of 8

Quality Control Sample ID	Туре		Matrix		strument	Date Prepared	Date Analyzed		MS/MSD Ba	tch Number
CP22-HP03-35-37	Sample		Aqueou	s IC	P 7300	09/19/17	09/20/17	14:40	170919SA8	
CP22-HP03-35-37	Matrix Spike		Aqueou	s IC	CP 7300 09/19/17		09/20/17 14:37		170919SA8	
CP22-HP03-35-37	Matrix Spike	Duplicate	Aqueou	s IC	P 7300	09/19/17	09/20/17	14:38	170919SA8	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	0.05202	0.5000	0.5604	102	0.6242	114	80-120	11	0-20	
Calcium	41.23	0.5000	39.07	4X	39.48	4X	80-120	4X	0-20	Q
Iron	0.5943	0.5000	0.5236	0	0.5789	0	80-120	10	0-20	3
Manganese	0.3677	0.5000	0.8658	100	0.9011	107	80-120	4	0-20	
Silicon	8.901	0.5000	9.015	4X	9.063	4X	80-120	4X	0-20	Q

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

17-09-1116 EPA 3010A Total EPA 6010B

09/14/17

Project: WR2274 / ESTCP Pendleton

Page 4 of 8

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepared	Date Ana	llyzed	MS/MSD Ba	tch Number
17-09-1105-1	Sample	Aqueous		ueous ICP 7300		09/19/17	09/19/17 09/20/17 13:09		170919SA5	
17-09-1105-1	Matrix Spike		Aqueous	Aqueous ICP 7300		09/19/17 09/20/17 13:10		13:10	170919SA5	
17-09-1105-1	Matrix Spike	Duplicate	Aqueous	s	ICP 7300	09/19/17	09/20/17	13:11	170919SA5	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Re	MSD c. Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	0.5000	0.5663	113	0.5528	111	72-132	2	0-10	
Arsenic	ND	0.5000	0.5955	119	0.5706	114	80-140	4	0-11	
Barium	1.200	0.5000	1.676	95	1.637	87	87-123	2	0-6	
Beryllium	ND	0.5000	0.5299	106	0.5159	103	89-119	3	0-8	
Cadmium	ND	0.5000	0.5384	108	0.5252	105	82-124	2	0-7	
Chromium	ND	0.5000	0.5269	105	0.5102	102	86-122	3	0-8	
Cobalt	ND	0.5000	0.5407	108	0.5288	106	83-125	2	0-7	
Copper	ND	0.5000	0.5534	111	0.5386	108	78-126	3	0-7	
Lead	ND	0.5000	0.5238	105	0.5101	102	84-120	3	0-7	
Molybdenum	ND	0.5000	0.5309	106	0.5155	103	78-126	3	0-7	
Nickel	ND	0.5000	0.5175	104	0.5018	100	84-120	3	0-7	
Selenium	ND	0.5000	0.3036	61	0.2779	56	79-127	9	0-9	3
Silver	ND	0.2500	0.2732	109	0.2649	106	86-128	3	0-7	
Thallium	ND	0.5000	0.4914	98	0.4858	97	79-121	1	0-8	
Vanadium	ND	0.5000	0.5235	105	0.5094	102	88-118	3	0-7	
Zinc	0.01431	0.5000	0.6162	120	0.6015	117	89-131	2	0-8	

Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-1116
San Francisco, CA 94105-2811
Preparation:
EPA 7470A Total
Method:
EPA 7470A

Project: WR2274 / ESTCP Pendleton Page 5 of 8

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
17-09-1105-1	Sample		Aqueous	Mer	cury 07	09/20/17	09/21/17	19:50	170920SA3	
17-09-1105-1	Matrix Spike		Aqueous	Mer	cury 07	09/20/17	09/21/17	19:43	170920SA3	
17-09-1105-1	Matrix Spike	Duplicate	Aqueous	Mer	cury 07	09/20/17	09/21/17	19:45	170920SA3	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.01000	0.005104	51	0.005523	3 55	55-133	8	0-20	3

Geosyntec Consultants
Date Received:

Work Order:

17-09-1116
San Francisco, CA 94105-2811
Preparation:

Method:

EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 6 of 8

Quality Control Sample ID	Туре		Matrix		nstrument	Date Prepared	Date Analyzed		MS/MSD Bat	ch Number
CP22-HP03-43-45	Sample		Aqueou	ıs G	C/MS UU	09/19/17	09/20/17	02:54	170919S032	
CP22-HP03-43-45	Matrix Spike		Aqueou	ıs G	C/MS UU	09/19/17	09/19/17	22:54	170919S032	
CP22-HP03-43-45	Matrix Spike	Duplicate	Aqueou	ıs G	C/MS UU	09/19/17	09/19/17	23:24	1709198032	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2-Dichloropropane	ND	10.00	10.78	108	10.27	103	75-125	5	0-20	
1,3-Dichloropropane	ND	10.00	11.14	111	10.85	109	75-125	3	0-20	
Allyl Chloride	ND	10.00	10.63	106	9.720	97	80-120	9	0-20	

Geosyntec Consultants
Date Received:
09/14/17
595 Market Street, Suite 610
Work Order:
17-09-1116
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 1 of 3

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	d Date Ana	llyzed	MS/MSD Ba	itch Number
CP22-HP03-43-45	Sample		Aqueous	GC	/MS UU	09/19/17	09/20/17	02:54	170919S032	2
CP22-HP03-43-45	Matrix Spike		Aqueous	GC	/MS UU	09/19/17	09/19/17	22:54	1709198032	2
CP22-HP03-43-45	Matrix Spike	Duplicate	Aqueous	GC	/MS UU	09/19/17	09/19/17	23:24	1709198032	2
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Acetone	ND	10.00	18.91	189	18.04	180	20-180	5	0-52	3
Benzene	ND	10.00	10.79	108	9.913	99	75-125	8	0-20	
Bromobenzene	ND	10.00	10.67	107	10.20	102	75-125	5	0-20	
Bromochloromethane	ND	10.00	10.59	106	10.00	100	75-128	6	0-20	
Bromodichloromethane	ND	10.00	10.69	107	10.07	101	75-125	6	0-20	
Bromoform	ND	10.00	10.57	106	10.43	104	71-137	1	0-20	
Bromomethane	ND	10.00	11.47	115	11.41	114	37-181	1	0-22	
2-Butanone	ND	10.00	10.14	101	11.26	113	20-180	11	0-40	
n-Butylbenzene	ND	10.00	8.811	88	8.704	87	75-125	1	0-20	
sec-Butylbenzene	ND	10.00	10.30	103	9.874	99	75-129	4	0-20	
tert-Butylbenzene	ND	10.00	10.72	107	10.17	102	75-129	5	0-20	
Carbon Disulfide	ND	10.00	10.91	109	9.729	97	58-136	11	0-20	
Carbon Tetrachloride	ND	10.00	10.50	105	9.562	96	69-135	9	0-20	
Chlorobenzene	ND	10.00	10.68	107	10.02	100	75-125	6	0-20	
Chloroethane	ND	10.00	10.23	102	10.12	101	20-180	1	0-20	
2-Chloroethyl Vinyl Ether	ND	10.00	0	0	0	0	20-120	0	0-40	3
Chloroform	ND	10.00	10.77	108	9.855	99	75-128	9	0-20	
Chloromethane	ND	10.00	10.51	105	10.92	109	41-149	4	0-20	
2-Chlorotoluene	ND	10.00	10.28	103	9.947	99	75-128	3	0-20	
4-Chlorotoluene	ND	10.00	10.35	103	9.749	97	75-125	6	0-20	
Dibromochloromethane	ND	10.00	10.88	109	10.48	105	75-125	4	0-20	
1,2-Dibromo-3-Chloropropane	ND	10.00	10.55	105	10.16	102	75-127	4	0-20	
1,2-Dibromoethane	ND	10.00	10.88	109	10.66	107	75-126	2	0-20	
Dibromomethane	ND	10.00	10.64	106	10.28	103	75-129	3	0-20	
1,2-Dichlorobenzene	ND	10.00	10.53	105	10.16	102	75-125	4	0-20	
1,3-Dichlorobenzene	ND	10.00	10.38	104	9.845	98	75-126	5	0-20	
1,4-Dichlorobenzene	ND	10.00	10.02	100	9.630	96	75-125	4	0-20	
Dichlorodifluoromethane	ND	10.00	8.115	81	8.484	85	28-172	4	0-20	
1,1-Dichloroethane	ND	10.00	11.04	110	10.15	102	68-128	8	0-20	
1,2-Dichloroethane	ND	10.00	10.64	106	10.08	101	75-127	5	0-20	
1,1-Dichloroethene	ND	10.00	10.74	107	9.646	96	66-126	11	0-20	
c-1,2-Dichloroethene	ND	10.00	10.94	109	10.23	102	75-130	7	0-20	
t-1,2-Dichloroethene	ND	10.00	10.82	108	9.920	99	73-133	9	0-20	
Acetonitrile	ND	20.00	21.23	106	19.35	97	80-120	9	0-20	
1,2-Dichloropropane	ND	10.00	10.78	108	10.27	103	75-125	5	0-20	
• •										

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/14/17 17-09-1116 EPA 5030C EPA 8260B

Project: WR2274 / ESTCP Pendleton

Page 2 of 3

<u> </u>										
<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Acrolein	ND	20.00	24.61	123	26.05	130	80-120	6	0-20	3
Acrylonitrile	ND	10.00	10.31	103	10.82	108	80-120	5	0-20	
1,3-Dichloropropane	ND	10.00	11.14	111	10.85	109	75-125	3	0-20	
2,2-Dichloropropane	ND	10.00	9.057	91	8.131	81	52-160	11	0-20	
Allyl Chloride	ND	10.00	10.63	106	9.720	97	80-120	9	0-20	
1,1-Dichloropropene	ND	10.00	10.77	108	9.679	97	74-134	11	0-20	
c-1,3-Dichloropropene	ND	10.00	10.53	105	9.872	99	75-128	6	0-20	
t-1,3-Dichloropropene	ND	10.00	9.936	99	9.533	95	75-125	4	0-20	
Ethylbenzene	ND	10.00	10.91	109	10.12	101	75-125	8	0-20	
2-Hexanone	ND	10.00	11.13	111	11.43	114	74-122	3	0-20	
Isopropylbenzene	ND	10.00	10.82	108	10.23	102	75-130	6	0-20	
p-Isopropyltoluene	ND	10.00	10.28	103	9.921	99	75-125	4	0-20	
Methylene Chloride	ND	10.00	10.84	108	10.18	102	74-128	6	0-20	
4-Methyl-2-Pentanone	ND	10.00	10.19	102	10.58	106	65-137	4	0-20	
Naphthalene	ND	10.00	9.434	94	9.614	96	75-136	2	0-20	
n-Propylbenzene	ND	10.00	10.78	108	10.28	103	75-129	5	0-20	
Styrene	ND	10.00	10.46	105	10.08	101	28-166	4	0-30	
Chloroprene	ND	10.00	10.53	105	9.530	95	80-120	10	0-20	
1,1,1,2-Tetrachloroethane	ND	10.00	10.93	109	10.57	106	75-127	3	0-20	
1,1,2,2-Tetrachloroethane	ND	10.00	10.51	105	10.56	106	75-132	0	0-20	
Tetrachloroethene	ND	10.00	9.773	98	9.115	91	58-124	7	0-20	
Toluene	ND	10.00	10.80	108	10.03	100	75-125	7	0-20	
1,2,3-Trichlorobenzene	ND	10.00	9.517	95	9.511	95	75-125	0	0-20	
Ethyl Methacrylate	ND	10.00	10.38	104	10.58	106	80-120	2	0-20	
1,2,4-Trichlorobenzene	ND	10.00	9.493	95	9.227	92	75-125	3	0-20	
1,1,1-Trichloroethane	ND	10.00	10.73	107	9.754	98	72-132	10	0-20	
Hexachloro-1,3-Butadiene	ND	10.00	8.597	86	8.906	89	75-129	4	0-20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10.00	9.114	91	7.933	79	70-130	14	0-20	
1,1,2-Trichloroethane	ND	10.00	10.81	108	10.47	105	75-125	3	0-20	
Iodomethane	ND	20.00	20.59	103	19.08	95	80-120	8	0-20	
Trichloroethene	ND	10.00	10.44	104	9.723	97	75-125	7	0-20	
Trichlorofluoromethane	ND	10.00	9.370	94	9.356	94	68-134	0	0-20	
Isobutyl Alcohol	ND	20.00	19.16	96	22.25	111	80-120	15	0-20	
1,2,3-Trichloropropane	ND	10.00	9.736	97	9.546	95	75-125	2	0-20	
1,2,4-Trimethylbenzene	ND	10.00	9.338	93	8.874	89	75-125	5	0-20	
Methacrylonitrile	ND	10.00	10.65	107	10.65	106	80-120	0	0-20	
Methyl Methacrylate	ND	10.00	10.69	107	10.48	105	80-120	2	0-20	
1,3,5-Trimethylbenzene	ND	10.00	9.795	98	9.536	95	75-127	3	0-20	
Vinyl Acetate	ND	10.00	8.643	86	8.689	87	65-137	1	0-20	

Geosyntec Consultants
Date Received:

09/14/17
595 Market Street, Suite 610
Work Order:
17-09-1116
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 3 of 3

<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Vinyl Chloride	ND	10.00	10.80	108	10.74	107	52-142	1	0-20	
p/m-Xylene	ND	20.00	21.37	107	20.05	100	75-125	6	0-20	
o-Xylene	ND	10.00	10.87	109	10.28	103	75-127	6	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	10.85	109	10.57	106	71-131	3	0-20	
t-1,4-Dichloro-2-Butene	ND	10.00	9.399	94	9.227	92	80-120	2	0-20	
Tetrahydrofuran	ND	10.00	11.16	112	10.56	106	75-125	6	0-20	
Propionitrile	ND	10.00	10.57	106	11.11	111	75-125	5	0-20	
Tert-Butyl Alcohol (TBA)	ND	50.00	77.02	154	91.88	184	20-180	18	0-40	3
Diisopropyl Ether (DIPE)	ND	10.00	11.18	112	10.62	106	64-136	5	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	10.00	10.73	107	10.36	104	73-133	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	10.00	10.71	107	10.48	105	75-125	2	0-20	

Geosyntec Consultants
Date Received:

09/14/17
595 Market Street, Suite 610
Work Order:
17-09-1116
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 7 of 8

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bate	ch Number
17-09-1302-4	Sample		Aqueou	s G	C/MS UU	09/20/17	09/20/17	11:37	170920S026	
17-09-1302-4	Matrix Spike		Aqueou	ıs G	C/MS UU	09/20/17	09/20/17	12:07	170920S026	
17-09-1302-4	Matrix Spike	Duplicate	Aqueou	s G	C/MS UU	09/20/17	09/20/17	12:37	170920S026	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2-Dichloropropane	ND	20.00	20.21	101	21.26	106	75-125	5	0-20	
1,3-Dichloropropane	ND	20.00	20.77	104	21.32	107	75-125	3	0-20	
Allyl Chloride	ND	20.00	19.95	100	20.83	104	80-120	4	0-20	

Geosyntec Consultants
Date Received:

09/14/17
595 Market Street, Suite 610
Work Order:
17-09-1116
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
SRL 524M-TCP

Project: WR2274 / ESTCP Pendleton Page 8 of 8

Quality Control Sample ID	Туре		Matrix Instrument [Date Prepared	Date Analyzed		MS/MSD Batch Number		
17-09-1451-10	Sample		Aqueous	Aqueous GC/MS M		09/25/17	09/25/17 13:44		170925S012	
17-09-1451-10	Matrix Spike		Aqueous	Aqueous GC/MS M		09/25/17 09/25/17		15:13 170925S012		
17-09-1451-10	Matrix Spike Duplicate		Aqueous GC/N		GC/MS M 09/25/17		09/25/17	15:42	170925S012	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.08910	0.005000	0.1007	232	0.09550	128	70-130	5	0-20	3

EPA 7470A

Quality Control - PDS

Geosyntec Consultants Date Received: 09/14/17 595 Market Street, Suite 610 Work Order: 17-09-1116 Preparation: EPA 7470A Total San Francisco, CA 94105-2811

Method: Project: WR2274 / ESTCP Pendleton Page 1 of 1

Quality Control Sample ID	Туре	N	Matrix	Instrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number	
17-09-1105-1	Sample	A	Aqueous	Mercury 07	09/20/17 00:00	09/21/17 19:50	170920SA3	
17-09-1105-1	PDS	A	Aqueous	Mercury 07	09/20/17 00:00	09/21/17 19:47	170920SA3	
Parameter		Sample Conc.	Spike Added	PDS Conc	PDS %Re	ec. %Rec. C	<u>Qualifiers</u>	
Mercury		ND	0.01000	0.005708	57	75-125	5	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

Geosyntec Consultants
Date Received:
09/14/17
595 Market Street, Suite 610
Work Order:
17-09-1116
San Francisco, CA 94105-2811
Preparation:
N/A

Method: RSK-175M

Project: WR2274 / ESTCP Pendleton Page 1 of 12

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-14-325-92	LCS	Aqı	ieous	GC 52	N/A	09/18	8/17 11:40	170918L01	
099-14-325-92	LCSD	Aqı	ieous	GC 52	N/A	09/18	8/17 12:05	170918L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Propene	103.0	90.93	88	88.61	86	80-120	3	0-20	

Quality Control - LCS/LCSD

Geosyntec ConsultantsDate Received:09/14/17595 Market Street, Suite 610Work Order:17-09-1116San Francisco, CA 94105-2811Preparation:N/A

Method: RSK-175M

Project: WR2274 / ESTCP Pendleton Page 2 of 12

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prepa	ared Date	Analyzed	LCS/LCSD Ba	atch Number
099-14-325-90	LCS	Aqı	ieous	GC 52	N/A	09/19	/17 09:48	170919L02	
099-14-325-90	LCSD	Aqι	ieous	GC 52	N/A	09/19	/17 10:15	170919L02	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Propene	103.0	101.4	98	101.4	98	80-120	0	0-20	

Quality Control - LCS/LCSD

Geosyntec Consultants
595 Market Street, Suite 610
San Francisco, CA 94105-2811

Date Received:
Work Order:
Preparation:
Method:

17-09-1116 N/A

09/14/17

EPA 300.0

Project: WR2274 / ESTCP Pendleton

Page 3 of 12

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD B	atch Number
099-12-906-7917	LCS	Aqı	ieous	IC 9	N/A	09/1	5/17 11:53	170915L01	
099-12-906-7917	LCSD	Aqı	ueous	IC 9	N/A	09/1	5/17 12:12	170915L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Chloride	50.00	49.10	98	49.11	98	90-110	0	0-15	
Nitrite (as N)	2.500	2.643	106	2.637	105	90-110	0	0-15	
Nitrate (as N)	5.000	4.779	96	4.753	95	90-110	1	0-15	
Sulfate	50.00	51.16	102	50.81	102	90-110	1	0-15	

Quality Control - LCS

Geosyntec Consultants
Date Received:

99/14/17

995 Market Street, Suite 610
Work Order:
17-09-1116

San Francisco, CA 94105-2811
Preparation:

N/A

Method: EPA 300.0

Project: WR2274 / ESTCP Pendleton Page 4 of 12

Quality Control Sample ID	Туре	Matrix	Instrument	Date	e Prepared Date A	Analyzed LCS Ba	atch Number
099-12-906-7921	LCS	Aqueous	IC 9	N/A	09/18/	/17 11:33 170918	BL01
Parameter		Spike Added	Conc. Recov	<u>/ered</u>	LCS %Rec.	%Rec. CL	<u>Qualifiers</u>
Chloride		50.00	48.56		97	90-110	
Nitrite (as N)		2.500	2.719		109	90-110	
Nitrate (as N)		5.000	4.708		94	90-110	
Sulfate		50.00	50.38		101	90-110	

Quality Control - LCS/LCSD

 Geosyntec Consultants
 Date Received:
 09/14/17

 595 Market Street, Suite 610
 Work Order:
 17-09-1116

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

Project: WR2274 / ESTCP Pendleton Page 5 of 12

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-498-536	LCS	Aqı	ueous	GC 48	09/19/17	09/1	9/17 13:18	170919B05	
099-15-498-536	LCSD	Aqı	ueous	GC 48	09/19/17	09/1	9/17 13:39	170919B05	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	4000	4774	119	4538	113	69-123	5	0-30	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/14/17 17-09-1116 Filtered EPA 200.7

Project: WR2274 / ESTCP Pendleton

Page 6 of 12

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-304-639	LCS	Aqueous	ICP 7300	09/19/17	09/20/17 12:51	170919LA8F
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
Zinc		0.5000	0.5467	109	85-11	5
Calcium		0.5000	0.5113	102	85-11	5
Iron		0.5000	0.5338	107	85-11	5
Manganese		0.5000	0.5268	105	85-11	5
Silicon		0.5000	0.5042	101	85-11	5

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

17-09-1116 EPA 3010A Total EPA 6010B

09/14/17

Project: WR2274 / ESTCP Pendleton

Page 7 of 12

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Nu	mber
097-01-003-16615	LCS	Aqueous	ICP 7300	09/19/17	09/20/17 12:42	170919LA5	
<u>Parameter</u>	<u>Spike</u>	Added Conc.	Recovered LCS	%Rec. %R	ec. CL M	IE CL	Qualifiers
Antimony	0.5000	0.5170	103	80-	120 73	3-127	
Arsenic	0.5000	0.5072	101	80-	120 73	3-127	
Barium	0.5000	0.5502	110	80-	120 73	3-127	
Beryllium	0.5000	0.5118	102	80-	120 73	3-127	
Cadmium	0.5000	0.5411	108	80-	120 73	3-127	
Chromium	0.5000	0.5537	111	80-	120 73	3-127	
Cobalt	0.5000	0.5721	114	80-	120 73	3-127	
Copper	0.5000	0.5279	106	80-	120 73	3-127	
Lead	0.5000	0.5426	109	80-	120 73	3-127	
Molybdenum	0.5000	0.5249	105	80-	120 73	3-127	
Nickel	0.5000	0.5490	110	80-	120 73	3-127	
Selenium	0.5000	0.4879	98	80-	120 73	3-127	
Silver	0.2500	0.2599	104	80-	120 73	3-127	
Thallium	0.5000	0.5268	105	80-	120 73	3-127	
Vanadium	0.5000	0.5342	107	80-	120 73	3-127	
Zinc	0.5000	0.5506	110	80-	120 73	3-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-1116
San Francisco, CA 94105-2811
Preparation:
EPA 7470A Total
Method:
EPA 7470A

Project: WR2274 / ESTCP Pendleton Page 8 of 12

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-04-008-8335	LCS	Aqueous	Mercury 07	09/20/17	09/21/17 11:15	170920LA3
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %R	ec. %Rec	. CL Qualifiers
Mercury		0.01000	0.009561	96	80-12	0

Geosyntec Consultants
Date Received:

Work Order:

17-09-1116
San Francisco, CA 94105-2811
Preparation:

Method:

Date Received:

09/14/17

17-09-1116

EPA 5030C

Project: WR2274 / ESTCP Pendleton Page 9 of 12

Quality Control Sample ID	Туре	Matrix	Instrument [Date Prepared	Date Analyzed LO	CS Batch Number
099-16-446-248	LCS	Aqueous	GC/MS UU	09/19/17	09/19/17 22:24 17	70919L058
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec. Cl	<u>Qualifiers</u>
1,2-Dichloropropane		10.00	10.37	104	74-122	
1,3-Dichloropropane		10.00	10.84	108	74-128	
Allyl Chloride		10.00	9.487	95	70-130	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation:

Method:

17-09-1116 EPA 5030C EPA 8260B

09/14/17

Project: WR2274 / ESTCP Pendleton

Page 1 of 3

Quality Control Sample ID	Туре	Matri	х	Instrument Da	te Prepared Date An	alyzed LCS Ba	tch Number
099-16-446-248	LCS	Aque	eous	GC/MS UU 09/	/19/17 09/19/17	22:24 170919	L058
<u>Parameter</u>		Spike Added	Conc. R	ecovered LCS %F	Rec. CL	ME CL	Qualifiers
Acetone		10.00	9.945	99	51-163	32-182	
Benzene		10.00	10.05	100	77-121	70-128	
Bromobenzene		10.00	10.38	104	78-120	71-127	
Bromochloromethane		10.00	10.19	102	71-135	60-146	
Bromodichloromethane		10.00	10.36	104	72-129	62-138	
Bromoform		10.00	10.41	104	61-140	48-153	
Bromomethane		10.00	10.81	108	63-140	50-153	
2-Butanone		10.00	9.110	91	55-138	41-152	
n-Butylbenzene		10.00	9.013	90	67-127	57-137	
sec-Butylbenzene		10.00	10.04	100	66-122	57-131	
tert-Butylbenzene		10.00	10.01	100	73-120	65-128	
Carbon Disulfide		10.00	9.705	97	27-170	3-194	
Carbon Tetrachloride		10.00	10.10	101	64-135	52-147	
Chlorobenzene		10.00	10.18	102	80-120	73-127	
Chloroethane		10.00	8.868	89	67-131	56-142	
2-Chloroethyl Vinyl Ether		10.00	7.538	75	60-139	47-152	
Chloroform		10.00	10.30	103	75-126	66-134	
Chloromethane		10.00	9.592	96	54-143	39-158	
2-Chlorotoluene		10.00	9.863	99	64-123	54-133	
4-Chlorotoluene		10.00	10.05	101	67-126	57-136	
Dibromochloromethane		10.00	10.78	108	76-132	67-141	
1,2-Dibromo-3-Chloropropane		10.00	9.680	97	65-125	55-135	
1,2-Dibromoethane		10.00	10.70	107	74-130	65-139	
Dibromomethane		10.00	10.37	104	75-127	66-136	
1,2-Dichlorobenzene		10.00	10.36	104	78-120	71-127	
1,3-Dichlorobenzene		10.00	10.16	102	75-120	68-128	
1,4-Dichlorobenzene		10.00	9.872	99	78-120	71-127	
Dichlorodifluoromethane		10.00	9.092	91	25-168	1-192	
1,1-Dichloroethane		10.00	10.57	106	63-144	50-158	
1,2-Dichloroethane		10.00	10.29	103	72-130	62-140	
1,1-Dichloroethene		10.00	9.923	99	66-130	55-141	
c-1,2-Dichloroethene		10.00	10.23	102	76-123	68-131	
t-1,2-Dichloroethene		10.00	10.08	101	67-129	57-139	
Acetonitrile		20.00	19.21	96	70-130	60-140	
1,2-Dichloropropane		10.00	10.37	104	74-122	66-130	
Acrolein		20.00	27.66	138	70-130	60-140	ME
Acrylonitrile		10.00	9.987	100	65-149	51-163	
1,3-Dichloropropane		10.00	10.84	108	74-128	65-137	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/14/17 17-09-1116 EPA 5030C EPA 8260B

Project: WR2274 / ESTCP Pendleton

Page 2 of 3

1 Toject. WINZZ147 EGTOT T endleto						age 2 01 3
<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
2,2-Dichloropropane	10.00	8.239	82	68-125	58-134	
Allyl Chloride	10.00	9.487	95	70-130	60-140	
1,1-Dichloropropene	10.00	9.970	100	68-119	60-128	
c-1,3-Dichloropropene	10.00	10.03	100	76-126	68-134	
t-1,3-Dichloropropene	10.00	9.591	96	71-127	62-136	
Ethylbenzene	10.00	10.20	102	78-120	71-127	
2-Hexanone	10.00	10.40	104	61-137	48-150	
Isopropylbenzene	10.00	10.15	102	71-123	62-132	
p-Isopropyltoluene	10.00	9.910	99	68-122	59-131	
Methylene Chloride	10.00	10.15	102	71-129	61-139	
4-Methyl-2-Pentanone	10.00	9.474	95	60-136	47-149	
Naphthalene	10.00	10.42	104	55-159	38-176	
n-Propylbenzene	10.00	10.29	103	64-125	54-135	
Styrene	10.00	10.48	105	77-120	70-127	
Chloroprene	10.00	10.09	101	70-130	60-140	
1,1,1,2-Tetrachloroethane	10.00	10.51	105	79-123	72-130	
1,1,2,2-Tetrachloroethane	10.00	10.15	101	67-132	56-143	
Tetrachloroethene	10.00	11.44	114	72-119	64-127	
Toluene	10.00	10.11	101	78-120	71-127	
1,2,3-Trichlorobenzene	10.00	10.51	105	70-129	60-139	
Ethyl Methacrylate	10.00	9.923	99	70-130	60-140	
1,2,4-Trichlorobenzene	10.00	10.16	102	71-128	62-138	
1,1,1-Trichloroethane	10.00	9.951	100	66-130	55-141	
Hexachloro-1,3-Butadiene	10.00	9.549	95	52-128	39-141	
1,1,2-Trichloro-1,2,2-Trifluoroethane	10.00	9.889	99	52-145	36-160	
1,1,2-Trichloroethane	10.00	10.73	107	77-124	69-132	
odomethane	20.00	18.75	94	70-130	60-140	
Trichloroethene	10.00	9.820	98	75-116	68-123	
Trichlorofluoromethane	10.00	9.335	93	62-146	48-160	
Isobutyl Alcohol	20.00	17.36	87	70-130	60-140	
1,2,3-Trichloropropane	10.00	9.272	93	80-120	73-127	
1,2,4-Trimethylbenzene	10.00	9.066	91	70-127	60-136	
Methacrylonitrile	10.00	10.28	103	70-130	60-140	
Methyl Methacrylate	10.00	9.991	100	70-130	60-140	
1,3,5-Trimethylbenzene	10.00	9.505	95	72-124	63-133	
Vinyl Acetate	10.00	8.810	88	45-164	25-184	
Vinyl Chloride	10.00	9.626	96	60-141	46-154	
p/m-Xylene	20.00	20.25	101	74-122	66-130	
o-Xylene	10.00	10.27	103	74-122	66-130	
Methyl-t-Butyl Ether (MTBE)	10.00	10.31	103	57-144	42-158	

Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
17-09-1116
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Project: WR2274 / ESTCP Pendleton Page 3 of 3

<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
t-1,4-Dichloro-2-Butene	10.00	8.482	85	70-130	60-140	
Tetrahydrofuran	10.00	10.27	103	70-130	60-140	
Propionitrile	10.00	9.400	94	70-130	60-140	
Tert-Butyl Alcohol (TBA)	50.00	56.86	114	43-170	22-191	
Diisopropyl Ether (DIPE)	10.00	10.58	106	70-130	60-140	
Ethyl-t-Butyl Ether (ETBE)	10.00	10.13	101	70-130	60-140	
Tert-Amyl-Methyl Ether (TAME)	10.00	10.19	102	70-130	60-140	

Total number of LCS compounds: 85

Total number of ME compounds: 1

Total number of ME compounds allowed

Total number of ME compounds allowed: 4

LCS ME CL validation result: Pass

 Geosyntec Consultants
 Date Received:
 09/14/17

 595 Market Street, Suite 610
 Work Order:
 17-09-1116

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Project: WR2274 / ESTCP Pendleton
 Page 10 of 12

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-16-446-250	LCS	Aqueous	GC/MS UU 0	9/20/17	09/20/17 09:59	170920L052
<u>Parameter</u>		Spike Added	Conc. Recovered	d LCS %Red	<u>%Rec.</u>	. CL Qualifiers
1,2-Dichloropropane		10.00	9.958	100	74-122	2
1,3-Dichloropropane		10.00	9.987	100	74-128	3
Allyl Chloride		10.00	9.780	98	70-130)

Quality Control - LCS/LCSD

Geosyntec Consultants
595 Market Street, Suite 610
San Francisco, CA 94105-2811

Project: WR2274 / ESTCP Pendleton

Date Received: Work Order: Preparation: Method:

17-09-1116 EPA 5030C SRL 524M-TCP

09/14/17

Page 11 of 12

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1368	LCS	Aqı	ieous	GC/MS M	09/25/17	09/2	25/17 10:39	170925L030	
099-10-022-1368	LCSD	Aqı	ieous	GC/MS M	09/25/17	09/2	25/17 11:44	170925L030	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.005100	102	0.004600	92	80-120	10	0-20	

09/14/17

17-09-1116

Quality Control - LCS/LCSD

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Date Received:

Work Order:

Preparation:

Preparation: EPA 5030C Method: SRL 524M-TCP

Project: WR2274 / ESTCP Pendleton Page 12 of 12

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1369	LCS	Aqı	ieous	GC/MS M	09/26/17	09/26	6/17 09:55	170926L042	
099-10-022-1369	LCSD	Aqı	ieous	GC/MS M	09/26/17	09/26	6/17 10:25	170926L042	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.005000	100	0.004300	86	80-120	15	0-20	

Sample Analysis Summary Report

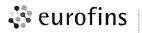
Work Order: 17-09-1116	Vork Order: 17-09-1116							
Method	Extraction	Chemist ID	Instrument	Analytical Location				
EPA 200.7	Filtered	935	ICP 7300	1				
EPA 300.0	N/A	834	IC 9	1				
EPA 6010B	EPA 3010A Total	935	ICP 7300	1				
EPA 7470A	EPA 7470A Total	868	Mercury 07	1				
EPA 8015B (M)	EPA 3510C	972	GC 48	1				
EPA 8260B	EPA 5030C	996	GC/MS UU	2				
RSK-175M	N/A	460	GC 52	2				
RSK-175M	N/A	1078	GC 52	2				
SRL 524M-TCP	EPA 5030C	486	GC/MS M	2				

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 17-09-1116 Page 1 of 1

	<u>_</u>
Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.
	Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the

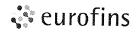

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Document Number:, 11062

		Ana	Analysis Req	quest and Chain of Custody Record	2	<u></u>	5	stod	y Rec	Ō			
Project Name Established	Project Number	Der L'74				Requir	Required Analyses	alyses				Page of	
•	Project Contact	act Serve				the state of	~56J		- 4		T	44 00 44	
Laboratory Name	Lab Contact	wale		260 (bm	0758	เริ่าน	-757		(45) (1892)			White copy: to accompany samples	U samples
Lab Address	Lab Phone	Zarkkonjetavický vyčinosk propijalnosti kladeni.				5 ^{<} 9	-102 Kg-		1 11° 5 69	n/ l		Yellow copy: field copy	. , , , , ,
	Carrier/Waybill No.	ill No.		VOCs	гос	かて	Proper	40	77. 77.	44D	1. 1.		
					Bottle	Type an	Bottle Type and Volume/Preservative	e/Prese	vative	ſſ			Lab Use
	-		Sample	174 V		A 134	E E	XI.	St. IF	200	T.		Only Condition of
Sample Name	Date	Time	Type		_	lumber	Number of Containers	ntainer	s			Comments	Bottles
- 684-091417	9/14/17	Shot	ואיינו	2		7	2 1	•					
2 TB -091417		•	-	2									
3 F83- MI417		02 % 0		7									
4 FB4 - 091417		1000		7									
S CP22- HP03-35-37		0740		5		<u>ਤ</u>	1 h	-					
(CP22- 14P03 - 39-41		0750		9		9	9	_					
7 CP22- 1803-43-45		०३६०		~		~	2	1					
8 CP22- 1861 -35-37		0660		~		~	3	1					
9 Chr. 1801 -39-41		2445		~		>	2						THE STATE OF THE S
422 - HRA - 43 45						managa dakan jaga Commissi S					,		
10 CP2-IDW -091417	3	1030							7	_		* Ad Preservaive for CAM	
	>		5										
Special Instructions: 500-	- analyses as aftill & samples.	8 41/11/6.	المجالم ال								Tu	Turn-around Time:	WANTED THE PROPERTY OF THE PRO
اسًا ح	results to LK	LKAN @ 3405 yorke com		d bodunill esusynke, com	cl) ego	synke,	ې	4			DX.	Normal 🗆 Rush:	
1. Relinquished by (Signiture/Affiliation)	H		Date	6/11/16	4	1. Rec	1. Received by (Signiture/Affiliation)	× Aq				Date	09/1417
2 Relinquished by			Date	⊸l V	11.7	2 Rec	2 Received hy		0//			Date	
(Signiture/Affiliation)			Time		- 2	Signiture	(Signiture/Affiliation)	$\mathcal{Z}_{\hat{\alpha}}$		\searrow	de	Time	(9.0)
3. Relinquished by (Signiture/Affiliation)			Date			3. Rec (Signiture	3. Received by (Signiture/Affiliation)	by (TI CITIC TENTO DI MANAGAMANIA MANA			Date	
	NA CELEBRATICA CONTRACTOR CONTRAC												

Geosyntec^o 10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 consultants



Calscience

WORK ORDER NUMBER: 17-09- 11-10 €

SAMPLE RECEIPT CHECKLIST COOLER ___ OF ___

CLIENT: GEOSYNTEC	DATE	:: <u>09 / \</u>	4 / 2017
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: +0.2°C); Temperature (w/o CF):		Blank	□ Sample
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: ☐ Air ☐ Filter		Checked I	by: 671
CUSTODY SEAL: Cooler □ Present and Intact □ Present but Not Intact □ Not Present Sample(s) □ Present and Intact □ Present but Not Intact □ Not Present	□ N/A □ N/A		by: <u>671</u>
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete Sampling date Sampling time Matrix Number of containers		B_	No N/A
□ No analysis requested □ Not relinquished □ No relinquished date □			
Aqueous samples for certain analyses received within 15-minute holding time □ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen Proper preservation chemical(s) noted on COC and/or sample container Unpreserved aqueous sample(s) received for certain analyses □ Volatile Organics □ Total Metals □ Dissolved Metals			
Acid/base preserved samples - pH within acceptable range	500)		0 0
Tedlar™ bag(s) free of condensation	nk Lot Numbe 5AGBp	r: <u> 7 0</u> B	znna (pH9) □ 500PB □
Preservative: $\mathbf{b} = \text{buffered}$, $\mathbf{f} = \text{filtered}$, $\mathbf{h} = \text{HCl}$, $\mathbf{n} = \text{HNO}_3$, $\mathbf{na} = \text{NaOH}$, $\mathbf{na_2} = \text{Na}_2\text{S}_2\text{O}_3$, $\mathbf{p} = \text{H}_3\text{F}$			

Calscience

SAMPLE ANOMALY REPORT

DATE: <u>09 / 14 / 2017</u>

SAMPLES, CONTAINERS, AND LABELS:	Comments
Sample(s) NOT RECEIVED but listed on COC	(-6) Received 13 containers
☐ Sample(s) received but NOT LISTED on COC	but 20 containers listed
☐ Holding time expired (list client or ECI sample ID and analysis)	on COC.
☐ Insufficient sample amount for requested analysis (list analysis)	Hissing F-6 VOA vials for 8260B
☐ Improper container(s) used (list analysis)	9/14/1700 -1125PB for EPA 300.0
☐ Improper preservative used (list analysis)	not necessed.
□ pH outside acceptable range (list analysis)	
□ No preservative noted on COC or label (list analysis and notify lab)	
☐ Sample container(s) not labeled	
☐ Client sample label(s) illegible (list container type and analysis)	
☐ Client sample label(s) do not match COC (comment)	
☐ Project information	
☐ Client sample ID	
☐ Sampling date and/or time	14.
☐ Number of container(s)	
☐ Requested analysis	
☐ Sample container(s) compromised (comment)	
☐ Broken	
☐ Water present in sample container	
☐ Air sample container(s) compromised (comment)	
□ Flat	
☐ Very low in volume	
☐ Leaking (not transferred; duplicate bag submitted)	
☐ Leaking (transferred into ECI Tedlar™ bags*)	•
☐ Leaking (transferred into client's Tedlar™ bags*)	
* Transferred at client's request.	
MISCELLANEOUS: (Describe)	Comments
HEADSPACE:	
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis)	(Containers with bubble for other analysis)
ECI ECI Total Sample ID Container ID Number** Sample ID Container ID Number**	ECI ECI Total Sample ID Container ID Number** Requested Analysis
5 D, J-L 12	
6 F-L 12	
9 B,C,I 9	
Comments:	
	Reported by: 1050
** Record the total number of containers (i.e., vials or bottles) for the affected sample.	Reviewed by:

Calscience

WORK ORDER NUMBER: 18-01-1215

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: ESTCP C. Pendleton WR2274

Attention: Lea Kane

595 Market Street

Moude

Suite 610

San Francisco, CA 94105-2811

Approved for release on 02/01/2018 by:

Stephen Nowak Project Manager

Email your PM >

ResultLink >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	ESTCP C.	Pendleton	WR2274

Work Order Number: 18-01-1215

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data	7 7 9 12
5	Quality Control Sample Data. 5.1 MS/MSD. 5.2 LCS/LCSD.	14 14 15
6	Sample Analysis Summary	19
7	Glossary of Terms and Qualifiers	20
8	Chain-of-Custody/Sample Receipt Form	21

Work Order Narrative

Work Order: 18-01-1215 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 01/17/18. They were assigned to Work Order 18-01-1215.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Work Order: Project Name:

ESTCP C. Pendleton WR2274

18-01-1215

01/17/18 19:45

70

PO Number:

Date/Time Received:

Number of

Containers:

Lea Kane Attn:

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
CP22-HP01-35-37	18-01-1215-1	01/17/18 10:40	4	Aqueous
CP22-HP01-39-41	18-01-1215-2	01/17/18 11:05	6	Aqueous
CP22-HP02-35-37	18-01-1215-3	01/17/18 12:20	6	Aqueous
CP22-HP02-39-41	18-01-1215-4	01/17/18 12:50	6	Aqueous
CP22-HP03-35-37	18-01-1215-5	01/17/18 13:45	6	Aqueous
CP22-HP03-39-41	18-01-1215-6	01/17/18 14:15	6	Aqueous
CP22-HP06-35-37	18-01-1215-7	01/17/18 15:30	6	Aqueous
DUP20180117	18-01-1215-8	01/17/18 17:00	6	Aqueous
Tblank20180117	18-01-1215-9	01/17/18 16:45	2	Aqueous
IP02-1-35	18-01-1215-10	01/17/18 15:30	1	Solid
IP02-1-36	18-01-1215-11	01/17/18 15:31	1	Solid
IP02-1-43	18-01-1215-12	01/17/18 15:32	1	Solid
IP02-3-38	18-01-1215-13	01/17/18 15:33	1	Solid
IP02-3-44	18-01-1215-14	01/17/18 15:34	1	Solid
IP02-3-45	18-01-1215-15	01/17/18 15:35	1	Solid
IP02-5-43	18-01-1215-16	01/17/18 15:36	1	Solid
IP02-5-45	18-01-1215-17	01/17/18 15:38	1	Solid
IP02-5-44	18-01-1215-18	01/17/18 15:37	1	Solid
IP08-1-42	18-01-1215-19	01/17/18 15:39	1	Solid
IP08-1-43	18-01-1215-20	01/17/18 15:40	1	Solid
IP08-1-44	18-01-1215-21	01/17/18 15:41	1	Solid
IP08-3-43	18-01-1215-22	01/17/18 15:42	1	Solid
IP08-3-44	18-01-1215-23	01/17/18 15:43	1	Solid
IP08-3-45	18-01-1215-24	01/17/18 15:44	1	Solid
IP08-5-35	18-01-1215-25	01/17/18 15:45	1	Solid
IP08-5-36	18-01-1215-26	01/17/18 15:46	1	Solid
IP08-5-37	18-01-1215-27	01/17/18 15:47	1	Solid
E-Blank20180117	18-01-1215-28	01/17/18 16:00	2	Aqueous
F-Blank20180117	18-01-1215-29	01/17/18 16:15	2	Aqueous

Detections Summary

Client: Geosyntec Consultants Work Order: 18-01-1215

595 Market Street, Suite 610 Project Name: ESTCP C. Pendleton WR2274

San Francisco, CA 94105-2811 Received: 01/17/18

Attn: Lea Kane Page 1 of 2

Attil. Lea Raile						
Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
CP22-HP01-35-37 (18-01-1215-1)						
Propene	4.10		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.072		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP01-39-41 (18-01-1215-2)						
1,2,3-Trichloropropane	0.27		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP02-35-37 (18-01-1215-3)						
1,2,3-Trichloropropane	0.086		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP02-39-41 (18-01-1215-4)						
1,2,3-Trichloropropane	0.24		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP03-35-37 (18-01-1215-5)						
1,2,3-Trichloropropane	0.096		0.010	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP03-39-41 (18-01-1215-6)						
1,2,3-Trichloropropane	0.036		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP06-35-37 (18-01-1215-7)						
1,2,3-Trichloropropane	0.23		0.025	ug/L	SRL 524M-TCP	EPA 5030C
DUP20180117 (18-01-1215-8)						
1,2,3-Trichloropropane	0.10		0.010	ug/L	SRL 524M-TCP	EPA 5030C
IP02-1-35 (18-01-1215-10)						
Zinc	82.7		1.03	mg/kg	EPA 6010B	EPA 3050B
IP02-1-36 (18-01-1215-11)						
Zinc	71.7		0.990	mg/kg	EPA 6010B	EPA 3050B
IP02-1-43 (18-01-1215-12)						
Zinc	81.0		1.03	mg/kg	EPA 6010B	EPA 3050B
IP02-3-38 (18-01-1215-13)						
Zinc	122		0.952	mg/kg	EPA 6010B	EPA 3050B
IP02-3-44 (18-01-1215-14)						
Zinc	73.6		0.980	mg/kg	EPA 6010B	EPA 3050B
IP02-3-45 (18-01-1215-15)						
Zinc	69.5		0.985	mg/kg	EPA 6010B	EPA 3050B
IP02-5-43 (18-01-1215-16)						
Zinc	74.4		0.952	mg/kg	EPA 6010B	EPA 3050B
IP02-5-45 (18-01-1215-17)						
Zinc	53.3		0.962	mg/kg	EPA 6010B	EPA 3050B
IP02-5-44 (18-01-1215-18)						
Zinc	65.1		1.01	mg/kg	EPA 6010B	EPA 3050B
IP08-1-42 (18-01-1215-19)						
Zinc	48.9		1.02	mg/kg	EPA 6010B	EPA 3050B
IP08-1-43 (18-01-1215-20)						
Zinc	69.4		1.03	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Detections Summary

Client: Geosyntec Consultants

Work Order: 18-01-1215

595 Market Street, Suite 610

Project Name: ESTCP C. Pendleton WR2274

San Francisco, CA 94105-2811

Received: 01/17/18

Attn: Lea Kane Page 2 of 2

Client SampleID	_					
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
IP08-1-44 (18-01-1215-21)						
Zinc	71.3		0.976	mg/kg	EPA 6010B	EPA 3050B
IP08-3-43 (18-01-1215-22)						
Zinc	18100		100	mg/kg	EPA 6010B	EPA 3050B
IP08-3-44 (18-01-1215-23)						
Zinc	20000		103	mg/kg	EPA 6010B	EPA 3050B
IP08-3-45 (18-01-1215-24)						
Zinc	1870		1.01	mg/kg	EPA 6010B	EPA 3050B
IP08-5-35 (18-01-1215-25)						
Zinc	75.6		0.957	mg/kg	EPA 6010B	EPA 3050B
IP08-5-36 (18-01-1215-26)						
Zinc	79.3		1.03	mg/kg	EPA 6010B	EPA 3050B
IP08-5-37 (18-01-1215-27)						
Zinc	69.1		0.976	mg/kg	EPA 6010B	EPA 3050B

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Geosyntec Consultants			Date Recei	ved:			01/17/18
595 Market Street, Suite 610			Work Order	r:			18-01-1215
San Francisco, CA 94105-2811			Preparation	n:			N/A
			Method:				RSK-175M
			Units:				ug/L
Project: ESTCP C. Pendleton WR	2274					Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP01-35-37	18-01-1215-1-D	01/17/18 10:40	Aqueous	GC 52	N/A	01/18/18 12:24	180118L02
Parameter		Result	RL	:	<u>DF</u>	Qu	alifiers
Propene		4.10	1.0	00	1.00		
CP22-HP01-39-41	18-01-1215-2-D	01/17/18 11:05	Aqueous	GC 52	N/A	01/18/18 13:23	180118L02
Parameter		Result	RL		<u>DF</u>	Qu	alifiers
Propene		ND	1.0	00	1.00		
CP22-HP02-35-37	18-01-1215-3-D	01/17/18 12:20	Aqueous	GC 52	N/A	01/18/18 13:50	180118L02
Parameter		Result	RL	:	<u>DF</u>	Qu	alifiers
Propene		ND	1.0	00	1.00		
CP22-HP02-39-41	18-01-1215-4-D	01/17/18 12:50	Aqueous	GC 52	N/A	01/18/18 14:16	180118L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qu	alifiers
Propene		ND	1.0	00	1.00		
CP22-HP03-35-37	18-01-1215-5-D	01/17/18 13:45	Aqueous	GC 52	N/A	01/18/18 14:43	180118L02
<u>Parameter</u>		Result	RL	:	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP03-39-41	18-01-1215-6-D	01/17/18 14:15	Aqueous	GC 52	N/A	01/18/18 15:09	180118L02
<u>Parameter</u>		Result	RL	:	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP06-35-37	18-01-1215-7-D	01/17/18 15:30	Aqueous	GC 52	N/A	01/18/18 15:43	180118L02
Parameter		Result	RL	•	<u>DF</u>	Qu	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
DUP20180117	18-01-1215-8-D	01/17/18 17:00	Aqueous	GC 52	N/A	01/18/18 16:09	180118L02
Parameter		Result	RL		<u>DF</u>	Qu	<u>alifiers</u>
Propene		ND	1.0	00	1.00		

 Geosyntec Consultants
 Date Received:
 01/17/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1215

 San Francisco, CA 94105-2811
 Preparation:
 N/A

 Method:
 RSK-175M

 Units:
 ug/L

Project: ESTCP C. Pendleton WR2274 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-325-96	N/A	Aqueous	GC 52	N/A	01/18/18 11:42	180118L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Propene		ND	1.0	00	1.00		

Geosyntec Consultants			Date Re	eceived:			01/17/18
595 Market Street, Suite 610			Work O	rder:			18-01-1215
San Francisco, CA 94105-2811			Prepara	tion:			EPA 3050B
			Method:				EPA 6010B
			Units:				mg/kg
Project: ESTCP C. Pendleton WR:	2274					Pa	ige 1 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IP02-1-35	18-01-1215-10-A	01/17/18 15:30	Solid	ICP 7300	01/24/18	01/24/18 16:42	180124L01
<u>Parameter</u>	,	Result		RL	<u>DF</u>	Qua	alifiers
Zinc		82.7		1.03	1.03		
IP02-1-36	18-01-1215-11-A	01/17/18 15:31	Solid	ICP 7300	01/24/18	01/24/18 16:44	180124L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		71.7		0.990	0.990		
IP02-1-43	18-01-1215-12-A	01/17/18 15:32	Solid	ICP 7300	01/24/18	01/24/18 16:45	180124L01
<u>Parameter</u>		Result		<u>RL</u>	DF	Qua	alifiers
Zinc		81.0		1.03	1.03		
IP02-3-38	18-01-1215-13-A	01/17/18 15:33	Solid	ICP 7300	01/24/18	01/24/18 16:46	180124L01
<u>Parameter</u>	,	Result		RL	DF	Qua	alifiers
Zinc		122		0.952	0.952		
IP02-3-44	18-01-1215-14-A	01/17/18 15:34	Solid	ICP 7300	01/24/18	01/25/18 13:05	180124L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		73.6		0.980	0.980		
IP02-3-45	18-01-1215-15-A	01/17/18 15:35	Solid	ICP 7300	01/24/18	01/25/18 13:06	180124L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		69.5		0.985	0.985		
IP02-5-43	18-01-1215-16-A	01/17/18 15:36	Solid	ICP 7300	01/24/18	01/25/18 13:06	180124L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		74.4		0.952	0.952		
IP02-5-45	18-01-1215-17-A	01/17/18 15:38	Solid	ICP 7300	01/24/18	01/25/18 13:07	180124L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		53.3		0.962	0.962		

Coopyrates Consultants			Date Re	scoived:			01/17/18
Geosyntec Consultants			Work O				18-01-1215
595 Market Street, Suite 610							
San Francisco, CA 94105-2811			Prepara				EPA 3050B
			Method:				EPA 6010B
			Units:				mg/kg
Project: ESTCP C. Pendleton WR	2274					Pa	age 2 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IP02-5-44	18-01-1215-18-A	01/17/18 15:37	Solid	ICP 7300	01/24/18	01/25/18 13:08	180124L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Zinc		65.1		1.01	1.01		
IP08-1-42	18-01-1215-19-A	01/17/18 15:39	Solid	ICP 7300	01/24/18	01/25/18 13:08	180124L01
Parameter		Result		<u>RL</u>	<u>DF</u>	Qu	alifiers
Zinc		48.9		1.02	1.02		
IP08-1-43	18-01-1215-20-A	01/17/18 15:40	Solid	ICP 7300	01/24/18	01/25/18 13:09	180124L01
Parameter		Result	-	RL	DF	Qua	alifiers
Zinc		69.4		1.03	1.03		
IP08-1-44	18-01-1215-21-A	01/17/18 15:41	Solid	ICP 7300	01/24/18	01/25/18 13:10	180124L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Zinc		71.3		0.976	0.976		
IP08-3-43	18-01-1215-22-A	01/17/18 15:42	Solid	ICP 7300	01/24/18	01/26/18 11:17	180124L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Zinc		18100		100	100		
IP08-3-44	18-01-1215-23-A	01/17/18 15:43	Solid	ICP 7300	01/24/18	01/25/18 13:12	180124L01
Parameter		Result		<u>RL</u>	DF	Qu	alifiers
Zinc		20000		103	103		
IP08-3-45	18-01-1215-24-A	01/17/18 15:44	Solid	ICP 7300	01/24/18	01/25/18 13:16	180124L01
Parameter		Result		<u>RL</u>	DF	Qu	<u>alifiers</u>
Zinc		1870		1.01	1.01		
IP08-5-35	18-01-1215-25-A	01/17/18 15:45	Solid	ICP 7300	01/24/18	01/25/18 13:17	180124L01
Parameter		Result		<u>RL</u>	<u>DF</u>	Qu	alifiers

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Zinc

0.957

0.957

75.6

 Geosyntec Consultants
 Date Received:
 01/17/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1215

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3050B

 Method:
 EPA 6010B

 Units:
 mg/kg

Project: ESTCP C. Pendleton WR2274 Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IP08-5-36	18-01-1215-26-A	01/17/18 15:46	Solid	ICP 7300	01/24/18	01/25/18 13:18	180124L01
<u>Parameter</u>	·	Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Zinc		79.3	1	.03	1.03		
IP08-5-37	18-01-1215-27-A	01/17/18 15:47	Solid	ICP 7300	01/24/18	01/25/18 13:18	180124L01
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Zinc		69.1	0	.976	0.976		

Method Blank	097-01-002-25813	N/A	Solid	ICP 7300	01/24/18	01/24/18 16:38	180124L01
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Zinc		ND	0.	976	0.976		

Geosyntec Consultants			Date Recei	ved:			01/17/18
595 Market Street, Suite 610			Work Order	r:			18-01-1215
San Francisco, CA 94105-2811			Preparation	n:			EPA 5030C
			Method:			S	RL 524M-TCP
			Units:			_	ug/L
Project: ESTCP C. Pendleton WR	2274					Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP01-35-37	18-01-1215-1-A	01/17/18 10:40	Aqueous	GC/MS M	01/18/18	01/18/18 20:17	180118L015
Parameter		Result	RL	:	<u>DF</u>	Qu	alifiers
1,2,3-Trichloropropane		0.072	0.0	0050	1.00		
CP22-HP01-39-41	18-01-1215-2-C	01/17/18 11:05	Aqueous	GC/MS M	01/30/18	01/30/18 13:05	180130L038
<u>Parameter</u>		Result	RL		DF	Qu	alifiers
1,2,3-Trichloropropane		0.27	0.0)25	5.00		
CP22-HP02-35-37	18-01-1215-3-B	01/17/18 12:20	Aqueous	GC/MS M	01/30/18	01/30/18 13:34	180130L038
<u>Parameter</u>		Result	RL		DF	Qu	alifiers
1,2,3-Trichloropropane		0.086	0.0	0050	1.00		
CP22-HP02-39-41	18-01-1215-4-B	01/17/18 12:50	Aqueous	GC/MS M	01/30/18	01/30/18 14:03	180130L038
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qu	alifiers
1,2,3-Trichloropropane		0.24	0.0)25	5.00		
CP22-HP03-35-37	18-01-1215-5-B	01/17/18 13:45	Aqueous	GC/MS M	01/30/18	01/30/18 14:32	180130L038
Parameter		Result	RL	i	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
1,2,3-Trichloropropane		0.096	0.0)10	2.00		
CP22-HP03-39-41	18-01-1215-6-B	01/17/18 14:15	Aqueous	GC/MS M	01/30/18	01/30/18 15:01	180130L038
Parameter		Result	RL		DF	Qu	alifiers
1,2,3-Trichloropropane		0.036	0.0	0050	1.00		
CP22-HP06-35-37	18-01-1215-7-B	01/17/18 15:30	Aqueous	GC/MS M	01/30/18	01/30/18 15:30	180130L038
Parameter		Result	RL	•	<u>DF</u>	Qu	<u>alifiers</u>
1,2,3-Trichloropropane		0.23	0.0)25	5.00		
DUP20180117	18-01-1215-8-B	01/17/18 17:00	Aqueous	GC/MS M	01/30/18	01/30/18 15:59	180130L038
Parameter		Result	RL		<u>DF</u>	Qu	alifiers
1,2,3-Trichloropropane		0.10	0.0)10	2.00		

Geosyntec Consultants	Date Received:	01/17/18
595 Market Street, Suite 610	Work Order:	18-01-1215
San Francisco, CA 94105-2811	Preparation:	EPA 5030C
	Method:	SRL 524M-TCP
	Units:	ug/L
Project: ESTCP C. Pendleton WR2274		Page 2 of 2

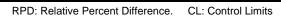
Mathad Dlank	200 40 200 4007	NI/A	A	00/140 14	04/40/40	04/40/40	4004401.045
1,2,3-Trichloropropane		ND	0.0	050	1.00		
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
F-Blank20180117	18-01-1215-29-B	01/17/18 16:15	Aqueous	GC/MS M	01/30/18	01/30/18 12:07	180130L038
1,2,3-Trichloropropane		ND	0.0	050	1.00		
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
E-Blank20180117	18-01-1215-28-B	01/17/18 16:00	Aqueous	GC/MS M	01/30/18	01/30/18 11:38	180130L038
1,2,3-Trichloropropane		ND	0.0	050	1.00		
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Tblank20180117	18-01-1215-9-A	01/17/18 16:45	Aqueous	GC/MS M	01/30/18	01/30/18 12:36	180130L038
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID

Method Blank	099-10-022-1397	N/A	Aqueous GC/MS M	01/18/18	01/18/18 180118L015 11:02
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,2,3-Trichloropropane		ND	0.0050	1.00	

Method Blank	099-10-022-1401	N/A	Aqueous	GC/MS M	01/30/18	01/30/18 11:06	180130L038
Parameter		Result	<u>RL</u>		<u>DF</u>	Qual	<u>ifiers</u>
1,2,3-Trichloropropane		ND	0.0	050	1.00		

Quality Control - Spike/Spike Duplicate

 Geosyntec Consultants
 Date Received:
 01/17/18


 595 Market Street, Suite 610
 Work Order:
 18-01-1215

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3050B

 Method:
 EPA 6010B

Project: ESTCP C. Pendleton WR2274 Page 1 of 1

Quality Control Sample ID	Туре		Matrix	Insti	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
IP02-1-35	Sample		Solid	ICP	7300	01/24/18	01/24/18	16:42	180124S01	
IP02-1-35	Matrix Spike		Solid	ICP	7300	01/24/18	01/24/18	16:43	180124S01	
IP02-1-35	Matrix Spike D	uplicate	Solid	ICP	7300	01/24/18	01/24/18	16:43	180124S01	
Parameter		<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	82.70	25.00	105.9	93	100.5	71	75-125	5	0-20	3

01/17/18

N/A

18-01-1215

Quality Control - LCS/LCSD

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Date Received:

Work Order:

Preparation:

Method: RSK-175M

Project: ESTCP C. Pendleton WR2274 Page 1 of 4

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	ared Dat	e Analyzed	LCS/LCSD Ba	atch Number
099-14-325-96	LCS	Aqu	eous	GC 52	N/A	01/	18/18 10:18	180118L02	
099-14-325-96	LCSD	Aqu	eous	GC 52	N/A	01/	18/18 10:49	180118L02	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Propene	103.0	103.5	100	103.3	100	80-120	0	0-20	

 Geosyntec Consultants
 Date Received:
 01/17/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1215

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3050B

 Method:
 EPA 6010B

 Project: ESTCP C. Pendleton WR2274
 Page 2 of 4

Quality Control Sample ID	Туре	Matrix	Instrument I	Date Prepared	Date Analyzed	LCS Batch Number
097-01-002-25813	LCS	Solid	ICP 7300	01/24/18	01/24/18 16:39	180124L01
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Zinc		25.00	25.82	103	80-120	0

Quality Control - LCS/LCSD

Geosyntec Consultants

Date Received:

Work Order:

San Francisco, CA 94105-2811

Preparation:

Method:

Date Received:

01/17/18

01/17/18

Preparation:

EPA 5030C

Project: ESTCP C. Pendleton WR2274 Page 3 of 4

Quality Control Sample ID	Туре	Mati	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1397	LCS	Aqu	eous	GC/MS M	01/18/18	01/18	8/18 09:58	180118L015	
099-10-022-1397	LCSD	Aqu	eous	GC/MS M	01/18/18	01/18	8/18 10:27	180118L015	
Parameter	Spike Added I	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.005500	110	0.005500	110	80-120	0	0-20	

Quality Control - LCS/LCSD

Geosyntec Consultants

Date Received:

Work Order:

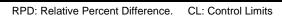
San Francisco, CA 94105-2811

Preparation:

Method:

Date Received:

01/17/18


01/17/18

Preparation:

EPA 5030C

Project: ESTCP C. Pendleton WR2274 Page 4 of 4

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1401	LCS	Aqı	ieous	GC/MS M	01/30/18	01/3	0/18 10:04	180130L038	
099-10-022-1401	LCSD	Aqu	ieous	GC/MS M	01/30/18	01/3	0/18 10:33	180130L038	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.004400	88	0.005400	108	80-120	20	0-20	

Sample Analysis Summary Report

Work Order: 18-01-1215	Page 1 of 1			
<u>Method</u>	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3050B	935	ICP 7300	1
RSK-175M	N/A	748	GC 52	2
RSK-175M	N/A	1144	GC 52	2
SRL 524M-TCP	EPA 5030C	486	GC/MS M	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 18-01-1215 Page 1 of 1

	-
Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Condition of Lab Use Bottles White copy: to accompany samples Only Yellow copy: field copy Page of 2 18-01-1215 Date (0) Rush: Document Number:, 11405 Turn-around Time: Comments 以 Normal Analysis Request and Chain of Custody Record Bottle Type and Volume/Preservative Number of Containers Required Analyses 1. Received by PSIC-1752M 0-0pmc 47- MKZ 232 2AOC2 py 8270 Date 1/17/18 Metals **NOCs p**\lambda LKine Cassymanica Sample Type してなり Time 040 105 700 1220 1250 13.65 530 569 1415 Project Contact Project Number しんひアイ Lab Contact く、Nouale Carrier/Waybill No. ab Phone Date 81/61) Project Name C. Per Mering Sample Name Special Instructions: Relinquished by 35-37 CP LZ HPQ -35-37 QU2-1803- 59-41 422-1403-35-37 ロンボージー-36-41 ひっぱーシャング (かな、ほのことが一人) THOUSE 2018 0117 aboratory Name ーが出ったの Samplers Names DUPZOISOUT

ab Address

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 Geosyntec[®]

Time Date Time

2. Received by

(Signiture/Affiliation)

(Signiture/Affiliation)

Time / Date

Time Date Time

3. Relinquished by

(Signiture/Affiliation)

consultants

Relinquished by

(Signiture/Affiliation)

Signiture/Affiliation)

3. Received by

(Signiture/Affiliation)

Time Date

Analysis Request and Chain of Custody Record

				Required Analyses	Page Z of Z	~/
Continued from Document Number:		destructions and the state of t		হা ০	MA Is it is a second of the se	
Project Name CSACP C. Persilu Au-	Project Number	nber		78 Aq 109 1249	verifie copy, to accompany samples	iy samples
URLDZY	VR2274	7.7		DI	Yellow copy: field copy	Ádos
				m		Lab Use
ng command debits o		-				Only
•		9 1000	Sample			Condition of
Sample Name	Date	l me	Type	Number of Containers	Comments	Bottles
10 IP @ 2-1-35	1/17/18	1830	So: 1			
11 IPO2 -1-36		♦ €51				
12 TP02 - (-43		1532				
13 IP02-3-38		1533				
14 TP02-3-44		(દર્ગ				
3h - 8 - 70 J		(5-35				
		98431				
17 TP02-5-45		1538				
18 IPO2-5-44		1837				
19 IP08-1-42		1539				
20 IP08-1-43	And the second s	1540				
		ks/				
22 IP 08 -3 -43		1547				
2) [F 08 -3 -44		1843				
Jh- 2-80J t		1544				
25-5-800		ShSI				P
26 tpox -5-36		9 / 5				ige
75-5-37		ths)	~	→		22
28 E-Blank 20180117		0097	Water	7		of 2
29 F-Blank 20180117	⋗	<u> </u>	→	2		4
	10875 Rancho Bernardo Road. Suite 200. San Dieg	do Road. Su	ite 200, San D	iego. CA 92127 (858) 674-6559 Fax: (858) 674-6586		

Geosyntec Consultants Consultants

WORK ORDER NUMBER: 18-01-1215

SAMPLE RECEIPT CHECKLIST COOLER 1 OF 1

CLIENT: GEOSYNTEC	DATE: 01/17/2018
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: +0.2°C); Temperature (w/o CF):	
Anoient Temperature. Li Air Li Tittei	Checked by. Off
CUSTODY SEAL: Cooler □ Present and Intact □ Present but Not Intact □ Not Present □ N	1/2
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete Sampling date Sampling time Matrix Number of containers	~ <i>1</i>
□ No analysis requested □ Not relinquished □ No relinquished date □ No relinquished Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition Proper containers for analyses requested Sufficient volume/mass for analyses requested Samples received within holding time Aqueous samples for certain analyses received within 15-minute holding time	
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	,
Acid/base preserved samples - pH within acceptable range Container(s) for certain analysis free of headspace	
Tedlar™ bag(s) free of condensation CONTAINER TYPE: Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ □ 100PJna₂ □ 125AGB □ 125AGBh □ 125AGBp □ 250AGB □ 250CGB □ 250CGBs (pH_2) □ 250PB □ 250PBn (pH_2) □ 500AGB □ 500AGJ □ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve () □ EnCores® () □ TerraCores® () □ Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other Matrix (/): □ Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Zip	Number:
Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ S ₂ O ₃ , p = H ₃ PO ₄ ,	

WORK ORDER NUMBER: 18-01-12/5

SAMPLE ANOMALY REPORT

DATE: 01 / 17/ 2018

SAMPLES, CONTAINERS, AND LABELS:	Comments
☐ Sample(s) NOT RECEIVED but listed on COC	
□ Sample(s) received but NOT LISTED on COC	
☐ Holding time expired (list client or ECI sample ID and analysis)	
☐ Insufficient sample amount for requested analysis (list analysis)	
☐ Improper container(s) used (list analysis)	
☐ Improper preservative used (list analysis)	
☐ pH outside acceptable range (list analysis)	
☐ No preservative noted on COC or label (list analysis and notify lab)	
☐ Sample container(s) not labeled	
☐ Client sample label(s) illegible (list container type and analysis)	
☐ Client sample label(s) do not match COC (comment)	
☐ Project information	
☐ Client sample ID	
☐ Sampling date and/or time	
☐ Number of container(s)	
☐ Requested analysis	
☐ Sample container(s) compromised (comment)	
☐ Broken	
☐ Water present in sample container	
☐ Air sample container(s) compromised (comment)	
□ Flat	
☐ Very low in volume	
☐ Leaking (not transferred; duplicate bag submitted)	
☐ Leaking (transferred into ECI Tedlar™ bags*)	
☐ Leaking (transferred into client's Tedlar™ bags*)	
* Transferred at client's request.	
MISCELLANEOUS: (Describe)	Comments
HEADSPACE:	
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis)	(Containers with bubble for other analysis)
ECI ECI Total ECI ECI Total Sample ID Container ID Number**	ECI ECI Total Sample ID Container ID Number** Requested Analysis
1 ABCD 4	
5 6, 1 6	
Comments:	
	Reported by:
** Record the total number of containers (i.e., vials or bottles) for the affected sample.	Reviewed by: _\O\\

WORK ORDER NUMBER: 18-01-1334

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: ESTCP C. Pendleton WR2274

Attention: Lea Kane

595 Market Street

Suite 610

San Francisco, CA 94105-2811

ResultLink >

Email your PM >

Approved for release on 02/02/2018 by:

Stephen Nowak Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	ESTCP C. Pendleton WR2274
----------------------	---------------------------

Work Order Number: 18-01-1334

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data	6
5	Quality Control Sample Data. 5.1 LCS/LCSD.	11 11
6	Sample Analysis Summary	15
7	Glossary of Terms and Qualifiers	16
8	Chain-of-Custody/Sample Receipt Form	17

Work Order Narrative

Work Order: 18-01-1334 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 01/18/18. They were assigned to Work Order 18-01-1334.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: Geosyntec Consultants

Work Order: Project Name: 18-01-1334

595 Market Street, Suite 610 San Francisco, CA 94105-2811

PO Number:

ESTCP C. Pendleton WR2274

- -

Date/Time Received:

01/18/18 18:30

Number of Containers:

74

Attn: Lea Kane

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
CP22-HP06-39-41	18-01-1334-1	01/18/18 08:00	6	Aqueous
F-Blank20180118	18-01-1334-2	01/18/18 16:00	2	Aqueous
E-Blank20180118	18-01-1334-3	01/18/18 14:30	2	Aqueous
T-Blank20180118	18-01-1334-4	01/18/18 13:00	2	Aqueous
DUP20180118	18-01-1334-5	01/18/18 12:00	6	Aqueous
CP22-HP08-35-37	18-01-1334-6	01/18/18 08:50	6	Aqueous
CP22-HP08-39-41	18-01-1334-7	01/18/18 09:15	6	Aqueous
CP22-HP11-35-37	18-01-1334-8	01/18/18 10:00	6	Aqueous
CP22-HP11-39-41	18-01-1334-9	01/18/18 10:35	6	Aqueous
CP22-HP07-35-37	18-01-1334-10	01/18/18 11:25	6	Aqueous
CP22-HP07-39-41	18-01-1334-11	01/18/18 11:45	6	Aqueous
CP22-HP09-35-37	18-01-1334-12	01/18/18 13:30	6	Aqueous
CP22-HP09-39-41	18-01-1334-13	01/18/18 14:00	6	Aqueous
CP22-HP09-43-45	18-01-1334-14	01/18/18 14:50	2	Aqueous
CP22-HP10-35-37	18-01-1334-15	01/18/18 15:15	6	Aqueous

Detections Summary

Client: Geosyntec Consultants

Work Order: 18-01-1334

595 Market Street, Suite 610

Project Name: ESTCP C. Pendleton WR2274

San Francisco, CA 94105-2811

Received: 01/18/18

Attn: Lea Kane Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
CP22-HP06-39-41 (18-01-1334-1)						
1,2,3-Trichloropropane	0.034		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
DUP20180118 (18-01-1334-5)				3		
Propene	2.64		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.056		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP08-35-37 (18-01-1334-6)				J		
Propene	1.05		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	1.2		0.12	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP08-39-41 (18-01-1334-7)						
Propene	1.04		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.050		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP11-35-37 (18-01-1334-8)						
1,2,3-Trichloropropane	2.6		0.25	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP11-39-41 (18-01-1334-9)						
1,2,3-Trichloropropane	0.35		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP07-35-37 (18-01-1334-10)						
1,2,3-Trichloropropane	0.20		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP07-39-41 (18-01-1334-11)						
1,2,3-Trichloropropane	0.052		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP09-35-37 (18-01-1334-12)						
1,2,3-Trichloropropane	3.0		0.25	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP09-39-41 (18-01-1334-13)						
Propene	1.63		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.14		0.010	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP10-35-37 (18-01-1334-15)						
1,2,3-Trichloropropane	3.6		0.25	ug/L	SRL 524M-TCP	EPA 5030C

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Geosyntec Consultants			Date Recei	ved:			01/18/18
595 Market Street, Suite 610			Work Order	r:			18-01-1334
San Francisco, CA 94105-2811			Preparation	n:			N/A
			Method:				RSK-175M
			Units:				ug/L
Project: ESTCP C. Pendleton WR	2274					Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP06-39-41	18-01-1334-1-D	01/18/18 08:00	Aqueous	GC 52	N/A	01/23/18 11:53	180123L03
Parameter		Result	RL	•	<u>DF</u>	Qu	alifiers
Propene		ND	1.0	00	1.00		
DUP20180118	18-01-1334-5-D	01/18/18 12:00	Aqueous	GC 52	N/A	01/23/18 12:22	180123L03
Parameter		Result	RL		<u>DF</u>	Qu	alifiers
Propene		2.64	1.0	00	1.00		
CP22-HP08-35-37	18-01-1334-6-D	01/18/18 08:50	Aqueous	GC 52	N/A	01/23/18 14:43	180123L03
Parameter		Result	RL	:	<u>DF</u>	Qu	alifiers
Propene		1.05	1.0	00	1.00		
CP22-HP08-39-41	18-01-1334-7-D	01/18/18 09:15	Aqueous	GC 52	N/A	01/23/18 15:09	180123L03
Parameter		Result	RL		<u>DF</u>	Qu	<u>alifiers</u>
Propene		1.04	1.0	00	1.00		
CP22-HP11-35-37	18-01-1334-8-D	01/18/18 10:00	Aqueous	GC 52	N/A	01/23/18 15:37	180123L03
<u>Parameter</u>		Result	RL	ī	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP11-39-41	18-01-1334-9-D	01/18/18 10:35	Aqueous	GC 52	N/A	01/23/18 16:06	180123L03
<u>Parameter</u>		Result	RL	:	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP07-35-37	18-01-1334-10-D	01/18/18 11:25	Aqueous	GC 52	N/A	01/23/18 16:39	180123L03
Parameter		Result	RL	•	<u>DF</u>	Qu	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP07-39-41	18-01-1334-11-D	01/18/18 11:45	Aqueous	GC 52	N/A	01/23/18 17:09	180123L03
Parameter		Result	RL		DF	Qu	alifiers
		ND					

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Page 2 of 2

Analytical Report

 Geosyntec Consultants
 Date Received:
 01/18/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1334

 San Francisco, CA 94105-2811
 Preparation:
 N/A

 Method:
 RSK-175M

 Units:
 ug/L

Project: ESTCP C. Pendleton WR2274

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP09-35-37	18-01-1334-12-D	01/18/18 13:30	Aqueous	GC 52	N/A	01/23/18 17:49	180123L03
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Propene		ND	1.0	0	1.00		
CP22-HP09-39-41	18-01-1334-13-D	01/18/18 14:00	Aqueous	GC 52	N/A	01/23/18 18:18	180123L03
Parameter		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	alifiers
Propene		1.63	1.0	0	1.00		
CP22-HP10-35-37	18-01-1334-15-D	01/18/18 15:15	Aqueous	GC 52	N/A	01/23/18 18:45	180123L03
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Propene		ND	1.0	0	1.00		

Method Blank	099-14-325-97	N/A	Aqueous	GC 52	N/A	01/23/18 10:55	180123L03
Parameter		Result	RL		<u>DF</u>	Quali	fiers
Propene		ND	1.0	0	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants			Date Recei	ved:			01/18/18
595 Market Street, Suite 610			Work Orde	r:			18-01-1334
San Francisco, CA 94105-2811			Preparation	n:			EPA 5030C
			Method:			S	RL 524M-TCP
			Units:				ug/L
Project: ESTCP C. Pendleton WR	2274					Pa	age 1 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP06-39-41	18-01-1334-1-C	01/18/18 08:00	Aqueous	GC/MS T	01/30/18	01/30/18 14:39	180130L016
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		0.034	0.0	0050	1.00		
F-Blank20180118	18-01-1334-2-A	01/18/18 16:00	Aqueous	GC/MS T	01/26/18	01/26/18 11:49	180126L004
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
E-Blank20180118	18-01-1334-3-A	01/18/18 14:30	Aqueous	GC/MS T	01/26/18	01/26/18 12:24	180126L004
<u>Parameter</u>		Result	RL	•	DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
T-Blank20180118	18-01-1334-4-A	01/18/18 13:00	Aqueous	GC/MS T	01/26/18	01/26/18 12:58	180126L004
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
DUP20180118	18-01-1334-5-C	01/18/18 12:00	Aqueous	GC/MS T	01/30/18	01/30/18 15:14	180130L016
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.056	0.0	0050	1.00		
CP22-HP08-35-37	18-01-1334-6-C	01/18/18 08:50	Aqueous	GC/MS T	01/30/18	01/30/18 18:08	180130L016
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		1.2	0.1	2	25.0		
CP22-HP08-39-41	18-01-1334-7-A	01/18/18 09:15	Aqueous	GC/MS T	01/26/18	01/26/18 13:33	180126L004
<u>Parameter</u>		Result	<u>RL</u>	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.050	0.0	0050	1.00		
CP22-HP11-35-37	18-01-1334-8-C	01/18/18 10:00	Aqueous	GC/MS T	01/30/18	01/30/18 18:42	180130L016
<u>Parameter</u>		Result	RL		DF	Qua	alifiers

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

1,2,3-Trichloropropane

0.25

50.0

2.6

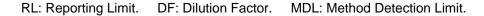
Geosyntec Consultants			Date Recei	ved:			01/18/18
595 Market Street, Suite 610			Work Orde	r:			18-01-1334
San Francisco, CA 94105-2811			Preparation	n:			EPA 5030C
			Method:			S	RL 524M-TCP
			Units:				ug/L
Project: ESTCP C. Pendleton WR	2274					Pa	ige 2 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP11-39-41	18-01-1334-9-A	01/18/18 10:35	Aqueous	GC/MS T	01/26/18	01/26/18 20:31	180126L004
Parameter	·	Result	RL	:	DF	Qua	alifiers
1,2,3-Trichloropropane		0.35	0.0)25	5.00		
CP22-HP07-35-37	18-01-1334-10-C	01/18/18 11:25	Aqueous	GC/MS T	01/30/18	01/30/18 19:17	180130L016
Parameter		Result	RL	1	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.20	0.0)25	5.00		
CP22-HP07-39-41	18-01-1334-11-C	01/18/18 11:45	Aqueous	GC/MS T	01/30/18	01/30/18 16:58	180130L016
Parameter		Result	RL	:	DF	Qua	alifiers
1,2,3-Trichloropropane		0.052	0.0	0050	1.00		
CP22-HP09-35-37	18-01-1334-12-C	01/18/18 13:30	Aqueous	GC/MS T	01/30/18	01/30/18 19:52	180130L016
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		3.0	0.2	25	50.0		
CP22-HP09-39-41	18-01-1334-13-C	01/18/18 14:00	Aqueous	GC/MS T	01/30/18	01/30/18 20:27	180130L016
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.14	0.0	010	2.00		
CP22-HP09-43-45	18-01-1334-14-A	01/18/18 14:50	Aqueous	GC/MS T	01/26/18	01/26/18 18:11	180126L004
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-HP10-35-37	18-01-1334-15-C	01/18/18 15:15	Aqueous	GC/MS T	01/31/18	01/31/18 12:56	180131L014
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		3.6	0.2	25	50.0		
Method Blank	099-10-022-1398	N/A	Aqueous	GC/MS T	01/26/18	01/26/18 11:14	180126L004
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 01/18/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1334

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C


 Method:
 SRL 524M-TCP

 Units:
 ug/L

Project: ESTCP C. Pendleton WR2274 Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-022-1400	N/A	Aqueous	GC/MS T	01/30/18	01/30/18 12:16	180130L016
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
Method Blank	099-10-022-1402	N/A	Aqueous	GC/MS T	01/31/18	01/31/18	180131L014

Method Blank	099-10-022-1402	N/A	Aqueous GC/MS T	01/31/18	01/31/18 12:21	180131L014
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0050	1.00		

01/18/18

18-01-1334

Quality Control - LCS/LCSD

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Date Received:

Work Order:

Preparation:

Preparation: N/A Method: RSK-175M

Project: ESTCP C. Pendleton WR2274 Page 1 of 4

Quality Control Sample ID	Туре	Mati	rix	Instrument	Date Prep	ared Date	Analyzed	LCS/LCSD B	atch Number
099-14-325-97	LCS	Aqu	eous	GC 52	N/A	01/2	3/18 09:37	180123L03	
099-14-325-97	LCSD	Aqu	eous	GC 52	N/A	01/2	3/18 10:13	180123L03	
Parameter	Spike Added LC	S Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Propene	103.0 103	3.7	101	103.8	101	80-120	0	0-20	

Quality Control - LCS/LCSD

Geosyntec Consultants

Date Received:

01/18/18

595 Market Street, Suite 610

Work Order:

18-01-1334

San Francisco, CA 94105-2811

Preparation:


EPA 5030C

Method:

SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 2 of 4

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	tch Number
099-10-022-1398	LCS	Aqı	ieous	GC/MS T	01/26/18	01/26	6/18 10:04	180126L004	
099-10-022-1398	LCSD	Aqı	ieous	GC/MS T	01/26/18	01/26	6/18 10:39	180126L004	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.004700	94	0.005200	104	80-120	10	0-20	

Quality Control - LCS/LCSD

Geosyntec Consultants

Date Received:

01/18/18

595 Market Street, Suite 610

Work Order:

18-01-1334

San Francisco, CA 94105-2811

Preparation:

EPA 5030C

Method:

SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 3 of 4

Quality Control Sample ID	Type	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1400	LCS	Aqı	ieous	GC/MS T	01/30/18	01/3	0/18 10:59	180130L016	
099-10-022-1400	LCSD	Aqı	ieous	GC/MS T	01/30/18	01/3	0/18 11:34	180130L016	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.004600	92	0.004400	88	80-120	4	0-20	

Quality Control - LCS/LCSD

Geosyntec Consultants

Date Received:

01/18/18

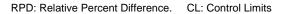
595 Market Street, Suite 610

Work Order:

18-01-1334

San Francisco, CA 94105-2811

Preparation:


EPA 5030C

Method:

SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 4 of 4

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1402	LCS	Aqı	ieous	GC/MS T	01/31/18	01/3	1/18 10:26	180131L014	
099-10-022-1402	LCSD	Aqı	ieous	GC/MS T	01/31/18	01/3	1/18 11:46	180131L014	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.004500	90	0.004300	86	80-120	5	0-20	

Sample Analysis Summary Report

Work Order: 18-01-1334				Page 1 of 1
Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
RSK-175M	N/A	748	GC 52	2
RSK-175M	N/A	1144	GC 52	2
SRL 524M-TCP	EPA 5030C	867	GC/MS T	2

Glossary of Terms and Qualifiers

Work Order: 18-01-1334 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Document Number:, 11406

18-01-1334

Analysis Request and Chain of Custody Record

NACAN.	Project Number U 6.2374	 	The state of the s		Redu	Required Analyses		Page 1 of 2	2
Samplers Names	Project Contac	it Kens ©as	Surefue Com	TO CONTRACT TO CON	ai.	-	The state of the s		
Laboratory Name	Lab Contact			3510	ins.	~SK		White copy: to accompany samples	ny samples
Lab Address	Lab Phone				705 \$	פול - ב		Yellow conyr field ropy	7007
	Carrier/Waybill No.	No.		VOCs Syoce	্ৰ ধ্য	57			
				Bottle		Type and Volume/Preservative	tive		lab Use
									Only
,	4	9	Sample						Condition of
Sample Name	Date	Ime	Type		Numbe	Number of Containers		Comments	Bottles
CP22-HPO6-39-41	1/18/2018	రిశింత	Wako		~	3			
2 F-Blank 20180119		1600	-	-	۲				
3 E-Blank 2018		1430			7				
4 T-6 lank 2018		300			۲				
5 DVP2018		97			3	~			
6 CA22-HO8-35-37		0820			Μ	~			
7 CP22 - HP08-39-41		०११५			~	~			
8 COW- HP11-55-37		(000			M	3			
9 CD22- HP11- 39-41	·	1035			2	3			
10 CP22- HP07-35-37		77.11			~	M			
CD22-4P07-39-41		1145			~	~			
12 CP 22- HPO9-35-37	>	1330	>		N	3			
Special Instructions:								Turn-around Time:	
	,					•		✓ Normal □ Rush:	
1. Relinquished by			Date	81/81/1	1. Re	1. Received by	2	Date (Date 01/18/18
(Signiture/Affiliation)		***************************************	Time	909	(Signitur	(Signiture/Affiliation)		- GC Time	1600 600
2. Relinquished by	4		Date O	10000000	2. Re	Received by	. (1	Date	1/18/18
(Signiture/Affiliation)		Applications	Time	(8,30	(Signitur	(Signiture/Affiliation)) Lime	(183%

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 Geosyntec[♥]

Time Date

3. Relinquished by (Signiture/Affiliation)

consultants

3. Received by (Signiture/Affiliation)

Date Time

(234)	Page 2 of 2	White copy: to accompany samples	Yellow copy: field copy	3 3	Comments Bottles									lage	18 (# 20	
uest and Chain of Custody Record	Required Analyses	WS.	Metals VOCs by	Bottle Type and Vo		2 5	3 3										10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 Return to Contents
Analysis Reque	най-конология реализация (предоставляющей предоставляющей предоставляющей предоставляющей предоставляющей пред			Sample	Appe) - -	 >	de esta basis num secretificacion control de	AND THE PROPERTY OF THE PROPER			Cities at a second construction of the second co	ADDRAFT ALL ADDRAFTS AND ADDRAF	makan andoksisisisisisisisisisisisisisisisisisisi			uite 200, San E
Te V	не ен папизелендативалендализми двигизми двигизм		mber 22	Į-	E .	1450	اداد		HISTORY HAVE AND ADDRESS OF THE PARTY OF THE					Wilderson Control of C			rdo Road, S
	та <i>да</i> преведения подавания подаван		Project Number		Date	81/81/1	->	***************************************						mayasaanaahaa garaanaayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy			ancho Berna
		Continued from Document Number:	Project Name ESRP C. Pensleten			(4 CP22 - HP09 - 59-4)	5 CO22 - HP10 - 55-37			ладаналина (адам) от пенева (адам) от п							Geosyntec [©] 10875 Raconsultants

Page 19 of 20 WORK ORDER NUMBER: 18-01-1354

SAMPLE RECEIPT CHECKLIST

coc	DLER .		_OF	
ATE:	01 /	18	/ 20	18

CLIENT: (JEOSYNTEC DAT	E: <u> </u>	<u>8/2010</u>
TEMPERATURE: (Criteria: 0.0°C − 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: +0.2°C); Temperature (w/o CF):°C (w/ CF):°C; □ Sample(s) outside temperature criteria (PM/APM contacted by:)	Blank	□ Sample
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling ☐ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: ☐ Air ☐ Filter	Checked	by: <u>671</u>
CUSTODY SEAL: Cooler □ Present and Intact □ Present but Not Intact □ Not Present □ N/A	Checked	by: <u>671</u>
Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A		by: 836
SAMPLE CONDITION:	Yes	No N/A
Chain-of-Custody (COC) document(s) received with samples		
COC document(s) received complete	9	
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers	,	
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished tim	е	
Sampler's name indicated on COC		
Sample container label(s) consistent with COC	🗹	
Sample container(s) intact and in good condition	🗷	
Proper containers for analyses requested	🗷	
Sufficient volume/mass for analyses requested	🗷	
Samples received within holding time	💆	
Aqueous samples for certain analyses received within 15-minute holding time		d
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	🗆 /	
Proper preservation chemical(s) noted on COC and/or sample container		
Unpreserved aqueous sample(s) received for certain analyses		
□ Volatile Organics □ Total Metals □ Dissolved Metals		
Acid/base preserved samples - pH within acceptable range	🗆	
Container(s) for certain analysis free of headspace	□	ø o
Volatile Organics Dissolved Gases (RSK-175) Dissolved Oxygen (SM 4500)		
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)		
Tedlar™ bag(s) free of condensation	🗆	
CONTAINER TYPE: (Trip Blank Lot Num		1/0A
Aqueous: UVOA VOAh UVOAna2 U 100PJ U 100PJna2 U 125AGB U 125AGBh U 125AGBp U 125	5PB □ 125P	B znna (pH <u></u> 9)
☐ 250AGB ☐ 250CGB ☐ 250CGBs (pH_2) ☐ 250PB ☐ 250PBn (pH_2) ☐ 500AGB ☐ 500AGJ ☐ 500.	AGJs (pH2	2) 🗆 500PB
☐ 1AGB ☐ 1AGBna₂ ☐ 1AGBs (pH_2) ☐ 1AGBs (O&G) ☐ 1PB ☐ 1PBna (pH_12) ☐ ☐		
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () EnCores® () TerraCores® ()	□	U
Air: ☐ Tedlar™ ☐ Canister ☐ Sorbent Tube ☐ PUF ☐ Other Matrix (): ☐		
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/R	esealable Ba	g 836
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Zipiocrk Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ S ₂ O ₃ , p = H ₃ PO ₄ , Labe	lea/Unecke	J by:
$s = H_2SO_4$, $u = ultra-pure$, $x = Na_2SO_3+NaHSO_4$. H_2O , $znna = Zn (CH_3CO_2)_2 + NaOH$	Keviewe	d by: <u>778</u>

Page 20 of 20 WORK ORDER NUMBER: 18-01-/334

SAMPLE ANOMALY REPORT

DATE: 01 //8 / 2018

그 사용하다 사람이다. 그렇게 가게 가게 살아가는 살아가는 그 그래요? 그리고	
SAMPLES, CONTAINERS, AND LABELS:	Comments
☐ Sample(s) NOT RECEIVED but listed on COC	
☐ Sample(s) received but NOT LISTED on COC	
☐ Holding time expired (list client or ECI sample ID and analysis)	
☐ Insufficient sample amount for requested analysis (list analysis)	
☐ Improper container(s) used (list analysis)	
☐ Improper preservative used (list analysis)	
□ pH outside acceptable range (list analysis)	
☐ No preservative noted on COC or label (list analysis and notify lab)	
☐ Sample container(s) not labeled	
☐ Client sample label(s) illegible (list container type and analysis)	
☐ Client sample label(s) do not match COC (comment)	
☐ Project information	
☐ Client sample ID	
☐ Sampling date and/or time	
☐ Number of container(s)	
☐ Requested analysis	
☐ Sample container(s) compromised (comment)	
☐ Broken	
☐ Water present in sample container	
☐ Air sample container(s) compromised (comment)	
□ Flat	
☐ Very low in volume	
☐ Leaking (not transferred; duplicate bag submitted)	
□ Leaking (transferred into ECI Tedlar™ bags*)	
☐ Leaking (transferred into client's Tedlar™ bags*)	
* Transferred at client's request.	
MISCELLANEOUS: (Describe)	Comments
HEADSPACE:	
(Containers with bubble > 6 mm or 1/4 inch for volatile organic or dissolved gas analysis)	(Containers with bubble for other analysis)
ECI ECI Total ECI ECI Total Sample ID Container ID Number**	ECI ECI Total Sample ID Container ID Number** Requested Analysi
Sample to Container to Hames.	
6 GEF 6	
10 E.F 6	

WORK ORDER NUMBER: 18-01-1447

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: ESTCP C. Pendleton WR2274

Attention: Lea Kane

595 Market Street

Suite 610

San Francisco, CA 94105-2811

ResultLink >

Email your PM >

Approved for release on 02/06/2018 by: Stephen Nowak

Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	FSTCP C. Pendleton WR2274

Work Order Number: 18-01-1447

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 RSK-175M (Aqueous). 4.1 RSK-175M (Aqueous). 4.2 EPA 300.0 Anions (Aqueous). 4.3 EPA 200.7 ICP Metals (Aqueous).	6 6 7 8
	4.4 SRL 524M-TCP 1,2,3-Trichloropropane (Aqueous)	9
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.	11 11 13
6	Sample Analysis Summary	19
7	Glossary of Terms and Qualifiers	20
8	Chain-of-Custody/Sample Receipt Form	21

Work Order Narrative

Work Order: 18-01-1447 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 01/19/18. They were assigned to Work Order 18-01-1447.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: Geosyntec Consultants

595 Market Street, Suite 610 Project Name:

PO Number: San Francisco, CA 94105-2811

Date/Time

Work Order:

Received:

Containers:

18-01-1447

ESTCP C. Pendleton WR2274

01/19/18 19:00

50

Number of

Lea Kane Attn:

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
220205-MWX	18-01-1447-1	01/19/18 10:13	8	Aqueous
CP22-MW04	18-01-1447-2	01/19/18 11:45	8	Aqueous
CP22-PMW07B	18-01-1447-3	01/19/18 08:29	8	Aqueous
CP22-PMW08	18-01-1447-4	01/19/18 09:29	8	Aqueous
CP22-PMW10B	18-01-1447-5	01/19/18 10:59	8	Aqueous
DUP-BT-20180119	18-01-1447-6	01/19/18 09:00	8	Aqueous
EB-BT-20180119	18-01-1447-7	01/19/18 11:10	2	Aqueous

Detections Summary

Project Name:

Client: Geosyntec Consultants

Work Order: 18-01-1447

595 Market Street, Suite 610

ESTCP C. Pendleton WR2274

San Francisco, CA 94105-2811

Received: 01/19/18

Attn: Lea Kane Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
220205-MWX (18-01-1447-1)						
Sulfate	98		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	5.7		0.50	ug/L	SRL 524M-TCP	EPA 5030C
CP22-MW04 (18-01-1447-2)						
Sulfate	87		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.037		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-PMW07B (18-01-1447-3)						
Sulfate	97		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.014		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-PMW08 (18-01-1447-4)						
Sulfate	110		2.0	mg/L	EPA 300.0	N/A
CP22-PMW10B (18-01-1447-5)						
Sulfate	1.6		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.0073		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
DUP-BT-20180119 (18-01-1447-6)						
Sulfate	87		1.0	mg/L	EPA 300.0	N/A
1,2,3-Trichloropropane	0.039		0.0050	ug/L	SRL 524M-TCP	EPA 5030C

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

01/19/18

Geosyntec Consultants

Analytical Report

Date Received:

Geosyntec Consultants			Date Hood	vou.			01/15/10
595 Market Street, Suite 610			Work Orde	r:			18-01-1447
San Francisco, CA 94105-2811			Preparation	n:			N/A
•			Method:				RSK-175N
			Units:				ug/L
Project: ESTCP C. Pendleton WF	R2274					Pa	age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
220205-MWX	18-01-1447-1-D	01/19/18 10:13	Aqueous	GC 61	N/A	01/24/18 11:33	180124L02
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-MW04	18-01-1447-2-D	01/19/18 11:45	Aqueous	GC 61	N/A	01/24/18 12:01	180124L02
Parameter		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-PMW07B	18-01-1447-3-D	01/19/18 08:29	Aqueous	GC 61	N/A	01/24/18 12:30	180124L02
Parameter		Result	RL	•	<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-PMW08	18-01-1447-4-D	01/19/18 09:29	Aqueous	GC 61	N/A	01/24/18 18:24	180124L02
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-PMW10B	18-01-1447-5-D	01/19/18 10:59	Aqueous	GC 61	N/A	01/24/18 18:51	180124L02
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
DUP-BT-20180119	18-01-1447-6-D	01/19/18 09:00	Aqueous	GC 61	N/A	01/24/18 19:52	180124L02
Parameter		Result	RL		DF	Qua	alifiers
Propene		ND	1.0	00	1.00		
Method Blank	099-14-325-98	N/A	Aqueous	GC 61	N/A	01/24/18 10:54	180124L02
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants			Date Receiv	ved:			01/19/18
595 Market Street, Suite 610			Work Order	:			18-01-1447
San Francisco, CA 94105-2811			Preparation	:			N/A
			Method:				EPA 300.0
			Units:				mg/L
Project: ESTCP C. Pendleton WR	2274		Ornio.			Da	age 1 of 1
- C. T. endleton With						1 6	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
220205-MWX	18-01-1447-1-G	01/19/18 10:13	Aqueous	IC 15	N/A	01/20/18 17:12	180120L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Sulfate		98	1.0		1.00		
CP22-MW04	18-01-1447-2-G	01/19/18 11:45	Aqueous	IC 15	N/A	01/20/18 17:30	180120L01
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Sulfate		87	1.0		1.00		
CP22-PMW07B	18-01-1447-3-G	01/19/18 08:29	Aqueous	IC 15	N/A	01/20/18 17:48	180120L01
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Sulfate		97	1.0		1.00		
CP22-PMW08	18-01-1447-4-G	01/19/18 09:29	Aqueous	IC 15	N/A	01/22/18 11:52	180122L01
Parameter		Result	RL	•	<u>DF</u>	Qua	alifiers
Sulfate		110	2.0		2.00		
CP22-PMW10B	18-01-1447-5-G	01/19/18 10:59	Aqueous	IC 15	N/A	01/20/18 18:25	180120L01
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Sulfate		1.6	1.0		1.00		
DUP-BT-20180119	18-01-1447-6-G	01/19/18 09:00	Aqueous	IC 15	N/A	01/20/18 18:44	180120L01
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Sulfate		87	1.0		1.00		
Method Blank	099-12-906-8195	N/A	Aqueous	IC 15	N/A	01/20/18 11:30	180120L01
Parameter		Result	RL		DF	Qua	alifiers
Sulfate		ND	1.0		1.00		
Method Blank	099-12-906-8205	N/A	Aqueous	IC 15	N/A	01/22/18 09:59	180122L01
Parameter		Result	RL		<u>DF</u>	Qua	alifiers

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Sulfate

1.0

1.00

ND

01/19/18

Geosyntec Consultants

Zinc

Zinc

Method Blank

Parameter

Analytical Report

Date Received:

Work Order: 18-01-1447 595 Market Street, Suite 610 Preparation: Filtered San Francisco, CA 94105-2811 Method: EPA 200.7 Units: mg/L Project: ESTCP C. Pendleton WR2274 Page 1 of 1 QC Batch ID Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time Prepared Number Collected Analyzed 01/19/18 10:13 01/24/18 13:25 220205-MWX 18-01-1447-1-H Aqueous **ICP 7300** 01/20/18 180123LA4 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND Zinc 0.0100 1.00 CP22-MW04 18-01-1447-2-H 01/19/18 01/20/18 01/24/18 180123LA4 Aqueous **ICP 7300** 11:45 12:46 Qualifiers Result <u>RL</u> DF <u>Parameter</u> Zinc ND 0.0100 1.00 CP22-PMW07B 18-01-1447-3-H 01/19/18 **ICP 7300** 01/20/18 01/24/18 180123LA4 Aqueous 08:29 12:48 RL DF <u>Parameter</u> Result Qualifiers Zinc ND 0.0100 1.00 CP22-PMW08 18-01-1447-4-H 01/19/18 **ICP 7300** 01/20/18 01/24/18 180123LA4 Aqueous 09:29 12:49 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers Zinc ND 0.0100 1.00 CP22-PMW10B 18-01-1447-5-H 01/19/18 Aqueous **ICP 7300** 01/20/18 01/24/18 180123LA4 10:59 12:50 <u>Parameter</u> Result <u>RL</u> DF Qualifiers Zinc ND 0.0100 1.00 01/19/18 09:00 01/24/18 12:51 DUP-BT-20180119 18-01-1447-6-H 01/20/18 180123LA4 Aqueous **ICP 7300** Result <u>RL</u> <u>DF</u> Qualifiers <u>Parameter</u>

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

099-14-304-686

ND

N/A

Result

ND

0.0100

<u>RL</u>

0.0100

Aqueous

ICP 7300

1.00

01/23/18

<u>DF</u>

1.00

01/24/18 11:45 180123LA4

Qualifiers

Geosyntec Consultants			Date Recei	ved:			01/19/18
595 Market Street, Suite 610			Work Orde	r:			18-01-1447
San Francisco, CA 94105-2811			Preparation	n:			EPA 5030C
			Method:			S	RL 524M-TCP
			Units:				ug/L
Project: ESTCP C. Pendleton WR	2274					Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
220205-MWX	18-01-1447-1-A	01/19/18 10:13	Aqueous	GC/MS T	01/31/18	02/01/18 03:58	180131L014
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		5.7	0.5	50	100		
CP22-MW04	18-01-1447-2-A	01/19/18 11:45	Aqueous	GC/MS T	01/31/18	02/01/18 03:24	180131L014
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.037	0.0	0050	1.00		
CP22-PMW07B	18-01-1447-3-A	01/19/18 08:29	Aqueous	GC/MS T	01/31/18	01/31/18 21:36	180131L014
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		0.014	0.0	0050	1.00		
CP22-PMW08	18-01-1447-4-A	01/19/18 09:29	Aqueous	GC/MS T	01/31/18	01/31/18 22:11	180131L014
Parameter		Result	RL		DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-PMW10B	18-01-1447-5-A	01/19/18 10:59	Aqueous	GC/MS T	01/31/18	01/31/18 22:46	180131L014
<u>Parameter</u>		Result	<u>RL</u>	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.0073	0.0	0050	1.00		
DUP-BT-20180119	18-01-1447-6-B	01/19/18 09:00	Aqueous	GC/MS T	02/01/18	02/01/18 13:45	180201L001
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		0.039	0.0	0050	1.00		
EB-BT-20180119	18-01-1447-7-A	01/19/18 11:10	Aqueous	GC/MS T	01/31/18	01/31/18 21:01	180131L014
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
Method Blank	099-10-022-1402	N/A	Aqueous	GC/MS T	01/31/18	01/31/18 12:21	180131L014
Parameter		Result	RL		DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 01/19/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1447

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 SRL 524M-TCP

 Units:
 ug/L

Project: ESTCP C. Pendleton WR2274 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-022-1403 N/A		Aqueous	GC/MS T	02/01/18	02/01/18 12:33	180201L001
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		

Quality Control - Spike/Spike Duplicate

Geosyntec Consultants

Date Received:

01/19/18

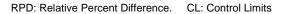
595 Market Street, Suite 610

Work Order:

18-01-1447

San Francisco, CA 94105-2811

Preparation:


N/A

Method:

EPA 300.0

Project: ESTCP C. Pendleton WR2274 Page 1 of 2

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
18-01-1439-4	Sample		Aqueou	s IC	C 15	N/A	01/20/18	15:11	180120S01	
18-01-1439-4	Matrix Spike		Aqueou	s IC	C 15	N/A	01/20/18	15:29	180120S01	
18-01-1439-4	Matrix Spike I	Matrix Spike Duplicate		Aqueous IC 15		N/A	01/20/18	15:48	180120S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Sulfate	85.59	50.00	147.0	123	146.4	122	80-120	0	0-20	3

Quality Control - Spike/Spike Duplicate

Geosyntec Consultants

595 Market Street, Suite 610

Work Order:

San Francisco, CA 94105-2811

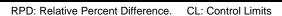
Preparation:

Method:

Date Received:

01/19/18

18-01-1447


Filtered

Method:

EPA 200.7

Project: ESTCP C. Pendleton WR2274 Page 2 of 2

Quality Control Sample ID	Type		Matrix	Ir	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
18-01-1234-1	Sample		Aqueou	s IC	CP 7300	01/23/18	01/24/18	12:11	180123SA4	
18-01-1234-1	Matrix Spike		Aqueou	s IC	CP 7300	01/23/18	01/24/18	12:14	180123SA4	
18-01-1234-1	Matrix Spike Duplicate		Aqueous		CP 7300	01/23/18	01/24/18	12:15	180123SA4	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	0.04056	0.5000	0.5382	100	0.5504	102	80-120	2	0-20	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 01/19/18 18-01-1447 N/A

RSK-175M

Project: ESTCP C. Pendleton WR2274

Page 1 of 6

Quality Control Sample ID	Туре	Ma	trix	Instrument	Date Prep	ared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-14-325-98	LCS	Aqı	ueous	GC 61	N/A	01/2	4/18 09:45	180124L02	
099-14-325-98	LCSD	Aqı	ueous	GC 61	N/A	01/2	4/18 10:14	180124L02	
<u>Parameter</u>	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Propene	103.0	97.51	95	97.86	95	80-120	0	0-20	

Geosyntec Consultants
595 Market Street, Suite 610
San Francisco, CA 94105-2811

Date Received: Work Order: Preparation: Method:

18-01-1447 N/A

01/19/18

EPA 300.0

Project: ESTCP C. Pendleton WR2274

Page 2 of 6

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date Prepa	ared Date	Analyzed	LCS/LCSD Ba	atch Number
099-12-906-8195	LCS	Aqı	ueous	IC 15	N/A	01/20	0/18 11:48	180120L01	
099-12-906-8195	LCSD	Aqı	ueous	IC 15	N/A	01/20	0/18 12:07	180120L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Sulfate	50.00	50.37	101	50.18	100	90-110	0	0-15	

Geosyntec Consultants
595 Market Street, Suite 610
San Francisco, CA 94105-2811

Date Received:
Work Order:
Preparation:
Method:

18-01-1447 N/A

EPA 300.0

01/19/18

Page 3 of 6

Project: ESTCP C. Pendleton WR2274

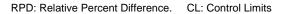
Quality Control Sample ID	Туре	e Matrix		Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Batch Number	
099-12-906-8205	LCS	Aqı	ieous	IC 15	N/A	01/2	2/18 10:17	180122L01	
099-12-906-8205	LCSD	Aqı	ieous	IC 15	N/A	01/2	22/18 10:35	180122L01	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Sulfate	50.00	48.88	98	50.08	100	90-110	2	0-15	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 01/19/18 18-01-1447 Filtered EPA 200.7

Project: ESTCP C. Pendleton WR2274 Page 4 of 6


Quality Control Sample ID	Type	Matrix	Instrument [Date Prepared	Date Analyzed	LCS Batch Number
099-14-304-686	LCS	Aqueous	ICP 7300	01/23/18	01/24/18 11:46	180123LA4
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Zinc		0.5000	0.5308	106	85-11	5

Geosyntec ConsultantsDate Received:01/19/18595 Market Street, Suite 610Work Order:18-01-1447San Francisco, CA 94105-2811Preparation:EPA 5030CMethod:SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 5 of 6

Quality Control Sample ID	Type	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1402	LCS	Aqı	ieous	GC/MS T	01/31/18	01/3	1/18 10:26	180131L014	
099-10-022-1402	LCSD	Aqu	ieous	GC/MS T	01/31/18	01/3	1/18 11:46	180131L014	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.004500	90	0.004300	86	80-120	5	0-20	

Geosyntec Consultants

Date Received:

01/19/18

595 Market Street, Suite 610

Work Order:

18-01-1447

San Francisco, CA 94105-2811

Preparation:

EPA 5030C

Method:

SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 6 of 6

Quality Control Sample ID	Type Ma		rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Batch Number	
099-10-022-1403	LCS	Aqı	ieous	GC/MS T	02/01/18	02/0	1/18 11:24	180201L001	
099-10-022-1403	LCSD	Aqı	ieous	GC/MS T	02/01/18	02/0	1/18 11:58	180201L001	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.004800	96	0.004300	86	80-120	11	0-20	

RPD: Relative Percent Difference. CL: Control Limits

Sample Analysis Summary Report

Work Order: 18-01-1447	Page 1 of 1			
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 200.7	Filtered	935	ICP 7300	1
EPA 300.0	N/A	834	IC 15	1
RSK-175M	N/A	748	GC 61	2
RSK-175M	N/A	1144	GC 61	2
SRL 524M-TCP	EPA 5030C	867	GC/MS T	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 18-01-1447 Page 1 of 1

Qualifiers	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
	Greater than the indicated value.
>	
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

Χ % Recovery and/or RPD out-of-range.

The sample extract was subjected to Silica Gel treatment prior to analysis.

SG

Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

> Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

> Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Document Number:, 11403

18-01-1447

Analysis Request and Chain of Custody Record

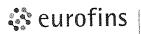
Condition of Lab Use Bottles White copy: to accompany samples Only 81/61/1 Yellow copy: field copy Page ____ of ___ Date O ☐ Rush: Time Date Time Turn-around Time: Comments Normal Normal Bottle Type and Volume/Preservative Number of Containers _૮4 અને/_~ર _{0.60}દ A93 Required Analyses 1. Received by 2. Received by (Signiture/Affiliation) (Signiture/Affiliation) 3 60 60 3 ζO 127-MISS 192 1 3 3 ć 50 3 SVOCs by 8270 81-61-10 Metals 725 **NOCS DX** Date Time Date Time Sample Variable Type Vedo Special Instructions: LAB FILTER FOR EN 200, 7 1013 0829 88 0929 1145 9201 011 1. Relinquished by Heldeing Tech Carrier/Waybill No. Project Number Project Contact Lab Contact S. Bourse 81-01-10 Lab Phone Date DUP-BT-20180119 22020B-MWX CP22-PMWOTB EB-6T-20180119 2922-PMW10B 622-PMW08 Sample Name CP12-moot Relinquished by ESTRP C. Perstering Signiture/Affiliation) Rem Campbul-aboratory Name Colscience roject Name ab Address

10875 Ráncho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586

Time

Date

3. Received by


Date C Time

3. Relinquished by

(Signiture/Affiliation)

Geosyntec[©]

(Signiture/Affiliation)

Calscience

WORK ORDER NUMBER: 18-01-149

SAMPLE RECEIPT CHECKLIST

COOLER _ | OF _ |

CLIENT: GEOSYNTEC DATI	E: <u>01/</u> 1	9/2018
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: +0.2°C); Temperature (w/o CF):		□ Sample
CUSTODY SEAL:		· 671
Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A		by: 671 by: 1140
SAMPLE CONDITION:	Yes	No N/A
Chain-of-Custody (COC) document(s) received with samples	. /	
COC document(s) received complete		
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers		
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished time	Э	
Sampler's name indicated on COC		
Sample container label(s) consistent with COC		
Sample container(s) intact and in good condition		
Proper containers for analyses requested		
Sufficient volume/mass for analyses requested		
Samples received within holding time	🖟	
Aqueous samples for certain analyses received within 15-minute holding time		
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	🗆	
Proper preservation chemical(s) noted on COC and/or sample container	🗷	
Unpreserved aqueous sample(s) received for certain analyses Unpreserved aqueous sample(s) received for certain analyses Dissolved Metals		
Acid/base preserved samples - pH within acceptable range	🗆	
Container(s) for certain analysis free of headspace	🗾	
Volatile Organics Dissolved Gases (RSK-175) Dissolved Oxygen (SM 4500)	-	
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)		
Tedlar™ bag(s) free of condensation	🗆	
(Tata Diamis Lat Norma)		,
CONTAINER TYPE: Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ □ 100PJna₂ □ 125AGB □ 125AGBh □ 125AGBp □ 125 □ 250AGB □ 250CGB □ 250CGBs (pH_2) □ 250PB □ 250PBn (pH_2) □ 500AGB □ 500AGJ □ 500A □ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □ □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve () □ EnCores® () □ TerraCores® () □ Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other Matrix (): □	5PB 🗆 125P AGJs (pH2 🗆	Bznna (pH9) 2)
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Re	esealable Ba	g
Preservative: $b = buffered$, $f = filtered$, $h = HCl$, $n = HNO_3$, $na = NaOH$, $na_2 = Na_2S_2O_3$, $p = H_3PO_4$, Label	led/Checked	d by: <u>1[40</u>
$s = H_2SO_4$, $u = ultra-pure$, $x = Na_2SO_3+NaHSO_4$, H_2O_1 , $znna = Zn (CH_3CO_2)_2 + NaOH$	Reviewe	d by: <u>/17</u>

Calscience

SAMPLE ANOMALY REPORT

DATE: 01/19/2018

											
SAMPLES	S, CONTAIN	ERS, AN	D LABELS	3 :		Commer	nts				
☐ Sample(s) NOT RECE	IVED but	listed on CC	C							
☐ Sample(s) received bu	it NOT LIS	TED on CC	C		***************************************		•			
☐ Holding	time expired (I	list client o	r ECI samp	le ID and ana	lysis)	***************************************		·····			
☐ Insufficie	ent sample am	ount for re	equested an	alysis (list ana	alysis)						
☐ Imprope	r container(s)	used (list a	analysis)					<u> </u>			
☐ Imprope	r preservative	used (list	analysis)			(-2)	Labelea	d as:			
□ pH outsi	de acceptable	range (lis	t analysis)			CP	CP22-PMW04				
☐ No prese	ervative noted	on COC o	r label (list	analysis and r	notify lab)	(do	(date/time matched)				
☐ Sample	container(s) n	ot labeled						······································			
☐ Client sa	mple label(s)	illegible (li	st container	type and ana	ılysis)						
Client sa	mple label(s)	do not ma	tch COC (co	omment)							
□ Proje	ct information										
☑ Clien	t sample ID										
☐ Sam	oling date and	or time									
□ Num	per of containe	er(s)									
□ Requ	ested analysis	s				***************************************					
□ Sample	container(s) c	ompromise	ed (commer	nt)							
☐ Broke	en										
□ Wate	r present in sa	ample con	tainer								
☐ Air samp	le container(s	s) compron	nised (comn	nent)							
□ Flat											
□ Very	low in volume	•						·			
□ Leak	ing (not transf	erred; dup	licate bag s	ubmitted)							
☐ Leak	ing (transferre	d into ECI	Tedlar™ ba	ags*)							
☐ Leak	ing (transferre	d into clier	nt's Tedlar™	⁴ bags*)							
* Transfer	red at client's requ	uest.									
MISCELL	ANEOUS: (E	Describe)				Commer	nts				
	•	,									
HEADSP	ΛCΕ·										
	th bubble > 6 mm	or ¼ inch for	volatile organi	c or dissolved gas	s analysis)	(Containers wi	th bubble for othe	er analysis)			
ECI	ECI	Total	ECI	ECI	Total	ECI	ECI	Total			
Sample ID	Container ID	Number**	Sample ID	Container ID	Number**	Sample ID	Container ID	Number**	Requested Analysis		
		<u> </u>									
		<u> </u>									
			<u> </u>								
Comments	•								íls, A		
								F	Reported by: 1140		
** Record the	total number of co	ontainers (i.e.	, vials or bottles	s) for the affected	sample.			R	eviewed by: 417		

Calscience

WORK ORDER NUMBER: 18-01-1452

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: ESTCP C. Pendleton WR2274

Attention: Lea Kane

595 Market Street

Suite 610

San Francisco, CA 94105-2811

Email your PM >

ResultLink >

Approved for release on 02/06/2018 by: Stephen Nowak

Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	ESTCP C. Pendleton WR2274
----------------------	---------------------------

Work Order Number: 18-01-1452

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 RSK-175M (Aqueous). 4.2 EPA 8015B (M) C6-C44 (Solid). 4.3 EPA 8015B (M) C6-C44 (Aqueous). 4.4 EPA 6010B/7471A CAC Title 22 Metals (Solid). 4.5 EPA 6010B/7470A CAC Title 22 Metals (Aqueous). 4.6 EPA 7470A Mercury (Aqueous). 4.7 EPA 7471A Mercury (Solid). 4.8 EPA 8260B Volatile Organics (Solid). 4.9 EPA 8260B Volatile Organics (Aqueous). 4.10 SRL 524M-TCP 1,2,3-Trichloropropane (Aqueous).	7 9 11 13 15 17 18 19 23 29
5	Quality Control Sample Data. 5.1 MS/MSD. 5.2 PDS/PDSD. 5.3 LCS/LCSD.	31 31 38 39
6	Sample Analysis Summary	54
7	Glossary of Terms and Qualifiers	55
8	Chain-of-Custody/Sample Receipt Form	56

Work Order Narrative

Work Order: 18-01-1452 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 01/19/18. They were assigned to Work Order 18-01-1452.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

ESTCP C. Pendleton WR2274

18-01-1452

Sample Summary

Work Order:

Client: Geosyntec Consultants

595 Market Street, Suite 610 Project Name:

San Francisco, CA 94105-2811 PO Number:

Date/Time 01/19/18 19:00

Received:

Number of 78

Containers:

Attn: Lea Kane

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
CP22-HP10-39-41	18-01-1452-1	01/19/18 07:30	6	Aqueous
CP22-HP10-43-45	18-01-1452-2	01/19/18 08:10	6	Aqueous
CP22-HP12-35-37	18-01-1452-3	01/19/18 08:50	6	Aqueous
CP22-HP12-39-41	18-01-1452-4	01/19/18 09:10	6	Aqueous
CP22-HP04-35-37	18-01-1452-5	01/19/18 09:50	6	Aqueous
CP22-HP04-39-41	18-01-1452-6	01/19/18 10:25	6	Aqueous
CP22-HP04-43-45	18-01-1452-7	01/19/18 11:05	6	Aqueous
CP22-HP05-35-37	18-01-1452-8	01/19/18 11:47	6	Aqueous
CP22-HP05-39-41	18-01-1452-9	01/19/18 12:05	6	Aqueous
DUP20180119	18-01-1452-10	01/19/18 12:00	6	Aqueous
CP22-HP05-43-45	18-01-1452-11	01/19/18 12:40	6	Aqueous
T-Blank20180119	18-01-1452-12	01/19/18 10:30	2	Aqueous
E-Blank20180119	18-01-1452-13	01/19/18 12:25	2	Aqueous
F-Blank20180119	18-01-1452-14	01/19/18 10:40	2	Aqueous
IDW-Soil-20180119	18-01-1452-15	01/19/18 11:40	1	Solid
IDW-Water-20180119	18-01-1452-16	01/19/18 12:35	5	Aqueous

Detections Summary

Client: Geosyntec Consultants Work Order: 18-01-1452

595 Market Street, Suite 610 Project Name: ESTCP C. Pendleton WR2274

San Francisco, CA 94105-2811 Received: 01/19/18

Attn: Lea Kane Page 1 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
CP22-HP10-39-41 (18-01-1452-1)						
1,2,3-Trichloropropane	1.3		0.12	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP10-43-45 (18-01-1452-2)						
Propene	1.23		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.017		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP12-35-37 (18-01-1452-3)						
1,2,3-Trichloropropane	3.3		0.25	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP12-39-41 (18-01-1452-4)						
Propene	1.39		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.042		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP04-35-37 (18-01-1452-5)						
1,2,3-Trichloropropane	0.027		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP04-39-41 (18-01-1452-6)						
Propene	2.35		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.021		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP05-35-37 (18-01-1452-8)						
1,2,3-Trichloropropane	0.20		0.010	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP05-39-41 (18-01-1452-9)						
1,2,3-Trichloropropane	0.064		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
DUP20180119 (18-01-1452-10)						
1,2,3-Trichloropropane	3.2		0.25	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP05-43-45 (18-01-1452-11)				•		
Propene	1.18		1.00	ug/L	RSK-175M	N/A
IDW-Soil-20180119 (18-01-1452-15)				•		
Antimony	2.49		0.735	mg/kg	EPA 6010B	EPA 3050B
Arsenic	3.59		0.735	mg/kg	EPA 6010B	EPA 3050B
Barium	256		0.490	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.453		0.245	mg/kg	EPA 6010B	EPA 3050B
Cadmium	0.555		0.490	mg/kg	EPA 6010B	EPA 3050B
Chromium	32.0		0.245	mg/kg	EPA 6010B	EPA 3050B
Cobalt	13.3		0.245	mg/kg	EPA 6010B	EPA 3050B
Copper	22.9		0.490	mg/kg	EPA 6010B	EPA 3050B
Lead	3.95		0.490	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.823		0.245	mg/kg	EPA 6010B	EPA 3050B
Nickel	14.0		0.245	mg/kg	EPA 6010B	EPA 3050B
Vanadium	81.1		0.245	mg/kg	EPA 6010B	EPA 3050B
Zinc	75.2		0.980	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Detections Summary

Client: Geosyntec Consultants Work Order: 18-01-1452

595 Market Street, Suite 610 Project Name: ESTCP C. Pendleton WR2274

San Francisco, CA 94105-2811 Received: 01/19/18

Attn: Lea Kane Page 2 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
IDW-Water-20180119 (18-01-1452-16)						
Arsenic	0.0100		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Barium	0.170		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Chromium	0.0255		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Copper	0.0695		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Molybdenum	0.0138		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Nickel	0.0179		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Vanadium	0.0381		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Zinc	0.117		0.0100	mg/L	EPA 6010B	EPA 3010A Total
C6-C44 Total	170		91	ug/L	EPA 8015B (M)	EPA 3510C
1,1-Dichloroethane	0.50		0.50	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloroethane	2.7		0.50	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	8.0		0.50	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	22		0.50	ug/L	EPA 8260B	EPA 5030C
t-1,2-Dichloroethene	0.55		0.50	ug/L	EPA 8260B	EPA 5030C
Methylene Chloride	39		1.0	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	8.6		0.50	ug/L	EPA 8260B	EPA 5030C
Toluene	0.75		0.50	ug/L	EPA 8260B	EPA 5030C
1,1,1-Trichloroethane	7.0		0.50	ug/L	EPA 8260B	EPA 5030C
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.58		0.50	ug/L	EPA 8260B	EPA 5030C
1,1,2-Trichloroethane	7.9		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	190		4.0	ug/L	EPA 8260B	EPA 5030C

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Geosyntec Consultants			Date Recei	ved:			01/19/18
595 Market Street, Suite 610			Work Order	r:			18-01-1452
San Francisco, CA 94105-2811			Preparation	n:			N/A
			Method:				RSK-175M
			Units:				ug/L
Project: ESTCP C. Pendleton WR	2274					Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP10-39-41	18-01-1452-1-D	01/19/18 07:30	Aqueous	GC 52	N/A	01/24/18 12:12	180124L01
Parameter	·	Result	RL	:	<u>DF</u>	Qu	alifiers
Propene		ND	1.0	00	1.00		
CP22-HP10-43-45	18-01-1452-2-D	01/19/18 08:10	Aqueous	GC 52	N/A	01/24/18 12:40	180124L01
Parameter		Result	RL		<u>DF</u>	Qu	alifiers
Propene		1.23	1.0	00	1.00		
CP22-HP12-35-37	18-01-1452-3-D	01/19/18 08:50	Aqueous	GC 52	N/A	01/24/18 13:29	180124L01
Parameter		Result	RL	:	<u>DF</u>	Qu	alifiers
Propene		ND	1.0	00	1.00		
CP22-HP12-39-41	18-01-1452-4-D	01/19/18 09:10	Aqueous	GC 52	N/A	01/24/18 14:00	180124L01
Parameter		Result	RL	:	<u>DF</u>	Qu	alifiers
Propene		1.39	1.0	00	1.00		
CP22-HP04-35-37	18-01-1452-5-D	01/19/18 09:50	Aqueous	GC 52	N/A	01/24/18 14:28	180124L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP04-39-41	18-01-1452-6-D	01/19/18 10:25	Aqueous	GC 52	N/A	01/24/18 15:01	180124L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Propene		2.35	1.0	00	1.00		
CP22-HP04-43-45	18-01-1452-7-D	01/19/18 11:05	Aqueous	GC 52	N/A	01/24/18 15:29	180124L01
Parameter		Result	RL	•	<u>DF</u>	Qu	alifiers
Propene		ND	1.0	00	1.00		
CP22-HP05-35-37	18-01-1452-8-D	01/19/18 11:47	Aqueous	GC 52	N/A	01/24/18 15:58	180124L01
Parameter		Result	RL		<u>DF</u>	Qu	alifiers
Propene		ND	1.0	00	1.00		

 Geosyntec Consultants
 Date Received:
 01/19/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1452

 San Francisco, CA 94105-2811
 Preparation:
 N/A

 Method:
 RSK-175M

 Units:
 ug/L

Project: ESTCP C. Pendleton WR2274 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP05-39-41	18-01-1452-9-D	01/19/18 12:05	Aqueous	GC 52	N/A	01/24/18 16:25	180124L01
Parameter		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Propene		ND	1.0	00	1.00		
DUP20180119	18-01-1452-10-D	01/19/18 12:00	Aqueous	GC 52	N/A	01/24/18 18:40	180124L01
Parameter		<u>Result</u>	<u>RL</u>	1	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP05-43-45	18-01-1452-11-D	01/19/18 12:40	Aqueous	GC 52	N/A	01/24/18 19:07	180124L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
Propene		1.18	1.0	00	1.00		

Method Blank	099-14-325-99	N/A	Aqueous	GC 52	N/A	01/24/18 11:44	180124L01
<u>Parameter</u>		Result	RL		<u>DF</u>	<u>Quali</u>	fiers
Propene		ND	1.0	0	1.00		

n-Octacosane

Analytical Report

 Geosyntec Consultants
 Date Received:
 01/19/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1452

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Units:
 mg/kg

Project: ESTCP C. Pendleton WR2274 Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-Soil-20180119	18-01-1452-15-A	01/19/18 11:40	Solid	GC 46	01/22/18	01/23/18 17:13	180122B05B
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	DF	Qua	lifiers
C6		ND	5.	0	1.00		
C7		ND	5.	0	1.00		
C8		ND	5.	0	1.00		
C9-C10		ND	5.	0	1.00		
C11-C12		ND	5.	0	1.00		
C13-C14		ND	5.	0	1.00		
C15-C16		ND	5.	0	1.00		
C17-C18		ND	5.	0	1.00		
C19-C20		ND	5.	0	1.00		
C21-C22		ND	5.	0	1.00		
C23-C24		ND	5.	0	1.00		
C25-C28		ND	5.	0	1.00		
C29-C32		ND	5.	0	1.00		
C33-C36		ND	5.	0	1.00		
C37-C40		ND	5.	0	1.00		
C41-C44		ND	5.	0	1.00		
C6-C44 Total		ND	5.	0	1.00		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	Qualifiers		

97

61-145

n-Octacosane

Analytical Report

 Geosyntec Consultants
 Date Received:
 01/19/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1452

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Units:
 mg/kg

Project: ESTCP C. Pendleton WR2274 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-2969	N/A	Solid	GC 46	01/22/18	01/23/18 14:06	180122B05B
<u>Parameter</u>		Result	RL	=	DF	Qua	difiers
C6		ND	5.0	0	1.00		
C7		ND	5.0	0	1.00		
C8		ND	5.0	0	1.00		
C9-C10		ND	5.0	0	1.00		
C11-C12		ND	5.0	0	1.00		
C13-C14		ND	5.0	0	1.00		
C15-C16		ND	5.0	0	1.00		
C17-C18		ND	5.0	0	1.00		
C19-C20		ND	5.0	0	1.00		
C21-C22		ND	5.0	0	1.00		
C23-C24		ND	5.0	0	1.00		
C25-C28		ND	5.0	0	1.00		
C29-C32		ND	5.0	0	1.00		
C33-C36		ND	5.0	0	1.00		
C37-C40		ND	5.0	0	1.00		
C41-C44		ND	5.0	0	1.00		
C6-C44 Total		ND	5.0	0	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		

95

61-145

 Geosyntec Consultants
 Date Received:
 01/19/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1452

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: ESTCP C. Pendleton WR2274 Page 1 of 2

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-Water-201	80119	18-01-1452-16-E	01/19/18 12:35	Aqueous	GC 45	01/23/18	01/25/18 01:48	180123B07A
Comment(s):	- The total concentration i	ncludes individual car	bon range cond	centrations (es	timated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
C6			ND	91		1.00		
C7			ND	91		1.00		
C8			ND	91		1.00		
C9-C10			ND	91		1.00		
C11-C12			ND	91		1.00		
C13-C14			ND	91		1.00		
C15-C16			ND	91		1.00		
C17-C18			ND	91		1.00		
C19-C20			ND	91		1.00		
C21-C22			ND	91		1.00		
C23-C24			ND	91		1.00		
C25-C28			ND	91		1.00		
C29-C32			ND	91		1.00		
C33-C36			ND	91		1.00		
C37-C40			ND	91		1.00		
C41-C44			ND	91		1.00		
C6-C44 Total			170	91		1.00		
<u>Surrogate</u>			Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
n-Octacosane			103	68-	140			

n-Octacosane

Analytical Report

 Geosyntec Consultants
 Date Received:
 01/19/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1452

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: ESTCP C. Pendleton WR2274 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-498-573	N/A	Aqueous	GC 45	01/23/18	01/24/18 17:21	180123B07A
Parameter		Result	RL	•	<u>DF</u>	Qua	lifiers
C6		ND	10	0	1.00		
C7		ND	10	0	1.00		
C8		ND	10	0	1.00		
C9-C10		ND	10	0	1.00		
C11-C12		ND	10	0	1.00		
C13-C14		ND	10	0	1.00		
C15-C16		ND	10	0	1.00		
C17-C18		ND	10	0	1.00		
C19-C20		ND	10	0	1.00		
C21-C22		ND	10	0	1.00		
C23-C24		ND	10	0	1.00		
C25-C28		ND	10	0	1.00		
C29-C32		ND	10	0	1.00		
C33-C36		ND	10	0	1.00		
C37-C40		ND	10	0	1.00		
C41-C44		ND	10	0	1.00		
C6-C44 Total		ND	10	0	1.00		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		

68-140

93

01/19/18

18-01-1452 EPA 3050B

Analytical Report

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Preparation:

Method:

Method: EPA 6010B Units: mg/kg

Project: ESTCP C. Pendleton WR2274 Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-Soil-20180119	18-01-1452-15-A	01/19/18 11:40	Solid	ICP 7300	01/27/18	01/29/18 12:51	180127L03
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	lifiers
Antimony		2.49	().735	0.980		
Arsenic		3.59	().735	0.980		
Barium		256	(0.490	0.980		
Beryllium		0.453	().245	0.980		
Cadmium		0.555	(0.490	0.980		
Chromium		32.0	().245	0.980		
Cobalt		13.3	().245	0.980		
Copper		22.9	(0.490	0.980		
Lead		3.95	(0.490	0.980		
Molybdenum		0.823	().245	0.980		
Nickel		14.0	().245	0.980		
Selenium		ND	().735	0.980		
Silver		ND	().245	0.980		
Thallium		ND	().735	0.980		
Vanadium		81.1	().245	0.980		
Zinc		75.2	(0.980	0.980		

01/19/18

18-01-1452

Analytical Report

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Date Received:

Work Order:

Preparation:

Preparation: EPA 3050B Method: EPA 6010B Units: mg/kg

Project: ESTCP C. Pendleton WR2274 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-25829	N/A	Solid	ICP 7300	01/27/18	01/29/18 11:07	180127L03
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0	.735	0.980		
Arsenic		ND	0	.735	0.980		
Barium		ND	0	.490	0.980		
Beryllium		ND	0	.245	0.980		
Cadmium		ND	0	.490	0.980		
Chromium		ND	0	.245	0.980		
Cobalt		ND	0	.245	0.980		
Copper		ND	0	.490	0.980		
Lead		ND	0	.490	0.980		
Molybdenum		ND	0	.245	0.980		
Nickel		ND	0	.245	0.980		
Selenium		ND	0	.735	0.980		
Silver		ND	0	.245	0.980		
Thallium		ND	0	.735	0.980		
Vanadium		ND	0	.245	0.980		
Zinc		ND	0	.980	0.980		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

01/19/18 18-01-1452 EPA 3010A Total EPA 6010B mg/L

Project: ESTCP C. Pendleton WR2274

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-Water-20180119	18-01-1452-16-D	01/19/18 12:35	Aqueous	ICP 7300	01/24/18	01/26/18 13:56	180124LA2
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	lifiers
Antimony		ND	0.0)150	1.00		
Arsenic		0.0100	0.0	100	1.00		
Barium		0.170	0.0	100	1.00		
Beryllium		ND	0.0	100	1.00		
Cadmium		ND	0.0	100	1.00		
Chromium		0.0255	0.0	100	1.00		
Cobalt		ND	0.0	100	1.00		
Copper		0.0695	0.0	100	1.00		
Lead		ND	0.0	100	1.00		
Molybdenum		0.0138	0.0	100	1.00		
Nickel		0.0179	0.0	100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		0.0381	0.0	100	1.00		
Zinc		0.117	0.0)100	1.00		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

01/19/18 18-01-1452 EPA 3010A Total EPA 6010B mg/L

Project: ESTCP C. Pendleton WR2274

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-003-16762	N/A	Aqueous	ICP 7300	01/24/18	01/26/18 13:10	180124LA2
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	0.0	150	1.00		
Arsenic		ND	0.0	100	1.00		
Barium		ND	0.0	100	1.00		
Beryllium		ND	0.0	100	1.00		
Cadmium		ND	0.0	100	1.00		
Chromium		ND	0.0	100	1.00		
Cobalt		ND	0.0	100	1.00		
Copper		ND	0.0	100	1.00		
Lead		ND	0.0	100	1.00		
Molybdenum		ND	0.0	100	1.00		
Nickel		ND	0.0	100	1.00		
Selenium		ND	0.0	150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0	150	1.00		
Vanadium		ND	0.0	100	1.00		
Zinc		ND	0.0	100	1.00		

Geosyntec Consultants

Date Received:

Work Order:

San Francisco, CA 94105-2811

Preparation:

Method:

Date Received:

01/19/18

01/19/18

EPA 7470A Total

Units: mg/L

Project: ESTCP C. Pendleton WR2274 Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-Water-20180119	18-01-1452-16-D	01/19/18 12:35	Aqueous	Mercury 07	01/24/18	01/25/18 13:53	180124LA1
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Mercury		ND	0.0	000500	1.00		
Made ad Diamie	000 04 000 0440	NI/A			04/04/40	04/04/40	4004041.44

Method Blank	099-04-008-8449	N/A	Aqueous Mercury 0	7 01/24/18	01/24/18 15:05	180124LA1
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND	0.000500	1.00		

Geosyntec ConsultantsDate Received:01/19/18595 Market Street, Suite 610Work Order:18-01-1452San Francisco, CA 94105-2811Preparation:EPA 7471A Total

Method: EPA 7471A Units: mg/kg

Project: ESTCP C. Pendleton WR2274 Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-Soil-20180119	18-01-1452-15-A	01/19/18 11:40	Solid	Mercury 07	01/26/18	01/26/18 20:22	180126L04
<u>Parameter</u>		Result	R	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	0	.0833	1.00		

Method Blank	099-16-272-3609	N/A	Solid	Mercury 07	01/26/18	01/26/18 19:53	180126L04
<u>Parameter</u>		Result	<u>RL</u>	1	<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND	0.0	833	1.00		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811

1,2-Dichloropropane 1,3-Dichloropropane

2,2-Dichloropropane

Date Received: Work Order: Preparation: Method:

18-01-1452 EPA 5030C EPA 8260B

01/19/18

ug/kg

Units:

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-Soil-20180119	18-01-1452-15-A	01/19/18 11:40	Solid	GC/MS R	01/20/18	01/20/18 12:51	180120L011
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>lifiers</u>
Acetone		ND	1:	20	1.00		
Benzene		ND	5	.0	1.00		
Bromobenzene		ND	5	.0	1.00		
Bromochloromethane		ND	5	.0	1.00		
Bromodichloromethane		ND	5	.0	1.00		
Bromoform		ND	5	.0	1.00		
Bromomethane		ND	2	5	1.00		
2-Butanone		ND	5	0	1.00		
n-Butylbenzene		ND	5	.0	1.00		
sec-Butylbenzene		ND	5	.0	1.00		
ert-Butylbenzene		ND	5	.0	1.00		
Carbon Disulfide		ND	5	0	1.00		
Carbon Tetrachloride		ND	5	.0	1.00		
Chlorobenzene		ND	5	.0	1.00		
Chloroethane		ND	5	.0	1.00		
Chloroform		ND	5	.0	1.00		
Chloromethane		ND	2	5	1.00		
2-Chlorotoluene		ND	5	.0	1.00		
4-Chlorotoluene		ND	5	.0	1.00		
Dibromochloromethane		ND	5	.0	1.00		
1,2-Dibromo-3-Chloropropane		ND	1	0	1.00		
1,2-Dibromoethane		ND	5	.0	1.00		
Dibromomethane		ND	5	.0	1.00		
1,2-Dichlorobenzene		ND	5	.0	1.00		
1,3-Dichlorobenzene		ND	5	.0	1.00		
1,4-Dichlorobenzene		ND	5	.0	1.00		
Dichlorodifluoromethane		ND	5	.0	1.00		
1,1-Dichloroethane		ND	5	.0	1.00		
1,2-Dichloroethane		ND	5	.0	1.00		
1,1-Dichloroethene		ND	5.	.0	1.00		
c-1,2-Dichloroethene		ND		.0	1.00		
t-1,2-Dichloroethene		ND		.0	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

5.0

5.0

5.0

1.00

1.00

1.00

ND

ND

ND

Geosyntec Consultants Date Received: 01/19/18 595 Market Street, Suite 610 Work Order: 18-01-1452 EPA 5030C San Francisco, CA 94105-2811 Preparation: Method: **EPA 8260B** Units: ug/kg Page 2 of 4

Project: ESTCP C. Pendleton WR2274

				1 -19 1
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	5.0	1.00	
c-1,3-Dichloropropene	ND	5.0	1.00	
t-1,3-Dichloropropene	ND	5.0	1.00	
Ethylbenzene	ND	5.0	1.00	
2-Hexanone	ND	50	1.00	
Isopropylbenzene	ND	5.0	1.00	
p-Isopropyltoluene	ND	5.0	1.00	
Methylene Chloride	ND	50	1.00	
4-Methyl-2-Pentanone	ND	50	1.00	
Naphthalene	ND	50	1.00	
n-Propylbenzene	ND	5.0	1.00	
Styrene	ND	5.0	1.00	
1,1,1,2-Tetrachloroethane	ND	5.0	1.00	
1,1,2,2-Tetrachloroethane	ND	5.0	1.00	
Tetrachloroethene	ND	5.0	1.00	
Toluene	ND	5.0	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.0	1.00	
1,1,1-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00	
Trichloroethene	ND	5.0	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	5.0	1.00	
Trichlorofluoromethane	ND	50	1.00	
1,3,5-Trimethylbenzene	ND	5.0	1.00	
Vinyl Acetate	ND	50	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	5.0	1.00	
o-Xylene	ND	5.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	97	60-132		
Dibromofluoromethane	105	63-141		
1,2-Dichloroethane-d4	106	62-146		
Toluene-d8	99	70-130		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

18-01-1452 EPA 5030C EPA 8260B

01/19/18

ug/kg

Project: ESTCP C. Pendleton WR2274

Page 3 of 4

Parameter	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Acetone ND 120 1,00 Benzene ND 5,0 1,00 Bromochioromethane ND 5,0 1,00 Bromochioromethane ND 5,0 1,00 Bromoferm ND 5,0 1,00 Bromoferm ND 5,0 1,00 Bromoferm ND 25 1,00 Bromoferm ND 5,0 1,00 Bromofermen ND 5,0 1,00 Carbon Disulfide ND 5,0 1,00 Carbon Disulfide ND 5,0 1,00 Chlorotehane ND 5,0 1,00 Chlorotehane ND 5,0 1,00 Chlorotoblune	Method Blank	099-14-314-868	N/A	Solid	GC/MS R	01/20/18	01/20/18 11:52	180120L011
Benzene ND 5.0 1.00 Bromobenzene ND 5.0 1.00 Bromodlichromethane ND 5.0 1.00 Bromodlichromethane ND 5.0 1.00 Bromodram ND 5.0 1.00 Bromomethane ND 5.0 1.00 2-Butlanone ND 5.0 1.00 n-Butylbenzene ND 5.0 1.00 see-Butylbenzene ND 5.0 1.00 see-Butylbenzene ND 5.0 1.00 carbon Tetrachloride ND 5.0 1.00 Carbon Disulfide ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorofer ND 5.0 1.00 Chlorofethane ND 5.0 1.00 Chlorofethane ND 5.0 1.00 Chlorofothane ND 5.0 1.00 Chlorofothane ND 5.0 1.00	<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Bromobenzene ND 5.0 1.00 Bromochloromethane ND 5.0 1.00 Bromochloromethane ND 5.0 1.00 Bromomorm ND 5.0 1.00 Bromomethane ND 5.0 1.00 Bromomethane ND 5.0 1.00 -Butylbenzene ND 5.0 1.00 sec-Butylbenzene ND 5.0 1.00 sec-Butylbenzene ND 5.0 1.00 carbon Disuffide ND 5.0 1.00 Carbon Disuffide ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorothane ND 5.0 1.00 Chlorothane ND 5.0 1.00 Chlorothane ND 5.0 1.00 Chlorotholuene ND 5.0 1.00 Chlorotholuene ND 5.0 1.00 Dibromochloromethane ND 5.0 1.00<	Acetone		ND	12	20	1.00		
Bromochloromethane ND 5.0 1.00 Bromodichloromethane ND 5.0 1.00 Bromoform ND 5.0 1.00 Bromomethane ND 5.0 1.00 2-Butanone ND 5.0 1.00 n-Butylbenzene ND 5.0 1.00 sec-Butylbenzene ND 5.0 1.00 carbon Disulfide ND 5.0 1.00 Carbon Disulfide ND 5.0 1.00 Carbon Disulfide ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorodenzene ND 5.0 1.00 Chlorodenzene ND 5.0 1.00 Chloroderhane ND 5.0 1.00 Chloroderhane ND 5.0 1.00 Chloroderhane ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.	Benzene		ND	5.	0	1.00		
Bromodichloromethane ND 5.0 1.00 Bromomethane ND 5.0 1.00 Bromomethane ND 5.0 1.00 2-Butlanone ND 50 1.00 n-Butylbenzene ND 5.0 1.00 see-Butylbenzene ND 5.0 1.00 Carbon Disulfide ND 5.0 1.00 Carbon Disulfide ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chloroform ND 5.0 1.00 Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 1-2-Dibromo-3-Chloropropane ND 5.0 1.00 1-2-Dibromo-3-Chloropropane ND	Bromobenzene		ND	5.	0	1.00		
Bromoform ND 5.0 1.00 Bromomethane ND 25 1.00 2-Butanone ND 50 1.00 n-Butylbenzene ND 5.0 1.00 sec-Butylbenzene ND 5.0 1.00 Carbon Disulfide ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chlorobethane ND 5.0 1.00 Chlorodethane ND 5.0 1.00 Chlorotothane ND 5.0 1.00 Chlorotothane ND 5.0 1.00 Chlorotothuene ND 5.0 1.00 4-Chlorotothuene ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00	Bromochloromethane		ND	5.	0	1.00		
Seromomethane ND 25 1.00	Bromodichloromethane		ND	5.	0	1.00		
2-Butanone ND 50 1,00 n-Butylbenzene ND 5.0 1,00 seer-Butylbenzene ND 5.0 1,00 tert-Butylbenzene ND 5.0 1,00 Carbon Disulfide ND 5.0 1,00 Carbon Tetrachloride ND 5.0 1,00 Chlorobenzene ND 5.0 1,00 Chlorothane ND 5.0 1,00 Chlorothane ND 5.0 1,00 Chlorotoluene ND 5.0 1,00 Chlorotoluene ND 5.0 1,00 2-Chlorotoluene ND 5.0 1,00 2-Chlorotoluene ND 5.0 1,00 Dibromochloromethane ND 5.0 1,00 1,2-Dibromochane ND 5.0 1,00 1,2-Dibromoehane ND 5.0 1,00 1,3-Dichlorobenzene ND 5.0 1,00 1,4-Dichlorobenzene ND 5.0	Bromoform		ND	5.	0	1.00		
n-Butylbenzene ND 5.0 1.00 sec-Butylbenzene ND 5.0 1.00 tert-Butylbenzene ND 5.0 1.00 Carbon Disulfide ND 50 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chloroform ND 5.0 1.00 Chloroform ND 5.0 1.00 Chloroformethane ND 5.0 1.00 2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorodfiluoromethane ND 5.0 1.00 1,4-Dichloroethane	Bromomethane		ND	25	5	1.00		
sec-Butylbenzene ND 5.0 1.00 Carbon Disulfide ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chloroethane ND 5.0 1.00 Chloroform ND 5.0 1.00 Chlorotoluene ND 5.0 1.00 Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 1-2-Dibromo-3-Chloropropane ND 5.0 1.00 1-2-Dibromo-3-Chloropropane ND 5.0 1.00 1-2-Dibromoethane ND 5.0 1.00 1-2-Dibromoethane ND	2-Butanone		ND	50)	1.00		
Iter-Buylbenzene ND 5.0 1.00 Carbon Disulfide ND 50 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chlorothane ND 5.0 1.00 Chlorothane ND 5.0 1.00 Chlorothane ND 5.0 1.00 2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 1-2-Dibromoehloromethane ND 5.0 1.00 1,2-Dibromoes-3-Chloropropane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 1,4-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND	n-Butylbenzene		ND	5.	0	1.00		
Carbon Disulfide ND 50 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chlorobethane ND 5.0 1.00 Chloroform ND 5.0 1.00 Chloromethane ND 5.0 1.00 2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 1-2-Dibromo-3-Chloropropane ND 5.0 1.00 1-2-Dibromo-3-Chloropropane ND 5.0 1.00 1-2-Dibromoethane ND 5.0 1.00 1-2-Dichlorobenzene ND 5.0 1.00 1-4-Dichloroethane ND 5.0 1.00 1-1-Dichloroethane ND 5.0 1.00 1-1-Dichloroethane ND	sec-Butylbenzene		ND	5.	0	1.00		
Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chlorotethane ND 5.0 1.00 Chloroform ND 5.0 1.00 Chlorotethane ND 5.0 1.00 Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 1,2-Dibromo-shoromethane ND 5.0 1.00 1,2-Dibromo-s-Chloropropane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 1,4-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane <t< td=""><td>tert-Butylbenzene</td><td></td><td>ND</td><td>5.</td><td>0</td><td>1.00</td><td></td><td></td></t<>	tert-Butylbenzene		ND	5.	0	1.00		
Chlorobenzene ND 5.0 1.00 Chloroethane ND 5.0 1.00 Chloroform ND 5.0 1.00 Chloromethane ND 5.0 1.00 2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 Dibromochloromethane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,2-Dichloroethene	Carbon Disulfide		ND	50)	1.00		
Chloroethane ND 5.0 1.00 Chloroform ND 5.0 1.00 Chloromethane ND 5.0 1.00 2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 Dibromochloromethane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,2-Dichloroethene	Carbon Tetrachloride		ND	5.	0	1.00		
Chloroform ND 5.0 1.00 Chloromethane ND 25 1.00 2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chloromethane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 1,4-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloroethene ND	Chlorobenzene		ND	5.	0	1.00		
Chloromethane ND 25 1.00 2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chloromethane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 1,1-Dichlorothane ND 5.0 1.00 1,1-Dichlorothane ND 5.0 1.00 1,1-Dichlorothene ND 5.0 1.00 c-1,2-Dichlorothene ND 5.0 1.00 c-1,2-Dichlorothene ND 5.0 1.00 c-1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane<	Chloroethane		ND	5.	0	1.00		
2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 1,2-Dibromoethane ND 10 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorotethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	Chloroform		ND	5.	0	1.00		
A-Chlorotoluene ND 5.0 1.00 Dibromochloromethane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichlorothane ND 5.0 1.00 1,1-Dichlorothane ND 5.0 1.00 1,1-Dichlorothane ND 5.0 1.00 1,2-Dichlorothane ND 5.0 1.00 1,1-Dichlorothane ND 5.0 1.00 1,2-Dichlorothane ND 5.0 1.00 1,2-Dichlorothane ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	Chloromethane		ND	25	5	1.00		
Dibromochloromethane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	2-Chlorotoluene		ND	5.	0	1.00		
1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,1-Dichloropthene ND 5.0 1.00 1,2-Dichloroptopane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	4-Chlorotoluene		ND	5.	0	1.00		
1,2-Dibromoethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	Dibromochloromethane		ND	5.	0	1.00		
1,2-Dibromoethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,2-Dibromo-3-Chloropropane		ND	10)	1.00		
1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,2-Dibromoethane		ND	5.	0	1.00		
1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	Dibromomethane		ND	5.	0	1.00		
1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,2-Dichlorobenzene		ND	5.	0	1.00		
Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,3-Dichlorobenzene		ND	5.	0	1.00		
1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,4-Dichlorobenzene		ND	5.	0	1.00		
1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	Dichlorodifluoromethane		ND	5.	0	1.00		
1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,1-Dichloroethane					1.00		
1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,2-Dichloroethane		ND	5.	0	1.00		
t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,1-Dichloroethene					1.00		
t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	c-1,2-Dichloroethene		ND	5.	0	1.00		
1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	t-1,2-Dichloroethene		ND					
1,3-Dichloropropane ND 5.0 1.00	·							
	1,3-Dichloropropane							
	2,2-Dichloropropane		ND			1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 01/19/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1452

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: ESTCP C. Pendleton WR2274
 Page 4 of 4

			1 age + 61 +
Result	<u>RL</u>	<u>DF</u>	Qualifiers
ND	5.0	1.00	
ND	50	1.00	
ND	5.0	1.00	
ND	5.0	1.00	
ND	50	1.00	
ND	50	1.00	
ND	50	1.00	
ND	5.0	1.00	
ND	10	1.00	
ND	5.0	1.00	
ND	5.0	1.00	
ND	5.0	1.00	
ND	50	1.00	
ND	5.0	1.00	
ND	5.0	1.00	
ND	5.0	1.00	
ND	50	1.00	
ND	5.0	1.00	
ND	50	1.00	
ND	5.0	1.00	
Rec. (%)	Control Limits	Qualifiers	
100	60-132		
110	63-141		
116	62-146		
100	70-130		
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 50 ND 5.0 ND 50 ND 50 ND 5.0 ND	ND 5.0 1.00 ND 5.0 1.00 ND 5.0 1.00 ND 5.0 1.00 ND 50 1.00 ND 5.0 1.00 ND 5.0 1.00 ND 50 1.00 ND 50 1.00 ND 50 1.00 ND 5.0 1.00 </td

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

18-01-1452 EPA 5030C EPA 8260B ug/L

01/19/18

Project: ESTCP C. Pendleton WR2274

Page 1 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-Water-20180119	18-01-1452-16-A	01/19/18 12:35	Aqueous	GC/MS L	01/23/18	01/23/18 22:15	180123L028
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	10		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	0.5	50	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	0.5	50	1.00		
Bromoform		ND	0.5	50	1.00		
Bromomethane		ND	1.0)	1.00		
2-Butanone		ND	5.0)	1.00		
n-Butylbenzene		ND	0.5	50	1.00		
sec-Butylbenzene		ND	0.5	50	1.00		
tert-Butylbenzene		ND	0.5	50	1.00		
Carbon Disulfide		ND	1.0)	1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	0.5	50	1.00		
Chloroethane		ND	0.5	50	1.00		
Chloroform		ND	0.5	50	1.00		
Chloromethane		ND	0.5	50	1.00		
2-Chlorotoluene		ND	0.5	50	1.00		
4-Chlorotoluene		ND	0.5	50	1.00		
Dibromochloromethane		ND	0.5	50	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	0.5	50	1.00		
Dibromomethane		ND	0.5	50	1.00		
1,2-Dichlorobenzene		ND	0.5	50	1.00		
1,3-Dichlorobenzene		ND	0.5	50	1.00		
1,4-Dichlorobenzene		ND	0.5	50	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		0.50	0.5	50	1.00		
1,2-Dichloroethane		2.7	0.5	50	1.00		
1,1-Dichloroethene		8.0	0.5	50	1.00		
c-1,2-Dichloroethene		22	0.5	50	1.00		
t-1,2-Dichloroethene		0.55	0.5	50	1.00		
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Page 2 of 6

Analytical Report

 Geosyntec Consultants
 Date Received:
 01/19/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1452

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: ESTCP C. Pendleton WR2274

1,2-Dichloroethane-d4

Toluene-d8

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	0.50	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	0.50	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	0.50	1.00	
p-Isopropyltoluene	ND	0.50	1.00	
Methylene Chloride	39	1.0	1.00	
4-Methyl-2-Pentanone	ND	5.0	1.00	
Naphthalene	ND	1.0	1.00	
n-Propylbenzene	ND	0.50	1.00	
Styrene	ND	0.50	1.00	
Chloroprene	ND	0.50	1.00	
1,1,1,2-Tetrachloroethane	ND	0.50	1.00	
1,1,2,2-Tetrachloroethane	ND	0.50	1.00	
Tetrachloroethene	8.6	0.50	1.00	
Toluene	0.75	0.50	1.00	
1,2,3-Trichlorobenzene	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
1,1,1-Trichloroethane	7.0	0.50	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.58	0.50	1.00	
1,1,2-Trichloroethane	7.9	0.50	1.00	
Trichlorofluoromethane	ND	0.50	1.00	
1,2,3-Trichloropropane	ND	1.0	1.00	
1,2,4-Trimethylbenzene	ND	0.50	1.00	
1,3,5-Trimethylbenzene	ND	0.50	1.00	
Vinyl Acetate	ND	5.0	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	0.50	1.00	
o-Xylene	ND	0.50	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	100	68-120		
Dibromofluoromethane	101	80-127		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

80-128

80-120

108

100

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

18-01-1452 EPA 5030C EPA 8260B

01/19/18

ug/L

Project: ESTCP C. Pendleton WR2274

Page 3 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-Water-20180119	18-01-1452-16-C	01/19/18 12:35	Aqueous	GC/MS UU	01/27/18	01/27/18 12:22	180127L001
Parameter		Result	<u>RL</u>		<u>DF</u>	Qualifiers	
Trichloroethene		190	4.0)	8.00		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
1,4-Bromofluorobenzene		96	68-120				
Dibromofluoromethane		107	80-127				
1,2-Dichloroethane-d4		108	80	-128			
Toluene-d8		101	80	-120			

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

18-01-1452 EPA 5030C EPA 8260B ug/L

01/19/18

Project: ESTCP C. Pendleton WR2274

Page 4 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-446-296	N/A	Aqueous	GC/MS L	01/23/18	01/23/18 17:35	180123L028
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	10		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	0.5	50	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	0.5	50	1.00		
Bromoform		ND	0.5	50	1.00		
Bromomethane		ND	1.0)	1.00		
2-Butanone		ND	5.0)	1.00		
n-Butylbenzene		ND	0.5	50	1.00		
sec-Butylbenzene		ND	0.5	50	1.00		
tert-Butylbenzene		ND	0.5	50	1.00		
Carbon Disulfide		ND	1.0)	1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	0.5	50	1.00		
Chloroethane		ND	0.5	50	1.00		
Chloroform		ND	0.5	50	1.00		
Chloromethane		ND	0.5	50	1.00		
2-Chlorotoluene		ND	0.5	50	1.00		
4-Chlorotoluene		ND	0.5	50	1.00		
Dibromochloromethane		ND	0.5	50	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	0.5	50	1.00		
Dibromomethane		ND	0.5	50	1.00		
1,2-Dichlorobenzene		ND	0.5	50	1.00		
1,3-Dichlorobenzene		ND	0.5	50	1.00		
1,4-Dichlorobenzene		ND	0.5	50	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	0.5	50	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	0.5	50	1.00		
c-1,2-Dichloroethene		ND	0.5		1.00		
t-1,2-Dichloroethene		ND	0.5		1.00		
1,2-Dichloropropane		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
2,2-Dichloropropane		ND	1.0		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 01/19/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1452

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: ESTCP C. Pendleton WR2274

Page 5 of 6

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	0.50	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	0.50	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	0.50	1.00	
p-Isopropyltoluene	ND	0.50	1.00	
Methylene Chloride	ND	1.0	1.00	
4-Methyl-2-Pentanone	ND	5.0	1.00	
Naphthalene	ND	1.0	1.00	
n-Propylbenzene	ND	0.50	1.00	
Styrene	ND	0.50	1.00	
Chloroprene	ND	0.50	1.00	
1,1,1,2-Tetrachloroethane	ND	0.50	1.00	
1,1,2,2-Tetrachloroethane	ND	0.50	1.00	
Tetrachloroethene	ND	0.50	1.00	
Γoluene	ND	0.50	1.00	
1,2,3-Trichlorobenzene	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
1,1,1-Trichloroethane	ND	0.50	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.50	1.00	
1,1,2-Trichloroethane	ND	0.50	1.00	
Trichlorofluoromethane	ND	0.50	1.00	
1,2,3-Trichloropropane	ND	1.0	1.00	
1,2,4-Trimethylbenzene	ND	0.50	1.00	
1,3,5-Trimethylbenzene	ND	0.50	1.00	
Vinyl Acetate	ND	5.0	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	0.50	1.00	
o-Xylene	ND	0.50	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	98	68-120		
Dibromofluoromethane	97	80-127		
1,2-Dichloroethane-d4	96	80-128		
Toluene-d8	101	80-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

18-01-1452 EPA 5030C EPA 8260B

01/19/18

ug/L

Project: ESTCP C. Pendleton WR2274

Page 6 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-446-297	N/A	Aqueous	GC/MS UU	01/27/18	01/27/18 11:52	180127L001
<u>Parameter</u>		<u>Result</u>	<u>RI</u>	=	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Trichloroethene		ND	0.	50	1.00		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		96	68	3-120			
Dibromofluoromethane		107	80)-127			
1,2-Dichloroethane-d4		104	80)-128			
Toluene-d8		102	80)-120			

Geosyntec Consultants			Date Recei	ved:			01/19/18
595 Market Street, Suite 610			Work Order	r:			18-01-1452
San Francisco, CA 94105-2811			Preparation	1:			EPA 5030C
			Method:			S	RL 524M-TCP
			Units:			_	ug/L
Project: ESTCP C. Pendleton WR	2274					Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP10-39-41	18-01-1452-1-B	01/19/18 07:30	Aqueous	GC/MS T	01/30/18	01/30/18 21:36	180130L016
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		1.3	0.1	2	25.0		
CP22-HP10-43-45	18-01-1452-2-C	01/19/18 08:10	Aqueous	GC/MS T	01/31/18	01/31/18 14:05	180131L014
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
1,2,3-Trichloropropane		0.017	0.0	0050	1.00		
CP22-HP12-35-37	18-01-1452-3-B	01/19/18 08:50	Aqueous	GC/MS T	01/30/18	01/30/18 22:11	180130L016
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		3.3	0.2	25	50.0		
CP22-HP12-39-41	18-01-1452-4-C	01/19/18 09:10	Aqueous	GC/MS T	01/31/18	01/31/18 14:40	180131L014
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		0.042	0.0	0050	1.00		
CP22-HP04-35-37	18-01-1452-5-C	01/19/18 09:50	Aqueous	GC/MS T	01/31/18	01/31/18 15:14	180131L014
Parameter		Result	<u>RL</u>	•	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.027	0.0	0050	1.00		
CP22-HP04-39-41	18-01-1452-6-C	01/19/18 10:25	Aqueous	GC/MS T	01/31/18	01/31/18 18:08	180131L014
<u>Parameter</u>		Result	RL	•	DF	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.021	0.0	0050	1.00		
CP22-HP04-43-45	18-01-1452-7-C	01/19/18 11:05	Aqueous	GC/MS T	01/31/18	01/31/18 16:59	180131L014
Parameter		Result	RL		DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-HP05-35-37	18-01-1452-8-C	01/19/18 11:47	Aqueous	GC/MS T	01/31/18	01/31/18 19:18	180131L014
Parameter		Result	RL		DF	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.20	0.0)10	2.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants			Date Recei	ved:			01/19/18
595 Market Street, Suite 610			Work Order	:			18-01-1452
San Francisco, CA 94105-2811			Preparation	n:			EPA 5030C
			Method:			S	RL 524M-TCP
			Units:				ug/L
Project: ESTCP C. Pendleton WR	2274					Pa	ige 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP05-39-41	18-01-1452-9-C	01/19/18 12:05	Aqueous	GC/MS T	01/31/18	01/31/18 18:43	180131L014
<u>Parameter</u>		Result	RL		DF	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.064	0.0	050	1.00		
DUP20180119	18-01-1452-10-B	01/19/18 12:00	Aqueous	GC/MS T	01/31/18	01/31/18 19:52	180131L014
<u>Parameter</u>		Result	RL	1	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		3.2	0.2	25	50.0		
CP22-HP05-43-45	18-01-1452-11-B	01/19/18 12:40	Aqueous	GC/MS T	01/31/18	01/31/18 17:33	180131L014
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	050	1.00		
T-Blank20180119	18-01-1452-12-B	01/19/18 10:30	Aqueous	GC/MS T	01/30/18	01/30/18 12:55	180130L016
<u>Parameter</u>		Result	RL		DF	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
E-Blank20180119	18-01-1452-13-B	01/19/18 12:25	Aqueous	GC/MS T	01/30/18	01/30/18 13:30	180130L016
<u>Parameter</u>		Result	RL	1	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	050	1.00		
F-Blank20180119	18-01-1452-14-B	01/19/18 10:40	Aqueous	GC/MS T	01/30/18	01/30/18 14:04	180130L016
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	050	1.00		
Method Blank	099-10-022-1400	N/A	Aqueous	GC/MS T	01/30/18	01/30/18 12:16	180130L016
Parameter		Result	RL		DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
Method Blank	099-10-022-1402	N/A	Aqueous	GC/MS T	01/31/18	01/31/18 12:21	180131L014
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	050	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants

Date Received:

O1/19/18

Work Order:

San Francisco, CA 94105-2811

Preparation:

EPA 3550B

Method:

Date Received:

O1/19/18

Work Order:

18-01-1452

EPA 3550B

EPA 8015B (M)

Project: ESTCP C. Pendleton WR2274 Page 1 of 7

Quality Control Sample ID	Туре	Matrix	Matrix Instrument		ared Date Analyzed	MS/MSD Batch Number
18-01-1393-1	Sample	Solid	GC 46	01/22/18	01/23/18 16:11	180122S05
18-01-1393-1	Matrix Spike	Solid	GC 46	01/22/18	01/23/18 14:48	3 180122S05
18-01-1393-1	Matrix Spike Duplic	ate Solid	GC 46	01/22/18	01/23/18 15:09	180122S05
Parameter	<u>Sample</u> <u>Spik</u> <u>Conc.</u> <u>Add</u>			MSD MSD %Rec.	%Rec. CL RPI	RPD CL Qualifiers
TPH as Diesel	31.32 400.	0 423.7	98 3	90.5 90	64-130 8	0-15

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811

Project: ESTCP C. Pendleton WR2274

Date Received: Work Order: Preparation: Method: 01/19/18 18-01-1452 EPA 3050B

od: EPA 6010B Page 2 of 7

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
18-01-1433-1	Sample		Solid	ICP	7300	01/27/18	01/29/18	01/29/18 12:44 180127S03		
18-01-1433-1	Matrix Spike		Solid	ICP	7300	01/27/18	01/29/18	12:45	180127S03	
18-01-1433-1	Matrix Spike	Duplicate	Solid	ICP	7300	01/27/18	01/29/18	12:46	180127S03	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	2.605	25.00	8.949	25	8.124	22	50-115	10	0-20	3
Arsenic	7.463	25.00	34.25	107	33.91	106	75-125	1	0-20	
Barium	162.4	25.00	180.4	4X	178.3	4X	75-125	4X	0-20	Q
Beryllium	0.8199	25.00	28.43	110	27.93	108	75-125	2	0-20	
Cadmium	0.5421	25.00	27.53	108	27.22	107	75-125	1	0-20	
Chromium	33.68	25.00	59.55	103	58.74	100	75-125	1	0-20	
Cobalt	17.28	25.00	43.44	105	42.83	102	75-125	1	0-20	
Copper	41.80	25.00	69.81	112	68.86	108	75-125	1	0-20	
Lead	9.342	25.00	36.13	107	35.73	106	75-125	1	0-20	
Molybdenum	0.7109	25.00	24.77	96	24.70	96	75-125	0	0-20	
Nickel	30.36	25.00	54.93	98	54.12	95	75-125	1	0-20	
Selenium	ND	25.00	23.55	94	26.18	105	75-125	11	0-20	
Silver	ND	12.50	13.51	108	13.32	107	75-125	1	0-20	
Thallium	ND	25.00	24.06	96	23.07	92	75-125	4	0-20	
Vanadium	64.25	25.00	89.67	102	88.43	97	75-125	1	0-20	
Zinc	73.33	25.00	95.70	89	94.69	85	75-125	1	0-20	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

18-01-1452 EPA 3010A Total EPA 6010B

01/19/18

Project: ESTCP C. Pendleton WR2274

Page 3 of 7

Quality Control Sample ID	Туре			strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number	
18-01-1232-3	Sample		Aqueou	s IC	CP 7300	01/24/18	8 01/26/18 14:09		180124SA2	
18-01-1232-3	Matrix Spike		Aqueou	s IC	CP 7300	01/24/18	01/26/18	14:02	180124SA2	
18-01-1232-3	Matrix Spike	Duplicate	Aqueou	s IC	CP 7300	01/24/18	01/26/18	14:03	180124SA2	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	0.5000	0.4938	99	0.4855	97	72-132	2	0-10	
Arsenic	0.02388	0.5000	0.5262	100	0.5251	100	80-140	0	0-11	
Barium	0.1097	0.5000	0.6140	101	0.6126	101	87-123	0	0-6	
Beryllium	ND	0.5000	0.5241	105	0.5037	101	89-119	4	0-8	
Cadmium	ND	0.5000	0.4910	98	0.4839	97	82-124	1	0-7	
Chromium	ND	0.5000	0.5088	102	0.5043	101	86-122	1	0-8	
Cobalt	ND	0.5000	0.5058	101	0.4991	100	83-125	1	0-7	
Copper	ND	0.5000	0.5443	109	0.5421	108	78-126	0	0-7	
Lead	ND	0.5000	0.4662	93	0.4656	93	84-120	0	0-7	
Molybdenum	ND	0.5000	0.4863	97	0.4778	96	78-126	2	0-7	
Nickel	0.01126	0.5000	0.5036	98	0.4966	97	84-120	1	0-7	
Selenium	ND	0.5000	0.4954	99	0.4902	98	79-127	1	0-9	
Silver	ND	0.2500	0.2616	105	0.2604	104	86-128	0	0-7	
Thallium	ND	0.5000	0.4525	90	0.4632	93	79-121	2	0-8	
Vanadium	ND	0.5000	0.5230	105	0.5201	104	88-118	1	0-7	
Zinc	0.01545	0.5000	0.5387	105	0.5443	106	89-131	1	0-8	

Geosyntec Consultants

Date Received:

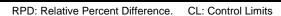
Work Order:

San Francisco, CA 94105-2811

Preparation:

Method:

Date Received:


01/19/18

01/19/18

EPA 7470A Total

Project: ESTCP C. Pendleton WR2274 Page 4 of 7

Quality Control Sample ID	Туре	Туре		Ins	Instrument Date Prepared		Date Analyzed		MS/MSD Batch Numb	
18-01-1319-2	Sample		Aqueous	s Me	ercury 07	01/24/18	01/24/18	15:15	180124SA1	
18-01-1319-2	Matrix Spike		Aqueous	s Me	ercury 07	01/24/18	01/24/18	15:11	180124SA1	
18-01-1319-2	Matrix Spike	Duplicate	Aqueous	s Me	ercury 07	01/24/18	01/24/18	15:13	180124SA1	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.01000	0.01115	112	0.01048	105	75-120	6	0-20	

Geosyntec ConsultantsDate Received:01/19/18595 Market Street, Suite 610Work Order:18-01-1452San Francisco, CA 94105-2811Preparation:EPA 7471A TotalMethod:EPA 7471A

Project: ESTCP C. Pendleton WR2274 Page 5 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
18-01-1433-1	Sample	Solid	Mercury 07	01/26/18	01/26/18 19:57	180126S04
18-01-1433-1	Matrix Spike	Solid	Mercury 07	01/26/18	01/26/18 20:00	180126S04
18-01-1433-1	Matrix Spike Dup	icate Solid	Mercury 07	01/26/18	01/26/18 20:02	180126S04
Parameter	Sample Sp Conc. Ad	ike MS ded Conc.	MS MSD Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL Qualifiers
Mercury	ND 0.8	3350 0.7903	95 0.8045	96	71-137 2	0-14

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

18-01-1452 EPA 5030C EPA 8260B

01/19/18

Project: ESTCP C. Pendleton WR2274

Page 6 of 7

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepare	Date Ana	lyzed	MS/MSD Ba	tch Number
IDW-Soil-20180119	Sample		Solid	GC	/MS R	01/20/18	01/20/18	12:51	180120S004	l .
IDW-Soil-20180119	Matrix Spike		Solid	GC	/MS R	01/20/18	01/20/18	13:19	180120S004	ļ
IDW-Soil-20180119	Matrix Spike	Duplicate	Solid	GC	MS R	01/20/18	01/20/18	13:47	180120S004	l
<u>Parameter</u>	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Acetone	ND	50.00	31.16	62	32.50	65	70-130	4	0-20	3
Benzene	ND	50.00	50.73	101	51.55	103	61-127	2	0-20	
Bromobenzene	ND	50.00	47.81	96	49.01	98	70-130	2	0-20	
Bromochloromethane	ND	50.00	51.25	102	53.53	107	70-130	4	0-20	
Bromodichloromethane	ND	50.00	51.99	104	53.08	106	70-130	2	0-20	
Bromoform	ND	50.00	47.37	95	50.95	102	70-130	7	0-20	
Bromomethane	ND	50.00	46.14	92	51.00	102	70-130	10	0-20	
2-Butanone	ND	50.00	37.08	74	42.98	86	70-130	15	0-20	
n-Butylbenzene	ND	50.00	48.60	97	50.36	101	77-123	4	0-25	
sec-Butylbenzene	ND	50.00	46.89	94	48.94	98	70-130	4	0-20	
tert-Butylbenzene	ND	50.00	43.65	87	44.92	90	70-130	3	0-20	
Carbon Disulfide	ND	50.00	40.44	81	40.82	82	70-130	1	0-20	
Carbon Tetrachloride	ND	50.00	55.17	110	55.72	111	51-135	1	0-29	
Chlorobenzene	ND	50.00	46.39	93	48.20	96	57-123	4	0-20	
Chloroethane	ND	50.00	49.91	100	56.14	112	70-130	12	0-20	
Chloroform	ND	50.00	53.85	108	54.34	109	70-130	1	0-20	
Chloromethane	ND	50.00	48.74	97	55.18	110	70-130	12	0-20	
2-Chlorotoluene	ND	50.00	46.25	92	47.80	96	70-130	3	0-20	
4-Chlorotoluene	ND	50.00	43.97	88	46.50	93	70-130	6	0-20	
Dibromochloromethane	ND	50.00	50.00	100	51.12	102	70-130	2	0-20	
1,2-Dibromo-3-Chloropropane	ND	50.00	44.94	90	48.76	98	70-130	8	0-20	
1,2-Dibromoethane	ND	50.00	49.04	98	51.72	103	64-124	5	0-20	
Dibromomethane	ND	50.00	51.40	103	52.24	104	70-130	2	0-20	
1,2-Dichlorobenzene	ND	50.00	43.88	88	46.03	92	35-131	5	0-25	
1,3-Dichlorobenzene	ND	50.00	45.47	91	47.77	96	70-130	5	0-20	
1,4-Dichlorobenzene	ND	50.00	43.24	86	44.92	90	70-130	4	0-20	
Dichlorodifluoromethane	ND	50.00	52.69	105	58.00	116	70-130	10	0-20	
1,1-Dichloroethane	ND	50.00	51.57	103	52.76	106	70-130	2	0-20	
1,2-Dichloroethane	ND	50.00	50.74	101	51.19	102	70-130	1	0-20	
1,1-Dichloroethene	ND	50.00	39.11	78	41.09	82	47-143	5	0-25	
c-1,2-Dichloroethene	ND	50.00	51.56	103	52.61	105	70-130	2	0-20	
t-1,2-Dichloroethene	ND	50.00	53.53	107	54.34	109	70-130	2	0-20	
1,2-Dichloropropane	ND	50.00	50.22	100	51.08	102	79-115	2	0-25	
1,3-Dichloropropane	ND	50.00	45.92	92	48.31	97	70-130	5	0-20	
2,2-Dichloropropane	ND	50.00	51.52	103	52.21	104	70-130	1	0-20	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 01/19/18 18-01-1452 EPA 5030C EPA 8260B

Project: ESTCP C. Pendleton WR2274

Page 7 of 7

Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
1,1-Dichloropropene	ND	50.00	53.11	106	53.89	108	70-130	1	0-20	
c-1,3-Dichloropropene	ND	50.00	51.01	102	51.34	103	70-130	1	0-20	
t-1,3-Dichloropropene	ND	50.00	48.67	97	49.88	100	70-130	2	0-20	
Ethylbenzene	ND	50.00	47.88	96	49.85	100	57-129	4	0-22	
2-Hexanone	ND	50.00	36.93	74	40.03	80	70-130	8	0-20	
Isopropylbenzene	ND	50.00	48.40	97	50.08	100	70-130	3	0-20	
p-Isopropyltoluene	ND	50.00	46.39	93	48.65	97	70-130	5	0-20	
Methylene Chloride	ND	50.00	53.05	106	53.89	108	70-130	2	0-20	
4-Methyl-2-Pentanone	ND	50.00	49.62	99	51.09	102	70-130	3	0-20	
Naphthalene	ND	50.00	44.61	89	46.29	93	70-130	4	0-20	
n-Propylbenzene	ND	50.00	47.55	95	49.23	98	70-130	3	0-20	
Styrene	ND	50.00	47.20	94	49.93	100	70-130	6	0-20	
1,1,1,2-Tetrachloroethane	ND	50.00	47.57	95	49.81	100	70-130	5	0-20	
1,1,2,2-Tetrachloroethane	ND	50.00	42.59	85	45.63	91	70-130	7	0-20	
Tetrachloroethene	ND	50.00	63.47	127	72.55	145	70-130	13	0-20	3
Toluene	ND	50.00	49.79	100	50.17	100	63-123	1	0-20	
1,2,3-Trichlorobenzene	ND	50.00	45.73	91	48.40	97	70-130	6	0-20	
1,2,4-Trichlorobenzene	ND	50.00	48.45	97	49.33	99	70-130	2	0-20	
1,1,1-Trichloroethane	ND	50.00	52.40	105	53.86	108	70-130	3	0-20	
1,1,2-Trichloroethane	ND	50.00	49.22	98	50.38	101	70-130	2	0-20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50.00	41.36	83	41.67	83	70-130	1	0-20	
Trichloroethene	ND	50.00	53.04	106	54.30	109	44-158	2	0-20	
1,2,3-Trichloropropane	ND	50.00	45.26	91	45.35	91	70-130	0	0-20	
1,2,4-Trimethylbenzene	ND	50.00	45.35	91	48.11	96	70-130	6	0-20	
Trichlorofluoromethane	ND	50.00	51.64	103	57.55	115	70-130	11	0-20	
1,3,5-Trimethylbenzene	ND	50.00	46.47	93	47.64	95	70-130	2	0-20	
Vinyl Acetate	ND	50.00	42.82	86	41.93	84	70-130	2	0-20	
Vinyl Chloride	ND	50.00	52.66	105	57.74	115	49-139	9	0-47	
p/m-Xylene	ND	100.0	95.91	96	98.18	98	70-130	2	0-20	
o-Xylene	ND	50.00	49.50	99	51.38	103	70-130	4	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	53.20	106	53.97	108	57-123	1	0-21	

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Preparation:

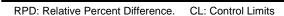
Method:

Date Received:

01/19/18

18-01-1452

Preparation:


EPA 7470A Total

Method:

EPA 7470A

Project: ESTCP C. Pendleton WR2274 Page 1 of 1

Quality Control Sample ID	Туре	N	1atrix	Instrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number	
18-01-1319-2	Sample	Δ.	queous	Mercury 07	01/24/18 00:00	01/24/18 15:15	180124SA1	
18-01-1319-2	PDS	A	queous	Mercury 07	01/24/18 00:00	01/24/18 15:47	180124SA1	
<u>Parameter</u>		Sample Conc.	Spike Added	PDS Conc.	PDS %Re	ec. %Rec. C	<u>Qualifiers</u>	
Mercury		ND	0.01000	0.01096	110	75-125		

Geosyntec Consultants
595 Market Street, Suite 610
San Francisco, CA 94105-2811

Date Received: Work Order: Preparation: Method:

18-01-1452 N/A

01/19/18

RSK-175M

Project: ESTCP C. Pendleton WR2274

Page 1 of 15

Quality Control Sample ID	Туре	Ma	trix	Instrument	Date Prep	ared Date	Analyzed	LCS/LCSD Ba	atch Number
099-14-325-99	LCS	Aq	ueous	GC 52	N/A	01/2	4/18 09:44	180124L01	
099-14-325-99	LCSD	Aq	ueous	GC 52	N/A	01/2	4/18 10:13	180124L01	
<u>Parameter</u>	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Propene	103.0	103.4	100	104.5	101	80-120	1	0-20	

 Geosyntec Consultants
 Date Received:
 01/19/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1452

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Project: ESTCP C. Pendleton WR2274
 Page 2 of 15

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepare	d Date Analyzed	LCS Batch Number
099-15-490-2969	LCS	Solid	GC 46	01/22/18	01/23/18 13:05	180122B05B
<u>Parameter</u>		Spike Added	Conc. Recove	ered LCS %	Rec. %Rec	c. CL Qualifiers
TPH as Diesel		400.0	336.8	84	75-12	3

 Geosyntec Consultants
 Date Received:
 01/19/18

 595 Market Street, Suite 610
 Work Order:
 18-01-1452

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Project: ESTCP C. Pendleton WR2274
 Page 3 of 15

						. age e ee
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number
		_				

Quality Control Sample ID	туре	iviai	IIIX	instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	itch Number
099-15-498-573	LCS	Aqı	ueous	GC 45	01/23/18	01/2	4/18 17:42	180123B07A	
099-15-498-573	LCSD	Aqı	ueous	GC 45	01/23/18	01/2	4/18 18:04	180123B07A	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Diesel	4000	3229	81	3048	76	69-123	6	0-30	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received:
Work Order:
Preparation:
Method:

18-01-1452 EPA 3050B EPA 6010B

01/19/18

Project: ESTCP C. Pendleton WR2274

Page 4 of 15

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prepa	red Date Analyz	ed LCS Batch N	Number
097-01-002-25829	LCS	Solid	ICP 7300	01/27/18	01/29/18 11	:08 180127L03	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
Antimony		25.00	25.68	103	80-120	73-127	
Arsenic		25.00	24.46	98	80-120	73-127	
Barium		25.00	27.32	109	80-120	73-127	
Beryllium		25.00	24.61	98	80-120	73-127	
Cadmium		25.00	26.88	108	80-120	73-127	
Chromium		25.00	26.41	106	80-120	73-127	
Cobalt		25.00	27.35	109	80-120	73-127	
Copper		25.00	26.72	107	80-120	73-127	
Lead		25.00	27.52	110	80-120	73-127	
Molybdenum		25.00	25.90	104	80-120	73-127	
Nickel		25.00	26.30	105	80-120	73-127	
Selenium		25.00	24.60	98	80-120	73-127	
Silver		12.50	12.88	103	80-120	73-127	
Thallium		25.00	26.32	105	80-120	73-127	
Vanadium		25.00	25.90	104	80-120	73-127	
Zinc		25.00	26.65	107	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

18-01-1452 EPA 3010A Total EPA 6010B

01/19/18

Project: ESTCP C. Pendleton WR2274

Page 5 of 15

Quality Control Sample ID	Type	Matri	x Instru	iment Date	e Prepared Date Ana	alyzed LCS Bato	h Number
097-01-003-16762	LCS	Aque	eous ICP 7	300 01/2	24/18 01/26/18	13:11 180124L	A2
<u>Parameter</u>		Spike Added	Conc. Recov	ered LCS %Re	ec. %Rec. CL	ME CL	Qualifiers
Antimony		0.5000	0.5474	109	80-120	73-127	
Arsenic		0.5000	0.5209	104	80-120	73-127	
Barium		0.5000	0.5640	113	80-120	73-127	
Beryllium		0.5000	0.5190	104	80-120	73-127	
Cadmium		0.5000	0.5500	110	80-120	73-127	
Chromium		0.5000	0.5458	109	80-120	73-127	
Cobalt		0.5000	0.5616	112	80-120	73-127	
Copper		0.5000	0.5626	113	80-120	73-127	
Lead		0.5000	0.5667	113	80-120	73-127	
Molybdenum		0.5000	0.5424	108	80-120	73-127	
Nickel		0.5000	0.5554	111	80-120	73-127	
Selenium		0.5000	0.5012	100	80-120	73-127	
Silver		0.2500	0.2667	107	80-120	73-127	
Thallium		0.5000	0.5363	107	80-120	73-127	
Vanadium		0.5000	0.5371	107	80-120	73-127	
Zinc		0.5000	0.5486	110	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Geosyntec ConsultantsDate Received:01/19/18595 Market Street, Suite 610Work Order:18-01-1452San Francisco, CA 94105-2811Preparation:EPA 7470A TotalMethod:EPA 7470A

Project: ESTCP C. Pendleton WR2274 Page 6 of 15

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-04-008-8449	LCS	Aqueous	Mercury 07	01/24/18	01/24/18 15:07	180124LA1
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.01000	0.01010	101	80-120	0

Geosyntec Consultants

Date Received:

Work Order:

San Francisco, CA 94105-2811

Preparation:

Method:

Date Received:

01/19/18

01/19/18

P1/19/18

01/19/18

Project: ESTCP C. Pendleton WR2274 Page 7 of 15

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-3609	LCS	Solid	Mercury 07	01/26/18	01/26/18 19:55	180126L04
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %R	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.7723	92	85-12	1

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation:

18-01-1452 EPA 5030C

01/19/18

Method:

EPA 8260B

Project: ESTCP C. Pendleton WR2274

Page 8 of 15

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prep	ared Date Anal	yzed LCS Batch	Number
099-14-314-868	LCS	Solid	GC/MS R	01/20/18	01/20/18 1	10:55 180120L01	11
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Acetone		50.00	24.56	49	70-130	60-140	Χ
Benzene		50.00	47.25	94	78-120	71-127	
Bromobenzene		50.00	44.58	89	70-130	60-140	
Bromochloromethane		50.00	47.64	95	70-130	60-140	
Bromodichloromethane		50.00	49.71	99	70-130	60-140	
Bromoform		50.00	48.59	97	70-130	60-140	
Bromomethane		50.00	45.38	91	70-130	60-140	
2-Butanone		50.00	37.47	75	70-130	60-140	
n-Butylbenzene		50.00	46.92	94	77-123	69-131	
sec-Butylbenzene		50.00	45.20	90	70-130	60-140	
tert-Butylbenzene		50.00	43.18	86	70-130	60-140	
Carbon Disulfide		50.00	34.99	70	70-130	60-140	
Carbon Tetrachloride		50.00	51.92	104	49-139	34-154	
Chlorobenzene		50.00	44.39	89	79-120	72-127	
Chloroethane		50.00	46.82	94	70-130	60-140	
Chloroform		50.00	49.08	98	70-130	60-140	
Chloromethane		50.00	45.08	90	70-130	60-140	
2-Chlorotoluene		50.00	43.99	88	70-130	60-140	
4-Chlorotoluene		50.00	42.66	85	70-130	60-140	
Dibromochloromethane		50.00	47.56	95	70-130	60-140	
1,2-Dibromo-3-Chloropropane		50.00	46.67	93	70-130	60-140	
1,2-Dibromoethane		50.00	46.54	93	70-130	60-140	
Dibromomethane		50.00	47.48	95	70-130	60-140	
1,2-Dichlorobenzene		50.00	42.90	86	75-120	68-128	
1,3-Dichlorobenzene		50.00	44.32	89	70-130	60-140	
1,4-Dichlorobenzene		50.00	42.60	85	70-130	60-140	
Dichlorodifluoromethane		50.00	47.08	94	70-130	60-140	
1,1-Dichloroethane		50.00	47.96	96	70-130	60-140	
1,2-Dichloroethane		50.00	46.63	93	70-130	60-140	
1,1-Dichloroethene		50.00	36.31	73	74-122	66-130	ME
c-1,2-Dichloroethene		50.00	46.72	93	70-130	60-140	
-1,2-Dichloroethene		50.00	48.05	96	70-130	60-140	
1,2-Dichloropropane		50.00	47.15	94	79-115	73-121	
1,3-Dichloropropane		50.00	43.22	86	70-130	60-140	
2,2-Dichloropropane		50.00	48.19	96	70-130	60-140	
1,1-Dichloropropene		50.00	47.16	94	70-130	60-140	
c-1,3-Dichloropropene		50.00	48.04	96	70-130	60-140	
t-1,3-Dichloropropene		50.00	47.42	95	70-130	60-140	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 01/19/18 18-01-1452 EPA 5030C EPA 8260B

Project: ESTCP C. Pendleton WR2274

Page 9 of 15

<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Ethylbenzene	50.00	44.65	89	76-120	69-127	
2-Hexanone	50.00	36.08	72	70-130	60-140	
Isopropylbenzene	50.00	45.04	90	70-130	60-140	
p-Isopropyltoluene	50.00	45.22	90	70-130	60-140	
Methylene Chloride	50.00	46.25	92	70-130	60-140	
4-Methyl-2-Pentanone	50.00	45.49	91	70-130	60-140	
Naphthalene	50.00	46.52	93	70-130	60-140	
n-Propylbenzene	50.00	44.70	89	70-130	60-140	
Styrene	50.00	45.07	90	70-130	60-140	
1,1,1,2-Tetrachloroethane	50.00	47.03	94	70-130	60-140	
1,1,2,2-Tetrachloroethane	50.00	43.71	87	70-130	60-140	
Tetrachloroethene	50.00	45.90	92	70-130	60-140	
Toluene	50.00	46.74	93	77-120	70-127	
1,2,3-Trichlorobenzene	50.00	48.05	96	70-130	60-140	
1,2,4-Trichlorobenzene	50.00	49.46	99	70-130	60-140	
1,1,1-Trichloroethane	50.00	49.33	99	70-130	60-140	
1,1,2-Trichloroethane	50.00	45.78	92	70-130	60-140	
1,1,2-Trichloro-1,2,2-Trifluoroethane	50.00	37.30	75	70-130	60-140	
Trichloroethene	50.00	47.92	96	70-130	60-140	
1,2,3-Trichloropropane	50.00	42.01	84	70-130	60-140	
1,2,4-Trimethylbenzene	50.00	44.64	89	70-130	60-140	
Trichlorofluoromethane	50.00	45.97	92	70-130	60-140	
1,3,5-Trimethylbenzene	50.00	44.07	88	70-130	60-140	
Vinyl Acetate	50.00	44.95	90	70-130	60-140	
Vinyl Chloride	50.00	46.99	94	68-122	59-131	
p/m-Xylene	100.0	89.36	89	70-130	60-140	
o-Xylene	50.00	45.99	92	70-130	60-140	
Methyl-t-Butyl Ether (MTBE)	50.00	48.55	97	77-120	70-127	

Total number of LCS compounds: 66
Total number of ME compounds: 1
Total number of ME compounds allowed: 3
LCS ME CL validation result: Pass

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

18-01-1452 EPA 5030C EPA 8260B

01/19/18

Project: ESTCP C. Pendleton WR2274

Page 10 of 15

Page	Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
Parameter	099-16-446-296	LCS		Aqueous	s G	C/MS L	01/23/18	01/23/1	18 16:03	180123L028	
Maded	099-16-446-296	LCSD		Aqueous	s G	C/MS L	01/23/18	01/23/1	18 16:34	180123L028	
Benzene 10.00 10.21 102 9.607 96 77-121 70-128 6 0-22 PROMODENZENE BROMODENZENE BRO	Parameter		LCS Conc.				%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Bromobenzene 10.00 10.15 102 9.822 98 78-120 71-127 3 0-22 Bromochloromethane 10.00 9.606 96 9.538 95 71-135 60-146 1 0-27 Bromochloromethane 10.00 10.43 104 10.17 102 72-129 62-138 3 0-29 Bromomochrom 10.00 9.066 91 9.328 93 61-140 48-163 3 0-30 Bromomethane 10.00 13.76 138 13.33 133 63-140 50-153 3 0-30 2-Butanone 10.00 10.92 109 9.884 100 67-127 57-137 9 -30 sec-Butylbenzene 10.00 10.67 107 9.798 98 66-122 57-131 8 0-30 tert-Butylbenzene 10.00 10.47 105 10.29 103 27-170 3-194 2 0-34 Carbon Disulfide <td>Acetone</td> <td>10.00</td> <td>6.071</td> <td>61</td> <td>7.527</td> <td>75</td> <td>51-163</td> <td>32-182</td> <td>21</td> <td>0-30</td> <td></td>	Acetone	10.00	6.071	61	7.527	75	51-163	32-182	21	0-30	
Bromochloromethane 10.00 9.606 96 9.538 95 71-135 60-146 1 0-27 Bromodchloromethane 10.00 10.43 104 10.17 102 72-129 62-138 3 0-29 Bromoform 10.00 19.66 91 9.328 93 61-140 48-153 3 0-30 Bromoform 10.00 7.629 76 8.042 80 55-138 41-152 5 0-30 2-Butanone 10.00 10.92 109 9.984 100 67-127 57-137 9 0-30 sec-Burlybenzene 10.00 10.67 107 9.798 98 66-122 57-131 8 0-30 sec-Burlybenzene 10.00 10.47 105 10.29 103 27-100 3-194 2 0-30 cert-Burlybenzene 10.00 10.47 105 10.29 103 27-100 3-194 2 0-30 Carbon Disulfide	Benzene	10.00	10.21	102	9.607	96	77-121	70-128	6	0-22	
Bromodichloromethane 10.00 10.43 104 10.17 102 72-129 62-138 3 0-29 Bromoform 10.00 9.066 91 9.328 93 61-140 48-153 3 0-30 Bromomethane 10.00 7.629 76 8.042 80 55-138 41-152 5 0-30 n-Butylbenzene 10.00 10.87 107 9.798 98 66-122 57-137 9 0-30 Berter-Butylbenzene 10.00 10.67 107 9.798 98 66-122 57-137 9 0-30 Carbon Disulfide 10.00 10.67 107 10.29 103 27-170 3-194 2 0-34 Carbon Disulfide 10.00 10.47 105 10.29 103 27-170 3-194 2 0-34 Carbon Tetrachloride 10.00 10.44 101 9.616 96 80-120 73-127 4 0-29 Chlorotolo	Bromobenzene	10.00	10.15	102	9.822	98	78-120	71-127	3	0-22	
Bromoform 10.00 9.066 91 9.328 93 61-140 48-153 3 0-30 Bromomethane 10.00 13.76 138 13.33 133 63-140 50-153 3 0-30 2-Butanone 10.00 7.629 76 8.042 80 55-138 41-152 5 0-30 neurollybromomethane 10.00 10.67 107 9.798 98 66-122 57-131 8 0-30 tert-Butybenzene 10.00 10.67 107 9.798 98 66-122 57-131 8 0-30 Carbon Disulfide 10.00 10.47 105 10.29 103 27-170 3-194 2 0-34 Carbon Disulfide 10.00 11.25 112 9.969 100 64-135 52-147 12 0-36 Chlorobenzene 10.00 10.14 101 9.761 98 67-131 56-142 4 0-30 Chlorotothane	Bromochloromethane	10.00	9.606	96	9.538	95	71-135	60-146	1	0-27	
Bromomethane 10.00 13.76 138 13.33 133 63-140 50-153 3 0-30 2-Butanone 10.00 7.629 76 8.042 80 55-138 41-152 5 0-30 ne-Butylbenzene 10.00 10.92 109 9.984 100 67-127 57-137 9 0-30 sec-Butylbenzene 10.00 10.59 106 9.896 99 73-120 65-128 7 0-30 Carbon Tetrachloride 10.00 10.47 105 10.29 103 27-170 3-194 2 0-34 Carbon Tetrachloride 10.00 11.25 112 9.969 100 64-135 52-147 12 0-36 Chlorochenzene 10.00 10.14 101 9.761 98 67-131 56-142 4 0-30 Chlorothare 10.00 10.14 101 9.761 98 67-131 56-142 4 0-30 Chlorothare <td>Bromodichloromethane</td> <td>10.00</td> <td>10.43</td> <td>104</td> <td>10.17</td> <td>102</td> <td>72-129</td> <td>62-138</td> <td>3</td> <td>0-29</td> <td></td>	Bromodichloromethane	10.00	10.43	104	10.17	102	72-129	62-138	3	0-29	
2-Butanone 10.00 7.629 76 8.042 80 55-138 41-152 5 0-30 n-Butylbenzene 10.00 10.92 109 9.884 100 67-127 57-137 9 0-30 sec-Butylbenzene 10.00 10.67 107 9.798 98 66-122 57-131 8 0-30 sec-Butylbenzene 10.00 10.67 107 9.798 98 66-122 57-131 8 0-30 set-Butylbenzene 10.00 10.59 106 9.896 99 73-120 65-128 7 0-30 Carbon Disulfide 10.00 10.47 105 10.29 103 27-170 3-194 2 0-34 Carbon Tetrachloride 10.00 11.25 112 9.969 100 64-135 52-147 12 0-36 Chlorobenzene 10.00 10.04 100 9.616 96 80-120 73-127 4 0-29 Chlorofenzene 10.00 10.04 101 9.761 98 67-131 56-142 4 0-30 Chloroform 10.00 9.910 99 9.597 96 75-126 66-134 3 0-29 Chloromethane 10.00 10.34 103 9.755 98 64-123 54-143 39-158 3 0-30 C-20 Chlorofoluene 10.00 10.02 100 9.654 97 67-126 57-136 4 0-25 Chlorofoluene 10.00 10.02 100 9.654 97 67-126 57-136 4 0-25 Chloromethane 10.00 9.965 98 9.943 99 76-132 67-141 2 0-30 Chloromethane 10.00 9.902 99 9.781 98 75-120 66-136 1 0-30 Chloromethane 10.00 9.902 99 9.781 98 75-120 66-136 1 0-30 Chloromethane 10.00 9.902 99 9.781 98 75-120 68-132 67-141 2 0-30 Chloromethane 10.00 9.902 99 9.781 98 75-127 66-136 1 0-30 Chloromethane 10.00 9.902 99 9.781 98 75-127 66-136 1 0-30 Chloromethane 10.00 9.902 99 9.781 98 75-127 66-136 1 0-30 Chloromethane 10.00 9.902 99 9.781 98 75-127 66-136 1 0-30 Chloromethane 10.00 9.902 99 9.781 98 75-127 66-136 1 0-30 Chloromethane 10.00 9.903 99 9.782 98 78-120 71-127 2 0-30 Chloromethane 10.00 9.933 100 9.840 98 75-120 68-128 2 0-30 Chloromethane 10.00 10.13 101 9.714 97 72-130 62-140 4 0-23 Chloromethane 10.00 10.06 101 9.714 97 72-130 62-140 4 0-23 Chloromethane 10.00 10.06 101 9.714 97 72-130 62-140 4 0-26 Chloromethane 10.00 10.06 101 9.714 97 72-130 62-140 4 0-26 Chloromethane 10.00 10.06 101 9.714 97 72-130 62-140 4 0-26 Chloromethane 10.00 10.06 101 9.714 97 72-130 62-140 4 0-26 Chloromethane 10.00 10.06 101 9.714 97 72-130 62-140 4 0-26 Chloromethane 10.00 10.04 10.03 9.714 97 9.712 66-130 65-137 0 0-24 Chloromethane 10.00 10.04 10.03 9.714 97 9.612 66-123 66-130 4 0-26 Chloromethane 10.00 10.04	Bromoform	10.00	9.066	91	9.328	93	61-140	48-153	3	0-30	
n-Butylbenzene 10.00 10.92 109 9.984 100 67-127 57-137 9 0-30 sec-Butylbenzene 10.00 10.67 107 9.798 98 66-122 57-131 8 0-30 leterl-Butylbenzene 10.00 10.59 106 9.896 99 73-120 65-128 7 0-30 Carbon Disulfide 10.00 10.47 105 10.29 103 27-170 3-194 2 0-34 Carbon Disulfide 10.00 11.25 112 9.969 100 64-135 52-147 12 0-36 Chlorobenzene 10.00 10.04 100 9.616 96 80-120 73-127 4 0-29 Chloroethane 10.00 10.14 101 9.761 98 67-131 56-142 4 0-30 Chloroform 10.00 9.910 99 9.597 96 75-126 66-134 3 0-29 Chloroethane 10.00 10.34 103 9.755 98 64-123 54-133 6 0-29 Chloroethane 10.00 10.04 103 9.765 98 9.943 99 76-132 57-136 4 0-25 Dibromochloromethane 10.00 9.765 98 9.943 99 76-132 67-141 2 0-30 1.2-Dibromo-S-Chloropropane 10.00 9.992 99 9.781 98 78-132 67-141 2 0-30 1.2-Dibromochloromethane 10.00 9.999 9.781 98 78-132 67-141 2 0-30 1.2-Dibromochloromethane 10.00 9.992 99 9.781 98 78-132 67-141 2 0-30 1.2-Dibromochloromethane 10.00 9.992 99 9.781 98 78-132 67-141 2 0-30 1.2-Dibromochloromethane 10.00 9.993 100 9.826 98 74-130 65-139 2 0-32 Dibromomethane 10.00 9.992 99 9.781 98 78-125 66-136 1 0-30 1.2-Dibromochloromethane 10.00 9.992 99 9.781 98 78-120 66-136 1 0-30 1.2-Dibromochloromethane 10.00 9.993 100 9.826 98 78-120 66-136 1 0-30 1.2-Dibromochloromethane 10.00 9.993 100 9.826 98 78-120 71-127 2 0-30 1.3-Dibrlorobenzene 10.00 9.983 100 9.840 98 78-120 66-136 1 0-30 1.4-Dichlorobenzene 10.00 9.983 100 9.840 98 78-120 66-136 1 0-30 1.4-Dichlorobenzene 10.00 9.788 98 9.489 95 78-120 71-127 3 0-20 Dibromochlane 10.00 10.13 101 9.719 97 72-130 62-140 4 0-23 1.4-Dichlorobethane 10.00 10.66 101 9.714 97 72-130 62-140 4 0-23 1.4-Dichlorobethane 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 1-12-Dichloroethane 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 1-12-Dichloroethane 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 1-12-Dichloroethane 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 1-12-Dichloroethane 10.00 10.34 103 9.762 98 67-129 57-130 62-140 4 0-23 1.3-Dichloroethane 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 1-12-D	Bromomethane	10.00	13.76	138	13.33	133	63-140	50-153	3	0-30	
sec-Butylbenzene 10.00 10.67 107 9.798 98 66-122 57-131 8 0-30 Letr-Butylbenzene 10.00 10.59 106 9.896 99 73-120 65-128 7 0-30 Carbon Tetrachloride 10.00 10.47 105 10.29 103 27-170 3-194 2 0-34 Carbon Tetrachloride 10.00 10.04 100 9.616 96 80-120 73-127 4 0-29 Chlorobenzene 10.00 10.14 101 9.761 98 67-131 56-142 4 0-30 Chlorothane 10.00 9.910 99 9.597 96 75-126 66-134 3 0-29 Chlorotoluene 10.00 8.683 87 8.444 84 54-143 3 0-29 Chlorotoluene 10.00 9.765 98 9.943 99 76-126 57-136 4 0-25 Dibromochloromethane 1	2-Butanone	10.00	7.629	76	8.042	80	55-138	41-152	5	0-30	
tert-Butylbenzene 10.00 10.59 106 9.896 99 73-120 65-128 7 0-30 Carbon Disulfide 10.00 10.47 105 10.29 103 27-170 3-194 2 0-34 Carbon Tetrachloride 10.00 11.25 112 9.969 100 64-135 52-147 12 0-36 Chlorobenzene 10.00 10.14 101 9.761 96 80-120 73-127 4 0-29 Chlorothame 10.00 9.910 99 9.5761 96 87-121 56-142 4 0-30 Chlorothame 10.00 9.910 99 9.5797 96 75-126 66-134 3 0-29 Chlorothame 10.00 10.34 103 9.755 98 64-123 54-133 6 0-29 Chlorotholuene 10.00 9.765 98 9.943 99 76-126 57-136 4 0-25 Dibromochloromethane<	n-Butylbenzene	10.00	10.92	109	9.984	100	67-127	57-137	9	0-30	
Carbon Disulfide 10.00 10.47 105 10.29 103 27-170 3-194 2 0-34 Carbon Tetrachloride 10.00 11.25 112 9.969 100 64-135 52-147 12 0-36 Chlorobenzene 10.00 10.04 100 9.616 96 80-120 73-127 4 0-29 Chlorobethane 10.00 10.14 101 9.761 98 67-131 56-142 4 0-30 Chlorobethane 10.00 9.910 99 9.597 96 75-126 66-134 3 0-29 Chlorobethane 10.00 10.34 103 9.755 98 64-123 54-133 6 0-29 4-Chlorotoluene 10.00 10.02 100 9.654 97 67-126 57-136 4 0-25 Dibromochloromethane 10.00 9.765 98 9.943 99 76-132 67-141 2 0-30 1,2-Dibromo-	sec-Butylbenzene	10.00	10.67	107	9.798	98	66-122	57-131	8	0-30	
Carbon Tetrachloride 10.00 11.25 112 9.969 100 64-135 52-147 12 0-36 Chlorobenzene 10.00 10.04 100 9.616 96 80-120 73-127 4 0-29 Chlorobethane 10.00 10.14 101 9.761 98 67-131 56-142 4 0-30 Chloroform 10.00 9.910 99 9.597 96 75-126 66-134 3 0-29 Chloromethane 10.00 10.34 103 9.755 98 64-123 54-133 6 0-29 4-Chlorotoluene 10.00 10.34 103 9.755 98 64-123 54-133 6 0-29 4-Chlorotoluene 10.00 9.765 98 9.943 99 76-126 57-136 4 0-25 Dibromochloromethane 10.00 9.999 100 9.826 98 74-130 65-139 2 0-32 1,2-Dichlorobenz	tert-Butylbenzene	10.00	10.59	106	9.896	99	73-120	65-128	7	0-30	
Chlorobenzene 10.00 10.04 100 9.616 96 80-120 73-127 4 0-29 Chloroethane 10.00 10.14 101 9.761 98 67-131 56-142 4 0-30 Chloroform 10.00 9.910 99 9.597 96 75-126 66-134 3 0-29 Chloromethane 10.00 8.683 87 8.444 84 54-143 39-158 3 0-30 2-Chlorotoluene 10.00 10.34 103 9.755 98 64-123 54-133 6 0-29 4-Chlorotoluene 10.00 10.02 100 9.654 97 67-126 57-136 4 0-25 Dibromochloromethane 10.00 9.765 98 9.943 99 76-132 67-141 2 0-30 1,2-Dibromo-3-Chloropropane 10.00 9.999 100 9.826 98 74-130 65-125 55-135 7 0-23	Carbon Disulfide	10.00	10.47	105	10.29	103	27-170	3-194	2	0-34	
Chloroethane 10.00 10.14 101 9.761 98 67-131 56-142 4 0-30 Chloroform 10.00 9.910 99 9.597 96 75-126 66-134 3 0-29 Chloromethane 10.00 8.683 87 8.444 84 54-143 39-158 3 0-30 2-Chlorotoluene 10.00 10.34 103 9.755 98 64-123 54-133 6 0-29 4-Chlorotoluene 10.00 10.02 100 9.654 97 67-126 57-136 4 0-25 Dibromochloromethane 10.00 9.765 98 9.943 99 76-132 67-141 2 0-30 1,2-Dibromo-3-Chloropropane 10.00 8.496 85 9.144 91 65-125 55-135 7 0-23 1,2-Dibromoethane 10.00 9.992 99 9.781 98 75-127 66-136 1 0-30 1,2-Dichlor	Carbon Tetrachloride	10.00	11.25	112	9.969	100	64-135	52-147	12	0-36	
Chloroform 10.00 9.910 99 9.597 96 75-126 66-134 3 0-29 Chloromethane 10.00 8.683 87 8.444 84 54-143 39-158 3 0-30 2-Chlorotoluene 10.00 10.34 103 9.755 98 64-123 54-133 6 0-29 4-Chlorotoluene 10.00 10.02 100 9.654 97 67-126 57-136 4 0-25 Dibromochloromethane 10.00 9.765 98 9.943 99 76-132 67-141 2 0-30 1,2-Dibromo-3-Chloropropane 10.00 8.496 85 9.144 91 65-125 55-135 7 0-23 1,2-Dibromoethane 10.00 9.999 100 9.826 98 74-130 65-139 2 0-32 Dibromomethane 10.00 9.932 99 9.782 98 75-127 66-136 1 0-30 1,2-Dichl	Chlorobenzene	10.00	10.04	100	9.616	96	80-120	73-127	4	0-29	
Chloromethane 10.00 8.683 87 8.444 84 54-143 39-158 3 0-30 2-Chlorotoluene 10.00 10.34 103 9.755 98 64-123 54-133 6 0-29 4-Chlorotoluene 10.00 10.02 100 9.654 97 67-126 57-136 4 0-25 Dibromochloromethane 10.00 9.765 98 9.943 99 76-132 67-141 2 0-30 1,2-Dibromo-3-Chloropropane 10.00 9.999 100 9.826 98 74-130 65-139 2 0-32 Dibromomethane 10.00 9.999 100 9.826 98 74-130 65-139 2 0-32 Dibromomethane 10.00 9.992 99 9.781 98 75-127 66-136 1 0-30 1,2-Dichlorobenzene 10.00 9.933 100 9.840 98 75-120 68-128 2 0-30 1	Chloroethane	10.00	10.14	101	9.761	98	67-131	56-142	4	0-30	
2-Chlorotoluene 10.00 10.34 103 9.755 98 64-123 54-133 6 0-29 4-Chlorotoluene 10.00 10.02 100 9.654 97 67-126 57-136 4 0-25 Dibromochloromethane 10.00 9.765 98 9.943 99 76-132 67-141 2 0-30 1,2-Dibromo-3-Chloropropane 10.00 8.496 85 9.144 91 65-125 55-135 7 0-23 1,2-Dibromoethane 10.00 9.999 100 9.826 98 74-130 65-139 2 0-32 Dibromomethane 10.00 9.902 99 9.781 98 75-127 66-136 1 0-30 1,2-Dichlorobenzene 10.00 9.932 99 9.782 98 78-120 71-127 2 0-30 1,3-Dichlorobenzene 10.00 9.988 98 9.489 95 78-120 68-128 2 0-30 1,4-Dichlorobenzene 10.00 9.788 98 9.489 95 78-120 68-128 2 0-30 1,1-Dichlorotifluoromethane 10.00 10.13 101 9.719 97 63-144 50-158 4 0-30 1,2-Dichlorotethane 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 1,2-Dichloroethene 10.00 10.34 103 9.762 98 67-129 57-139 6 0-30 1,2-Dichloropropane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	Chloroform	10.00	9.910	99	9.597	96	75-126	66-134	3	0-29	
4-Chlorotoluene 10.00 10.02 100 9.654 97 67-126 57-136 4 0-25 Dibromochloromethane 10.00 9.765 98 9.943 99 76-132 67-141 2 0-30 1,2-Dibromo-3-Chloropropane 10.00 8.496 85 9.144 91 65-125 55-135 7 0-23 1,2-Dibromoethane 10.00 9.999 100 9.826 98 74-130 65-139 2 0-32 Dibromomethane 10.00 9.902 99 9.781 98 75-127 66-136 1 0-30 1,2-Dichlorobenzene 10.00 9.932 99 9.782 98 78-120 71-127 2 0-30 1,3-Dichlorobenzene 10.00 9.993 100 9.840 98 75-120 68-128 2 0-30 1,4-Dichlorobenzene 10.00 9.788 98 9.489 95 78-120 71-127 3 0-20 Dichlorodifluoromethane 10.00 12.16 122 9.291 93 25-168 1-192 27 0-30 1,1-Dichloroethane 10.00 10.13 101 9.719 97 63-144 50-158 4 0-30 1,2-Dichloroethane 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 1,2-Dichloroethene 10.00 10.34 103 9.762 98 67-129 57-139 6 0-30 1,2-Dichloropopane 10.00 10.27 103 9.913 99 74-122 66-130 4 0-23 1,3-Dichloropopane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	Chloromethane	10.00	8.683	87	8.444	84	54-143	39-158	3	0-30	
Dibromochloromethane 10.00 9.765 98 9.943 99 76-132 67-141 2 0-30 1,2-Dibromo-3-Chloropropane 10.00 8.496 85 9.144 91 65-125 55-135 7 0-23 1,2-Dibromoethane 10.00 9.999 100 9.826 98 74-130 65-139 2 0-32 Dibromomethane 10.00 9.902 99 9.781 98 75-127 66-136 1 0-30 1,2-Dichlorobenzene 10.00 9.932 99 9.782 98 78-120 71-127 2 0-30 1,3-Dichlorobenzene 10.00 9.993 100 9.840 98 75-120 68-128 2 0-30 1,4-Dichlorobenzene 10.00 9.788 98 9.489 95 78-120 71-127 3 0-20 Dichlorodifluoromethane 10.00 12.16 122 9.291 93 25-168 1-192 27 0-30 1,1-Dichloroethane 10.00 10.13 101 9.719 97 63-144 50-158 4 0-30 1,2-Dichloroethane 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 1-1,2-Dichloroethene 10.00 9.671 97 9.612 96 76-123 68-131 1 0-26 1-1,2-Dichloroethene 10.00 10.34 103 9.762 98 67-129 57-139 6 0-30 1,2-Dichloropopane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	2-Chlorotoluene	10.00	10.34	103	9.755	98	64-123	54-133	6	0-29	
1,2-Dibromo-3-Chloropropane 10.00 8.496 85 9.144 91 65-125 55-135 7 0-23 1,2-Dibromoethane 10.00 9.999 100 9.826 98 74-130 65-139 2 0-32 Dibromomethane 10.00 9.902 99 9.781 98 75-127 66-136 1 0-30 1,2-Dichlorobenzene 10.00 9.932 99 9.782 98 78-120 71-127 2 0-30 1,3-Dichlorobenzene 10.00 9.993 100 9.840 98 75-120 68-128 2 0-30 1,4-Dichlorobenzene 10.00 9.788 98 9.489 95 78-120 71-127 3 0-20 Dichlorodifluoromethane 10.00 12.16 122 9.291 93 25-168 1-192 27 0-30 1,1-Dichloroethane 10.00 10.13 101 9.719 97 63-144 50-158 4 0-30 1,2-Dichloroethene 10.00 10.67 107 10.08 101	4-Chlorotoluene	10.00	10.02	100	9.654	97	67-126	57-136	4	0-25	
1,2-Dibromoethane 10.00 9.999 100 9.826 98 74-130 65-139 2 0-32 Dibromomethane 10.00 9.902 99 9.781 98 75-127 66-136 1 0-30 1,2-Dichlorobenzene 10.00 9.932 99 9.782 98 78-120 71-127 2 0-30 1,3-Dichlorobenzene 10.00 9.993 100 9.840 98 75-120 68-128 2 0-30 1,4-Dichlorobenzene 10.00 9.788 98 9.489 95 78-120 71-127 3 0-20 Dichlorodifluoromethane 10.00 12.16 122 9.291 93 25-168 1-192 27 0-30 1,1-Dichloroethane 10.00 10.13 101 9.719 97 63-144 50-158 4 0-30 1,2-Dichloroethane 10.00 10.66 101 9.714 97 72-130 62-140 4 0-23 1,1-Dichloroethene 10.00 9.671 97 9.612 96 76-123 68-131 1 0-26 c-1,2-Dichloroethene 10.00 10.34 103 9.762 98 67-129 57-139 6 0-30 1,2-Dichloroptopane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	Dibromochloromethane	10.00	9.765	98	9.943	99	76-132	67-141	2	0-30	
Dibromomethane 10.00 9.902 99 9.781 98 75-127 66-136 1 0-30 1,2-Dichlorobenzene 10.00 9.932 99 9.782 98 78-120 71-127 2 0-30 1,3-Dichlorobenzene 10.00 9.993 100 9.840 98 75-120 68-128 2 0-30 1,4-Dichlorobenzene 10.00 9.788 98 9.489 95 78-120 71-127 3 0-20 Dichlorodifluoromethane 10.00 12.16 122 9.291 93 25-168 1-192 27 0-30 1,1-Dichloroethane 10.00 10.13 101 9.719 97 63-144 50-158 4 0-30 1,2-Dichloroethane 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 c-1,2-Dichloroethene 10.00 9.671 97 9.612 96 76-123 68-131 1 0-26 t-1,2-Dichloroethene 10.00 10.27 103 9.913 99 74-122 66-130 4 0-23 1,3-Dichloropropane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	1,2-Dibromo-3-Chloropropane	10.00	8.496	85	9.144	91	65-125	55-135	7	0-23	
1,2-Dichlorobenzene 10.00 9.932 99 9.782 98 78-120 71-127 2 0-30 1,3-Dichlorobenzene 10.00 9.993 100 9.840 98 75-120 68-128 2 0-30 1,4-Dichlorobenzene 10.00 9.788 98 9.489 95 78-120 71-127 3 0-20 Dichlorodifluoromethane 10.00 12.16 122 9.291 93 25-168 1-192 27 0-30 1,1-Dichloroethane 10.00 10.13 101 9.719 97 63-144 50-158 4 0-30 1,2-Dichloroethane 10.00 10.66 101 9.714 97 72-130 62-140 4 0-23 1,1-Dichloroethene 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 0-1,2-Dichloroethene 10.00 9.671 97 9.612 96 76-123 68-131 1 0-26 0-1,2-Dichloroethene 10.00 10.34 103 9.762 98 67-129 57-139 6 0-30 1,2-Dichloropropane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	1,2-Dibromoethane	10.00	9.999	100	9.826	98	74-130	65-139	2	0-32	
1,3-Dichlorobenzene 10.00 9.993 100 9.840 98 75-120 68-128 2 0-30 1,4-Dichlorobenzene 10.00 9.788 98 9.489 95 78-120 71-127 3 0-20 Dichlorodifluoromethane 10.00 12.16 122 9.291 93 25-168 1-192 27 0-30 1,1-Dichloroethane 10.00 10.13 101 9.719 97 63-144 50-158 4 0-30 1,2-Dichloroethane 10.00 10.06 101 9.714 97 72-130 62-140 4 0-23 1,1-Dichloroethene 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 c-1,2-Dichloroethene 10.00 9.671 97 9.612 96 76-123 68-131 1 0-26 t-1,2-Dichloroptopane 10.00 10.27 103 9.913 99 74-122 66-130 4 0-23 1,3-Dichloropropane 10.00 9.661 97 9.663 97 <t< td=""><td>Dibromomethane</td><td>10.00</td><td>9.902</td><td>99</td><td>9.781</td><td>98</td><td>75-127</td><td>66-136</td><td>1</td><td>0-30</td><td></td></t<>	Dibromomethane	10.00	9.902	99	9.781	98	75-127	66-136	1	0-30	
1,4-Dichlorobenzene 10.00 9.788 98 9.489 95 78-120 71-127 3 0-20 Dichlorodifluoromethane 10.00 12.16 122 9.291 93 25-168 1-192 27 0-30 1,1-Dichloroethane 10.00 10.13 101 9.719 97 63-144 50-158 4 0-30 1,2-Dichloroethane 10.00 10.06 101 9.714 97 72-130 62-140 4 0-23 1,1-Dichloroethane 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 c-1,2-Dichloroethene 10.00 9.671 97 9.612 96 76-123 68-131 1 0-26 t-1,2-Dichloroethene 10.00 10.34 103 9.762 98 67-129 57-139 6 0-30 1,2-Dichloropropane 10.00 10.27 103 9.913 99 74-122 66-130 4 0-23 1,3-Dichloropropane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	1,2-Dichlorobenzene	10.00	9.932	99	9.782	98	78-120	71-127	2	0-30	
Dichlorodifluoromethane 10.00 12.16 122 9.291 93 25-168 1-192 27 0-30 1,1-Dichloroethane 10.00 10.13 101 9.719 97 63-144 50-158 4 0-30 1,2-Dichloroethane 10.00 10.06 101 9.714 97 72-130 62-140 4 0-23 1,1-Dichloroethene 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 c-1,2-Dichloroethene 10.00 9.671 97 9.612 96 76-123 68-131 1 0-26 t-1,2-Dichloroethene 10.00 10.34 103 9.762 98 67-129 57-139 6 0-30 1,2-Dichloropropane 10.00 10.27 103 9.913 99 74-122 66-130 4 0-23 1,3-Dichloropropane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	1,3-Dichlorobenzene	10.00	9.993	100	9.840	98	75-120	68-128	2	0-30	
1,1-Dichloroethane 10.00 10.13 101 9.719 97 63-144 50-158 4 0-30 1,2-Dichloroethane 10.00 10.06 101 9.714 97 72-130 62-140 4 0-23 1,1-Dichloroethene 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 1,2-Dichloroethene 10.00 9.671 97 9.612 96 76-123 68-131 1 0-26 1,2-Dichloroethene 10.00 10.34 103 9.762 98 67-129 57-139 6 0-30 1,2-Dichloropropane 10.00 10.27 103 9.913 99 74-122 66-130 4 0-23 1,3-Dichloropropane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	1,4-Dichlorobenzene	10.00	9.788	98	9.489	95	78-120	71-127	3	0-20	
1,2-Dichloroethane 10.00 10.06 101 9.714 97 72-130 62-140 4 0-23 1,1-Dichloroethene 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 c-1,2-Dichloroethene 10.00 9.671 97 9.612 96 76-123 68-131 1 0-26 t-1,2-Dichloroethene 10.00 10.34 103 9.762 98 67-129 57-139 6 0-30 1,2-Dichloropropane 10.00 10.27 103 9.913 99 74-122 66-130 4 0-23 1,3-Dichloropropane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	Dichlorodifluoromethane	10.00	12.16	122	9.291	93	25-168	1-192	27	0-30	
1,1-Dichloroethene 10.00 10.67 107 10.08 101 66-130 55-141 6 0-26 c-1,2-Dichloroethene 10.00 9.671 97 9.612 96 76-123 68-131 1 0-26 t-1,2-Dichloroethene 10.00 10.34 103 9.762 98 67-129 57-139 6 0-30 1,2-Dichloropropane 10.00 10.27 103 9.913 99 74-122 66-130 4 0-23 1,3-Dichloropropane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	1,1-Dichloroethane	10.00	10.13	101	9.719	97	63-144	50-158	4	0-30	
c-1,2-Dichloroethene 10.00 9.671 97 9.612 96 76-123 68-131 1 0-26 t-1,2-Dichloroethene 10.00 10.34 103 9.762 98 67-129 57-139 6 0-30 1,2-Dichloropropane 10.00 10.27 103 9.913 99 74-122 66-130 4 0-23 1,3-Dichloropropane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	1,2-Dichloroethane	10.00	10.06	101	9.714	97	72-130	62-140	4	0-23	
t-1,2-Dichloroethene 10.00 10.34 103 9.762 98 67-129 57-139 6 0-30 1,2-Dichloropropane 10.00 10.27 103 9.913 99 74-122 66-130 4 0-23 1,3-Dichloropropane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	1,1-Dichloroethene	10.00	10.67	107	10.08	101	66-130	55-141	6	0-26	
1,2-Dichloropropane 10.00 10.27 103 9.913 99 74-122 66-130 4 0-23 1,3-Dichloropropane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	c-1,2-Dichloroethene	10.00	9.671	97	9.612	96	76-123	68-131	1	0-26	
1,3-Dichloropropane 10.00 9.661 97 9.663 97 74-128 65-137 0 0-24	t-1,2-Dichloroethene	10.00	10.34	103	9.762	98	67-129	57-139	6	0-30	
	1,2-Dichloropropane	10.00	10.27	103	9.913	99	74-122	66-130	4	0-23	
2.2.Dichloropropage 10.00 10.81 108 0.804 00 69.125 59.124 0 0.20	1,3-Dichloropropane	10.00	9.661	97	9.663	97	74-128	65-137	0	0-24	
ע _{יבר} ביוסוווטויסוויס די 10.00 וויסט די 10.00 של 10.00 של 10.00 טפּס. אינסיים 10.00 של 10.00 בייסטוויסטוויסטוויס	2,2-Dichloropropane	10.00	10.81	108	9.894	99	68-125	58-134	9	0-30	
1,1-Dichloropropene 10.00 11.18 112 9.950 100 68-119 60-128 12 0-24	1,1-Dichloropropene	10.00	11.18	112	9.950	100	68-119	60-128	12	0-24	

RPD: Relative Percent Difference. CL: C

CL: Control Limits

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 01/19/18 18-01-1452 EPA 5030C EPA 8260B

Project: ESTCP C. Pendleton WR2274

Page 11 of 15

<u>Parameter</u>	Spike Added	LCS Cond	c. <u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
c-1,3-Dichloropropene	10.00	10.02	100	9.975	100	76-126	68-134	0	0-30	
t-1,3-Dichloropropene	10.00	10.20	102	10.10	101	71-127	62-136	1	0-26	
Ethylbenzene	10.00	10.56	106	9.843	98	78-120	71-127	7	0-25	
2-Hexanone	10.00	8.435	84	7.986	80	61-137	48-150	5	0-30	
Isopropylbenzene	10.00	10.57	106	9.726	97	71-123	62-132	8	0-30	
p-Isopropyltoluene	10.00	10.57	106	9.826	98	68-122	59-131	7	0-22	
Methylene Chloride	10.00	9.827	98	9.501	95	71-129	61-139	3	0-24	
4-Methyl-2-Pentanone	10.00	8.950	89	8.928	89	60-136	47-149	0	0-30	
Naphthalene	10.00	9.539	95	9.802	98	55-159	38-176	3	0-30	
n-Propylbenzene	10.00	10.64	106	9.759	98	64-125	54-135	9	0-30	
Styrene	10.00	10.43	104	10.04	100	77-120	70-127	4	0-24	
Chloroprene	10.00	10.42	104	9.553	96	70-130	60-140	9	0-20	
1,1,1,2-Tetrachloroethane	10.00	10.13	101	10.07	101	79-123	72-130	1	0-24	
1,1,2,2-Tetrachloroethane	10.00	9.352	94	9.840	98	67-132	56-143	5	0-30	
Tetrachloroethene	10.00	10.67	107	9.627	96	72-119	64-127	10	0-29	
Toluene	10.00	10.31	103	9.794	98	78-120	71-127	5	0-28	
1,2,3-Trichlorobenzene	10.00	9.566	96	9.511	95	70-129	60-139	1	0-30	
1,2,4-Trichlorobenzene	10.00	10.02	100	9.801	98	71-128	62-138	2	0-24	
1,1,1-Trichloroethane	10.00	10.51	105	9.949	99	66-130	55-141	5	0-23	
1,1,2-Trichloro-1,2,2- Trifluoroethane	10.00	11.44	114	9.332	93	52-145	36-160	20	0-26	
1,1,2-Trichloroethane	10.00	9.966	100	10.07	101	77-124	69-132	1	0-21	
Trichloroethene	10.00	10.37	104	9.720	97	75-116	68-123	6	0-25	
Trichlorofluoromethane	10.00	13.17	132	10.90	109	62-146	48-160	19	0-30	
1,2,3-Trichloropropane	10.00	8.694	87	9.065	91	80-120	73-127	4	0-30	
1,2,4-Trimethylbenzene	10.00	10.25	103	9.829	98	70-127	60-136	4	0-30	
1,3,5-Trimethylbenzene	10.00	10.24	102	9.739	97	72-124	63-133	5	0-30	
Vinyl Acetate	10.00	8.346	83	8.831	88	45-164	25-184	6	0-30	
Vinyl Chloride	10.00	10.67	107	9.667	97	60-141	46-154	10	0-30	
p/m-Xylene	20.00	20.93	105	19.63	98	74-122	66-130	6	0-30	
o-Xylene	10.00	10.40	104	9.952	100	74-122	66-130	4	0-30	
Methyl-t-Butyl Ether (MTBE)	10.00	9.326	93	9.639	96	57-144	42-158	3	0-27	

Total number of LCS compounds: 67 Total number of ME compounds: 0

Total number of ME compounds allowed: 3

LCS ME CL validation result: Pass

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation:

18-01-1452 EPA 5030C

EPA 8260B

01/19/18

Method:

Page 12 of 15

Project: ESTCP C. Pendleton WR2274

Date Analyzed LCS/LCSD Batch Number Quality Control Sample ID Type Matrix Instrument Date Prepared 099-16-446-297 LCS Aqueous **GC/MS UU** 01/27/18 01/27/18 10:50 180127L001 099-16-446-297 **LCSD** Aqueous GC/MS UU 01/27/18 01/27/18 11:20 180127L001 **LCSD** ME CL **RPD** RPD CL **Parameter** LCS Conc. **LCS** %Rec. CL Qualifiers <u>Spike</u> <u>LCSD</u> Added Conc. %Rec. Acetone 10.00 8.296 83 8.550 85 51-163 32-182 3 0-30 Benzene 10.00 11.21 112 11.10 111 77-121 70-128 1 0-22 Bromobenzene 10.00 10.55 105 10.34 103 78-120 71-127 2 0-22 10.00 11.03 110 71-135 60-146 0-27 Bromochloromethane 11.12 111 1 Bromodichloromethane 10.00 10.42 104 10.41 104 72-129 62-138 0 0-29 **Bromoform** 10.00 7.714 77 7.627 76 61-140 48-153 0-30 1 **Bromomethane** 10.00 13.14 131 12.10 121 63-140 50-153 8 0-30 10.00 3 2-Butanone 10.30 103 10.64 106 55-138 41-152 0-30 10.00 0-30 n-Butylbenzene 11.00 110 11.13 111 67-127 57-137 1 10.00 57-131 sec-Butylbenzene 11.30 113 11.17 66-122 1 0-30 112 10.00 11.24 65-128 1 0-30 tert-Butylbenzene 112 11.14 111 73-120 Carbon Disulfide 10.00 126 12.34 27-170 2 0-34 12.57 123 3-194 Carbon Tetrachloride 10.00 104 10.13 101 3 0-36 10.43 64-135 52-147 Chlorobenzene 10.00 10.99 110 10.91 109 80-120 73-127 1 0-29 Chloroethane 10.00 12.42 124 12.46 125 67-131 56-142 0 0-30 Chloroform 10.00 11.31 113 11.09 111 75-126 66-134 2 0-29 10.00 10.96 54-143 4 Chloromethane 110 11.36 114 39-158 0-30 2-Chlorotoluene 10.00 10.82 108 10.65 107 64-123 54-133 2 0-29 4-Chlorotoluene 10.00 10.80 108 10.71 107 67-126 57-136 1 0-25 Dibromochloromethane 10.00 9.267 93 9.276 93 76-132 67-141 0 0-30 1,2-Dibromo-3-Chloropropane 10.00 9.031 90 9.730 97 65-125 55-135 7 0-23 10.00 10.78 108 10.82 74-130 0-32 1,2-Dibromoethane 108 65-139 0 2 Dibromomethane 10.00 10.79 108 10.98 110 75-127 66-136 0-30 1 1,2-Dichlorobenzene 10.00 10.37 104 10.51 105 78-120 71-127 0-30 10.00 10.73 107 10.55 105 75-120 68-128 2 0-30 1.3-Dichlorobenzene 10.00 10.30 103 10.37 1 0-20 1,4-Dichlorobenzene 104 78-120 71-127 Dichlorodifluoromethane 10.00 10.03 100 9.872 99 25-168 1-192 2 0-30 1,1-Dichloroethane 10.00 11.53 115 11.28 113 63-144 50-158 2 0-30 1.2-Dichloroethane 10.00 10.88 109 10.91 109 72-130 62-140 0 0-23 1,1-Dichloroethene 10.00 11.97 120 11.70 117 66-130 55-141 2 0-26 c-1,2-Dichloroethene 10.00 10.93 109 10.89 109 76-123 68-131 0 0-26

RPD: Relative Percent Difference. CL:

t-1,2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

CL: Control Limits

11.63

11.05

10.88

14.33

12.07

116

111

109

143

121

10.00

10.00

10.00

10.00

10.00

11.28

11.04

10.81

13.64

11.82

113

110

108

136

118

67-129

74-122

74-128

68-125

68-119

57-139

66-130

65-137

58-134

60-128

3

0

1

5

2

0-30

0-23

0-24

0-30

0-24

Χ

ME

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 01/19/18 18-01-1452 EPA 5030C EPA 8260B

Project: ESTCP C. Pendleton WR2274

Page 13 of 15

<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Con	c. <u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
c-1,3-Dichloropropene	10.00	11.05	111	11.13	111	76-126	68-134	1	0-30	
t-1,3-Dichloropropene	10.00	11.05	111	11.01	110	71-127	62-136	0	0-26	
Ethylbenzene	10.00	11.40	114	11.20	112	78-120	71-127	2	0-25	
2-Hexanone	10.00	9.232	92	9.404	94	61-137	48-150	2	0-30	
Isopropylbenzene	10.00	11.14	111	10.79	108	71-123	62-132	3	0-30	
p-Isopropyltoluene	10.00	11.41	114	11.56	116	68-122	59-131	1	0-22	
Methylene Chloride	10.00	11.00	110	10.88	109	71-129	61-139	1	0-24	
4-Methyl-2-Pentanone	10.00	9.958	100	10.53	105	60-136	47-149	6	0-30	
Naphthalene	10.00	9.408	94	9.809	98	55-159	38-176	4	0-30	
n-Propylbenzene	10.00	11.43	114	11.26	113	64-125	54-135	1	0-30	
Styrene	10.00	10.91	109	10.81	108	77-120	70-127	1	0-24	
Chloroprene	10.00	11.14	111	10.91	109	70-130	60-140	2	0-20	
1,1,1,2-Tetrachloroethane	10.00	9.921	99	9.836	98	79-123	72-130	1	0-24	
1,1,2,2-Tetrachloroethane	10.00	10.84	108	11.23	112	67-132	56-143	4	0-30	
Tetrachloroethene	10.00	8.601	86	8.172	82	72-119	64-127	5	0-29	
Toluene	10.00	11.10	111	10.97	110	78-120	71-127	1	0-28	
1,2,3-Trichlorobenzene	10.00	9.616	96	10.22	102	70-129	60-139	6	0-30	
1,2,4-Trichlorobenzene	10.00	9.720	97	10.21	102	71-128	62-138	5	0-24	
1,1,1-Trichloroethane	10.00	11.23	112	10.90	109	66-130	55-141	3	0-23	
1,1,2-Trichloro-1,2,2- Trifluoroethane	10.00	12.58	126	12.32	123	52-145	36-160	2	0-26	
1,1,2-Trichloroethane	10.00	10.69	107	10.73	107	77-124	69-132	0	0-21	
Trichloroethene	10.00	10.78	108	10.85	109	75-116	68-123	1	0-25	
Trichlorofluoromethane	10.00	12.25	123	11.85	118	62-146	48-160	3	0-30	
1,2,3-Trichloropropane	10.00	9.533	95	9.460	95	80-120	73-127	1	0-30	
1,2,4-Trimethylbenzene	10.00	11.22	112	11.24	112	70-127	60-136	0	0-30	
1,3,5-Trimethylbenzene	10.00	11.04	110	10.90	109	72-124	63-133	1	0-30	
Vinyl Acetate	10.00	11.50	115	11.49	115	45-164	25-184	0	0-30	
Vinyl Chloride	10.00	12.06	121	11.74	117	60-141	46-154	3	0-30	
p/m-Xylene	20.00	22.00	110	21.65	108	74-122	66-130	2	0-30	
o-Xylene	10.00	10.89	109	10.75	107	74-122	66-130	1	0-30	
Methyl-t-Butyl Ether (MTBE)	10.00	10.37	104	10.45	104	57-144	42-158	1	0-27	

Total number of LCS compounds: 67 Total number of ME compounds: 1

Total number of ME compounds allowed: 3

LCS ME CL validation result: Pass

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

18-01-1452 EPA 5030C SRL 524M-TCP

01/19/18

Project: ESTCP C. Pendleton WR2274

Page 14 of 15

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	tch Number
099-10-022-1400	LCS	Aqı	ueous	GC/MS T	01/30/18	01/3	30/18 10:59	180130L016	
099-10-022-1400	LCSD	Aqı	ueous	GC/MS T	01/30/18	01/3	30/18 11:34	180130L016	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.004600	92	0.004400	88	80-120	4	0-20	

Geosyntec Consultants

Date Received:

Work Order:

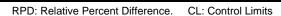
San Francisco, CA 94105-2811

Preparation:

Method:

Date Received:

01/19/18


01/19/18

01/19/18

Non-Condense Service Se

Project: ESTCP C. Pendleton WR2274 Page 15 of 15

Quality Control Sample ID	Type	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1402	LCS	Aqı	ieous	GC/MS T	01/31/18	01/3	1/18 10:26	180131L014	
099-10-022-1402	LCSD	Aqu	ieous	GC/MS T	01/31/18	01/3	1/18 11:46	180131L014	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.004500	90	0.004300	86	80-120	5	0-20	

Sample Analysis Summary Report

Work Order: 18-01-1452				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3010A Total	935	ICP 7300	1
EPA 6010B	EPA 3050B	935	ICP 7300	1
EPA 7470A	EPA 7470A Total	868	Mercury 07	1
EPA 7471A	EPA 7471A Total	868	Mercury 07	1
EPA 8015B (M)	EPA 3510C	972	GC 45	1
EPA 8015B (M)	EPA 3550B	682	GC 46	1
EPA 8260B	EPA 5030C	316	GC/MS L	2
EPA 8260B	EPA 5030C	823	GC/MS R	2
EPA 8260B	EPA 5030C	996	GC/MS UU	2
RSK-175M	N/A	748	GC 52	2
RSK-175M	N/A	1144	GC 52	2
RSK-175M	N/A	1145	GC 52	2
SRL 524M-TCP	EPA 5030C	867	GC/MS T	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

SG

Glossary of Terms and Qualifiers

Work Order: 18-01-1452 Page 1 of 1

Qualifiers	Definition
*	See applicable analysis comment.
	Less than the indicated value.
<	Greater than the indicated value.
>	
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

X % Recovery and/or RPD out-of-range.Z Analyte presence was not confirmed by second column or GC/MS analysis.

The sample extract was subjected to Silica Gel treatment prior to analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Document Number:, 11407

18-01-1452

Analysis Request and Chain of Custody Record

Condition of Bottles Lab Use White copy: to accompany samples Only Yellow copy: field copy Page 1 of 2 □ Rush Date (Time Turn-around Time: Comments Normal 欧 **Bottle Type and Volume/Preservative** Number of Containers Required Analyses 1. Received by (Signiture/Affiliation) WSE1-7521 471-n452 142 N SAOCs by 8270 **NOCs ply** Date Time Sample Type Saker Saker L 471 0450 1025 205 552 0360 0389 0380 1005 Carrier/Waybill No. Project Number しんようが Project Contact Lab Contact S.Nomk 1/12/2018 ab Phone Date Sample Name Special Instructions: 1. Relinquished by, CALL-4812-35-37 FE-25- HPO4-25-27 \$ CO22-HPUS-55-57 11 CA22-1485-43-45 CA22- 41/10 - 43-45 CP22-HP10- 39-41 G4- 4817-50-41 CALL- HON - 43-45 コストーはいるとう - P22- HPH-39-41 ÉSTOP C. Pendlesson (Signiture/Affiliation) Laboratory Name Samplers Names B. Rodwell PUPZAISOILA Project Name ab Address

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586

Time

Date

2. Received by (Signiture/Affiliation)

Date O

Time Date Time

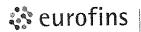
3. Relinquished by

(Signiture/Affiliation)

Geosyntech

consultants

2. Relinquished by

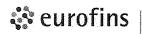

(Signiture/Affiliation)

Received by (Signiture/Affiliation)

Time

Date

consultants


Calscience

Page 58 of 59
WORK ORDER NUMBER: 18-01- ₹452

SAMPLE RECEIPT CHECKLIST

COOLER _ | OF _ |

CLIENT: GEOSYMIEC	DATE	: <u>01 / \</u>	9/2	.018
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: +0.2°C); Temperature (w/o CF):		Blank	□ S	ample
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: ☐ Air ☐ Filter		Checked	ру: <u>(</u>	<u> </u>
CUSTODY SEAL: Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present	□ N/A □ N/A	Checked Checked		
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete		7	No	N/A
□ No analysis requested □ Not relinquished □ No relinquished date □ No relinquished sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition Proper containers for analyses requested Sufficient volume/mass for analyses requested				
Samples received within holding time Aqueous samples for certain analyses received within 15-minute holding time □ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen Proper preservation chemical(s) noted on COC and/or sample container Unpreserved aqueous sample(s) received for certain analyses		. <u>p</u> o _,		
□ Volatile Organics □ Total Metals □ Dissolved Metals Acid/base preserved samples - pH within acceptable range Container(s) for certain analysis free of headspace □ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 45		<u>d</u> o	ď	
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Ha Tedlar™ bag(s) free of condensation	 k Lot Numb	oer:		Ø
CONTAINER TYPE: Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ □ 100PJna₂ □ 125AGB □ 125AGBh □ 125. □ 250AGB □ 250CGB □ 250CGBs (pH_2) □ 250PB □ 250PBn (pH_2) □ 500AGB □ 500 □ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve () □ EnCores® () □ TerraCores® () Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other Matrix (Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Preservative: b = buffered, f = filtered, h = HCl, n = HNO₃, na = NaOH, na₂ = Na₂S₂O₃, p = H₃P s = H₂SO₄, u = ultra-pure, x = Na₂SO₃+NaHSO₄.H₂O, znna = Zn (CH₃CO₂)₂ + Na	□ □) □ _): □ Z = Ziploc/Re	□ □ □ esealable Ba	 ng d by: _	70

Calscience

WORK ORDER NUMBER: 18-01- / 4± ≥

SAMPLE ANOMALY REPORT

DATE: <u>01 //9 / 2018</u>

SAMPLE	S, CONTAIN	ERS, AN	D LABEL	S:		Comme	nts			
☐ Sample	(s) NOT RECE	IVED but	listed on Co	OC OC						
☐ Sample	(s) received bu	it NOT LIS	STED on CO	С						
☐ Holding	time expired (list client c	or ECI samp	le ID and ana	lysis)	-				
☐ Insuffici	ent sample am	ount for re	equested ar	nalysis (list and	alysis)					
☐ Imprope	er container(s)	used (list a	analysis)							
☐ Imprope	er preservative	used (list	analysis)							
☐ pH outs	ide acceptable	range (lis	t analysis)							
☐ No pres	ervative noted	on COC o	or label (list	analysis and i	notify lab)					
☐ Sample	container(s) n	ot labeled					valance valanc			
☐ Client s	ample label(s)	illegible (li	st containe	r type and ana	ılysis)	***************************************				
☐ Client s	ample label(s)	do not ma	itch COC (c	omment)		*****		**************************************		
□ Proj	ect information									
☐ Clie	nt sample ID					-				
□ Sam	pling date and	or time				·				
□ Num	ber of contain	er(s)								
□ Req	uested analysi	s								
□ Sample	container(s) c	ompromise	ed (comme	nt)						
□ Brok	en									
□Wat	er present in s	ample con	tainer							
☐ Air sam	ple container(s) compron	nised (comi	ment)						
☐ Flat										
□ Very	low in volume	•					,,			
□ Leal	king (not transf	erred; dup	licate bag s	submitted)						
□ Leal	king (transferre	d into ECI	Tedlar™ b	ags*)						
□ Leal	king (transferre	d into clier	nt's Tedlar [⊤]	^м bags*)						
* Transfe	rred at client's req	uest.								
MISCELL	ANEOUS: (Describe)				Comme	nts			
								- · · · · · · · · · · · · · · · · · · ·		
HEADSP	ACE:									
(Containers v	vith bubble > 6 mm	or ¼ inch for	r volatile organ	ic or dissolved gas	s analysis)	(Containers w	ith bubble for othe	er analysis)		
ECI Sample ID	ECI Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**	Requested Analysis	
2	B.C.EF	6	11	C.F	6					
	F	6		<u> </u>						
\$	 	6			<u> </u>					
	CEF	1						-		
6	BCEF	5								
Comments	s:								A	
								. R	eported by: 778 eviewed by: 1050	
** Record the	total number of co	ntainers (i.e.	, vials or bottle	s) for the affected	sample.			Re	eviewed by: 1050	

Calscience

WORK ORDER NUMBER: 18-09-0814

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: ESTCP C. Pendleton WR2274

Attention: Lea Kane

595 Market Street

Suite 610

San Francisco, CA 94105-2811

ResultLink)

Email your PM >

Approved for release on 09/26/2018 by:

Stephen Nowak Project Manager

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	ESTCP C. Pendleton WR2274
----------------------	---------------------------

Work Order Number: 18-09-0814

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 RSK-175M (Aqueous). 4.2 EPA 300.0 Anions (Aqueous). 4.3 EPA 200.7 ICP Metals (Aqueous). 4.4 SRL 524M-TCP 1,2,3-Trichloropropane (Aqueous).	6 6 7 8 9
5	Quality Control Sample Data	11 11 14
6	Sample Analysis Summary	19
7	Glossary of Terms and Qualifiers	20
8	Chain-of-Custody/Sample Receipt Form	21

Work Order Narrative

Work Order: 18-09-0814 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/12/18. They were assigned to Work Order 18-09-0814.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

ESTCP C. Pendleton WR2274

Sample Summary

Client: Geosyntec Consultants

San Francisco, CA 94105-2811

595 Market Street, Suite 610 Project Name:

PO Number:

Work Order:

Date/Time

Received: Number of

Containers:

09/12/18 18:30

18-09-0814

50

Lea Kane Attn:

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
CP22-PMW07B	18-09-0814-1	09/12/18 10:41	8	Aqueous
CP22-PMW08B	18-09-0814-2	09/12/18 11:24	8	Aqueous
CP22-PMW10B	18-09-0814-3	09/12/18 12:14	8	Aqueous
CP22-PMW04	18-09-0814-4	09/12/18 13:04	8	Aqueous
DUP	18-09-0814-5	09/12/18 00:00	8	Aqueous
220205-MWX	18-09-0814-6	09/12/18 13:50	8	Aqueous
EB-BT-20180912	18-09-0814-7	09/12/18 13:24	2	Aqueous

Detections Summary

Client: Geosyntec Consultants

Work Order: 18-09-0814

595 Market Street, Suite 610

Project Name: ESTCP C. Pendleton WR2274

San Francisco, CA 94105-2811

Received: 09/12/18

Attn: Lea Kane Page 1 of 1

Client SampleID							
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>	
CP22-PMW07B (18-09-0814-1)							
Sulfate	92		1.0	mg/L	EPA 300.0	N/A	
1,2,3-Trichloropropane	0.042		0.0050	ug/L	SRL 524M-TCP	EPA 5030C	
CP22-PMW08B (18-09-0814-2)							
Sulfate	99		1.0	mg/L	EPA 300.0	N/A	
CP22-PMW10B (18-09-0814-3)							
1,2,3-Trichloropropane	0.014		0.0050	ug/L	SRL 524M-TCP	EPA 5030C	
CP22-PMW04 (18-09-0814-4)							
Sulfate	86		1.0	mg/L	EPA 300.0	N/A	
1,2,3-Trichloropropane	0.72		0.050	ug/L	SRL 524M-TCP	EPA 5030C	
DUP (18-09-0814-5)							
Sulfate	85		1.0	mg/L	EPA 300.0	N/A	
1,2,3-Trichloropropane	0.60		0.050	ug/L	SRL 524M-TCP	EPA 5030C	
220205-MWX (18-09-0814-6)							
Sulfate	96		1.0	mg/L	EPA 300.0	N/A	
1,2,3-Trichloropropane	3.9		0.25	ug/L	SRL 524M-TCP	EPA 5030C	

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Geosyntec Consultants

Analytical Report

Date Received:

595 Market Street, Suite 610			Work Orde	r:			18-09-0814
San Francisco, CA 94105-2811			Preparation	n:			N/A
			Method:				RSK-175M
			Units:				ug/L
Project: ESTCP C. Pendleton WR	2274					Pa	nge 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-PMW07B	18-09-0814-1-E	09/12/18 10:41	Aqueous	GC 61	N/A	09/13/18 16:46	180913L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-PMW08B	18-09-0814-2-E	09/12/18 11:24	Aqueous	GC 61	N/A	09/13/18 17:10	180913L01
Parameter		Result	<u>RL</u>	i	<u>DF</u>	<u>Qua</u>	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-PMW10B	18-09-0814-3-E	09/12/18 12:14	Aqueous	GC 61	N/A	09/13/18 17:38	180913L01
<u>Parameter</u>		Result	RL	:	DF	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP22-PMW04	18-09-0814-4-E	09/12/18 13:04	Aqueous	GC 61	N/A	09/13/18 18:02	180913L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
DUP	18-09-0814-5-E	09/12/18 00:00	Aqueous	GC 61	N/A	09/13/18 18:29	180913L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
220205-MWX	18-09-0814-6-E	09/12/18 13:50	Aqueous	GC 61	N/A	09/13/18 19:06	180913L01
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
Method Blank	099-14-325-109	N/A	Aqueous	GC 61	N/A	09/13/18 10:56	180913L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

18-09-0814

Qualifiers

180913L02

09/14/18 10:20

Geosyntec Consultants

<u>Parameter</u>

Sulfate

Sulfate

DUP

595 Market Street, Suite 610

Analytical Report

Date Received:

Work Order:

San Francisco, CA 94105-2		Preparation Method:	:			N/A EPA 300.0	
Project: ESTCP C. Pendleto	on WR2274		Units:			Pa	mg/L age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-PMW07B	18-09-0814-1-G	09/12/18 10:41	Aqueous	IC 15	N/A	09/14/18 05:46	180913L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Sulfate		92	1.0		1.00		
CP22-PMW08B	18-09-0814-2-G	09/12/18 11:24	Aqueous	IC 15	N/A	09/14/18 06:09	180913L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Sulfate		99	1.0		1.00		
CP22-PMW10B	18-09-0814-3-G	09/12/18 12:14	Aqueous	IC 15	N/A	09/14/18 09:39	180913L02
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Sulfate		ND	1.0		1.00		
CP22-PMW04	18-09-0814-4-G	09/12/18 13:04	Aqueous	IC 15	N/A	09/14/18 10:00	180913L02

<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Sulfate		85	1.0	1.00	
OCCOOL BUILD	40.00.0044.0.0	00/40/40	A 10 45	N/A	00/44/40 4000401.00
220205-MWX	18-09-0814-6-G	09/12/18 13:50	Aqueous IC 15	N/A	09/14/18 180913L02 10:40
<u>Parameter</u>		Result	RL	<u>DF</u>	<u>Qualifiers</u>

<u>RL</u>

1.0

1.0

Aqueous

IC 15

<u>DF</u>

1.00

1.00

N/A

Result

09/12/18 00:00

86

96

18-09-0814-5-G

Method Blank	099-12-906-8778	N/A	Aqueous IC 15	N/A	09/14/18 180913L 02:23	L02
<u>Parameter</u>	·	Result	<u>RL</u>	DF	<u>Qualifiers</u>	
Sulfate		ND	1.0	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Zinc

Analytical Report

Geosyntec Consultants			Date Recei	ved:			09/12/18
595 Market Street, Suite 610			Work Order	r:			18-09-0814
San Francisco, CA 94105-2811			Preparation	n:			Filtered
			Method:				EPA 200.7
			Units:				mg/L
Project: ESTCP C. Pendleton WR2	2274					Pa	ige 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-PMW07B	18-09-0814-1-H	09/12/18 10:41	Aqueous	ICP 8300	09/18/18	09/19/18 20:22	180918LA1F
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Zinc		ND	0.0)100	1.00		
CP22-PMW08B	18-09-0814-2-H	09/12/18 11:24	Aqueous	ICP 8300	09/18/18	09/19/18 20:27	180918LA1F
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Zinc		ND	0.0	100	1.00		
CP22-PMW10B	18-09-0814-3-H	09/12/18 12:14	Aqueous	ICP 8300	09/18/18	09/19/18 20:28	180918LA1F
Parameter		Result	RL	•	<u>DF</u>	Qua	alifiers
Zinc		ND	0.0	100	1.00		
CP22-PMW04	18-09-0814-4-H	09/12/18 13:04	Aqueous	ICP 8300	09/18/18	09/19/18 20:32	180918LA1F
Parameter		Result	RL	•	DF	Qua	<u>alifiers</u>
Zinc		ND	0.0)100	1.00		
DUP	18-09-0814-5-H	09/12/18 00:00	Aqueous	ICP 8300	09/18/18	09/19/18 20:34	180918LA1F
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		ND	0.0	100	1.00		
220205-MWX	18-09-0814-6-H	09/12/18 13:50	Aqueous	ICP 8300	09/18/18	09/19/18 20:35	180918LA1F
Parameter		Result	RL	•	DF	Qua	alifiers
Zinc		ND	0.0)100	1.00		
Method Blank	099-14-304-773	N/A	Aqueous	ICP 8300	09/18/18	09/19/18 19:58	180918LA1F
Parameter		Result	RL		DF	Ous	alifiers

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

0.0100

1.00

ND

Geosyntec Consultants			Date Recei	ved:			09/12/18
595 Market Street, Suite 610		,	Work Orde	r:			18-09-0814
San Francisco, CA 94105-2811			Preparation	n:			EPA 5030C
			Method:			S	RL 524M-TCP
			Units:				ug/L
Project: ESTCP C. Pendleton WR.	2274					Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-PMW07B	18-09-0814-1-A	09/12/18 10:41	Aqueous	GC/MS M	09/17/18	09/17/18 20:08	180917L031
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
1,2,3-Trichloropropane		0.042	0.0	0050	1.00		
CP22-PMW08B	18-09-0814-2-A	09/12/18 11:24	Aqueous	GC/MS M	09/17/18	09/17/18 20:38	180917L031
<u>Parameter</u>		Result	RL	:	DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-PMW10B	18-09-0814-3-A	09/12/18 12:14	Aqueous	GC/MS M	09/17/18	09/17/18 21:07	180917L031
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		0.014	0.0	0050	1.00		
CP22-PMW04	18-09-0814-4-B	09/12/18 13:04	Aqueous	GC/MS M	09/18/18	09/18/18 13:26	180918L048
<u>Parameter</u>	·	Result	RL	•	DF	Qua	alifiers
1,2,3-Trichloropropane		0.72	0.0)50	10.0		
DUP	18-09-0814-5-B	09/12/18 00:00	Aqueous	GC/MS M	09/18/18	09/18/18 15:25	180918L048
<u>Parameter</u>		Result	<u>RL</u>	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.60	0.0)50	10.0		
220205-MWX	18-09-0814-6-B	09/12/18 13:50	Aqueous	GC/MS M	09/18/18	09/18/18 12:57	180918L048
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		3.9	0.2	25	50.0		
EB-BT-20180912	18-09-0814-7-A	09/12/18 13:24	Aqueous	GC/MS M	09/17/18	09/17/18 22:06	180917L031
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
Method Blank	099-10-022-1470	N/A	Aqueous	GC/MS M	09/17/18	09/17/18 18:39	180917L031
Parameter		Result	RL		DF	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 09/12/18

 595 Market Street, Suite 610
 Work Order:
 18-09-0814

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 SRL 524M-TCP

 Units:
 ug/L

Project: ESTCP C. Pendleton WR2274 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-022-1471	N/A	Aqueous	GC/MS M	09/18/18	09/18/18 11:20	180918L048
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
1,2,3-Trichloropropane		ND	0.0	050	1.00		

Geosyntec Consultants

Date Received:

Work Order:

18-09-0814

San Francisco, CA 94105-2811

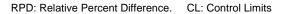
Preparation:

N/A

Method:

Date Received:

09/12/18


N9/12/18

N/A

EPA 300.0

Project: ESTCP C. Pendleton WR2274 Page 1 of 3

Quality Control Sample ID	Type	Matrix	Matrix Instrument		Date Prepared	Date Analyzed		MS/MSD Batch Numbe	
18-09-0820-9	Sample	Aqueo	Aqueous IC 15		N/A	09/14/18 0	5:26	180913S02	
18-09-0820-9	Matrix Spike	Aqueo	Aqueous IC 15		N/A	09/14/18 1	1:01	180913S02	
18-09-0820-9	Matrix Spike Dup	licate Aqueo	Aqueous IC 15		N/A	09/14/18 1	1:21	180913S02	
Parameter		oike MS dded Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Sulfate	ND 50	0.00 49.86	100	48.58	97	80-120	3	0-20	

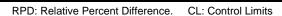
Geosyntec Consultants

Date Received:

Work Order:

18-09-0814

San Francisco, CA 94105-2811


Preparation:

Method:

EPA 200.7

Project: ESTCP C. Pendleton WR2274 Page 2 of 3

Quality Control Sample ID	Туре		Matrix	Matrix Instrument		Date Prepared Date Analyzed		lyzed	MS/MSD Batch Number	
CP22-PMW07B	Sample		Aqueou	Aqueous ICP 830		09/18/18	09/19/18	20:22	180918SA1	
CP22-PMW07B	Matrix Spike		Aqueou	s IC	P 8300	09/18/18	09/19/18	20:24	180918SA1	
CP22-PMW07B	Matrix Spike Duplicate		Aqueous ICP 8300		P 8300	09/18/18	09/19/18	20:25	180918SA1	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	ND	0.5000	0.5046	101	0.4946	99	80-120	2	0-20	

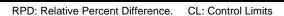
Geosyntec Consultants

Date Received:

Work Order:

18-09-0814

San Francisco, CA 94105-2811


Preparation:

Method:

SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 3 of 3

Quality Control Sample ID	Туре		Matrix	I	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
220205-MWX	Sample		Aqueou	us (GC/MS M	09/18/18	09/18/18	12:57	180918S014	
220205-MWX	Matrix Spike		Aqueou	us (GC/MS M	09/18/18	09/18/18	13:56	180918S014	
220205-MWX	Matrix Spike	Duplicate	Aqueou	us (GC/MS M	09/18/18	09/18/18	14:26	180918S014	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	3.895	0.2500	4.085	76	4.030	54	70-130	1	0-20	3

Quality Control - LCS/LCSD

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

18-09-0814 N/A

RSK-175M

09/12/18

Page 1 of 5

Project: ESTCP C. Pendleton WR2274

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-14-325-109	LCS	Aqı	leous	GC 61	N/A	09/1	3/18 09:44	180913L01	
099-14-325-109	LCSD	Aqı	leous	GC 61	N/A	09/1	3/18 10:12	180913L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Propene	103.0	95.57	93	95.58	93	80-120	0	0-20	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

18-09-0814 N/A

09/12/18

EPA 300.0

Project: ESTCP C. Pendleton WR2274

Page 2 of 5

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-12-906-8778	LCS	Aqueous	IC 15	N/A	09/14/18 02:43	180913L02
<u>Parameter</u>		Spike Added	Conc. Recove	ered LCS %R	ec. %Rec	. CL Qualifiers
Sulfate		50.00	48.54	97	90-110	0

Quality Control - LCS

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/12/18 18-09-0814 Filtered

EPA 200.7 Page 3 of 5

Project: ESTCP C. Pendleton WR2274

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-304-773	LCS	Aqueous	ICP 8300	09/18/18	09/19/18 20:00	180918LA1F
Parameter		Spike Added	Conc. Recover	red LCS %Re	ec. %Rec	. CL Qualifiers
Zinc		0.5000	0.5674	113	85-11	5

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

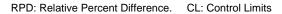
Geosyntec Consultants

Date Received:

Work Order:

18-09-0814

San Francisco, CA 94105-2811


Preparation:

Method:

SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 4 of 5

Quality Control Sample ID	Type	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-10-022-1470	LCS	Aqı	ieous	GC/MS M	09/17/18	09/17	7/18 17:40	180917L031	
099-10-022-1470	LCSD	Aqu	ieous	GC/MS M	09/17/18	09/17	7/18 18:09	180917L031	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005000	0.005700	114	0.004900	98	80-120	15	0-20	

Quality Control - LCS

Geosyntec Consultants

Date Received:

Work Order:

18-09-0814

San Francisco, CA 94105-2811

Preparation:

Method:

SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 5 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-10-022-1471	LCS	Aqueous	GC/MS M	09/18/18	09/18/18 09:59	180918L048
Parameter		Spike Added	Conc. Recover	ed LCS %R	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.005000	0.004800	96	80-12	0

RPD: Relative Percent Difference. CL: Control Limits

Sample Analysis Summary Report

Work Order: 18-09-0814				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 200.7	Filtered	110	ICP 8300	1
EPA 300.0	N/A	1037	IC 15	1
RSK-175M	N/A	1158	GC 61	2
SRL 524M-TCP	EPA 5030C	486	GC/MS M	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 18-09-0814 Page 1 of 1

Qualifiers	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.
 - Solid Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Document Number:, 11489

		Analy	Analysis Request and Chain of Custody Record	uest a	o pur	hain	of Cus	stody	Record	18-09-0814	4
Project Name Ester C.PenJuhn	Project Number いん 22チャ	ber 234				Requir	Required Analyses	lyses		Page of	
	Project Contact	act		_		かー	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,		1	
ame ct.	Lab Contact	Nowak			0728	whosa	F.00	0. •0 € +		White copy: to accompany samples	nv samples
Lab Address	Lab Phone			·		nts C				Vellow conv. field conv	Solding (
	Carrier/Waybill No.	oill No.		VOC5	SAOC	ا به ا	andral a not	ציולי		Calcoa coloy.	Ádos
:				_	Bottle	Type	d Volume	and Volume/Preservative	ıtive		Lab Use
			Sample								Only
Sample Name	Date	Time	Type			dumber	Number of Containers	tainers	,	Comments	Condition of Bottles
422-PMW078	81-21-60	1401	Various			~					
CP22-PMW 08B		1124				~	-				,
CP22-PMW10B		12114				~		-			1
6922- Pmw04		1204				^	- ×	_			1
DUP						~	1 ~	_			10
01		1250				3 3	-	_			7
EB-8T-20180912	-1	1324	Vedo	ą.		2					7
Special Instructions: To	Total Zing	3	EPA 2007	10 Li	1 (250 NP Pally	Same	pullened	1.5	Jab	Turn-around Time:	
		2			-		-	4		[本] Normal 口 Rush:	
1. Relinquished by (Signiture/Affiliation)	D		Date Time	8/21/6	D	1. Rec (Signiture)	1. Received by (Signiture/Affiliation)	<u>^</u>		Date O	2412/18 B
2. Relinquished by (Signiture/Affiliation)		1	Date C Time	21160	<u> </u>	2. Rec (Signiture/	2. Received by (Signiture/Affiliation)	> \		Date	3/3/8
3. Relinquished by (Signiture/Affiliation)			Date Time			3. Rec (Signiture/	3. Received by (Signiture/Affiliation)	>		Date	Γ_{λ}

Geosyntec P 10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-658 Fax: (858) 674-6586 consultants

Calscience

WORK ORDER NUMBER: 18-29 12-20 8 4

	SAMPLE RECEIPT C	HECKLIST	C	OOLER_		OF
CLIENT: GEOSYNTEC			DATI	E: <u>09 /1</u>	21	2018
TEMPERATURE: (Criteria: 0.0°C – 6.	0°C, not frozen except sedimen	ıt/tissue)				
Thermometer ID: SC6 (CF: -0.5°C); To	emperature (w/o CF): 3. 8	_°C (w/ CF):	<u>3.3</u> °c;	Z Blank		Sample
☐ Sample(s) outside temperature o	criteria (PM/APM contacted by:)				
☐ Sample(s) outside temperature o	criteria but received on ice/chille	d on same day o	f sampling			
☐ Sample(s) received at ambient tem	perature; placed on ice for trans	port by courier				
Ambient Temperature: ☐ Air ☐ Filter	•			Checked	by: _	UBUK
CUSTODY SEAL:						
Cooler	☐ Present but Not Intact	Not Present	□ N/A	Checked	bу: <u></u>	<u>JBUK</u>
Sample(s)	☐ Present but Not Intact	Not Present	□ N/A	Checked	by: _i	H4MW
SAMPLE CONDITION:				Yes	No	N/A
Chain-of-Custody (COC) document(s)	received with samples					
COC document(s) received complete						
☐ Sampling date ☐ Sampling time						
☐ No analysis requested ☐ Not re			quished time			
Sampler's name indicated on COC						
Sample container label(s) consistent v						
Sample container(s) intact and in good	d condition			Ø		
Proper containers for analyses reques	ted					
Sufficient volume/mass for analyses re	equested			也,		
Samples received within holding time				. p		
Aqueous samples for certain analy						
☐ pH ☐ Residual Chlorine ☐ Di						8
Proper preservation chemical(s) noted	on COC and/or sample contain	ner	· · · · · · · · · · · · · · · · · · ·			
Unpreserved aqueous sample(s) re						
☐ Volatile Organics ☐ Total Meta						
Acid/base preserved samples - pH wit	hin acceptable range	.,		. 🗆		
Container(s) for certain analysis free of	of headspace		· · · · · · · · · · · · · · · · · · ·	. 🗷		
☑ Volatile Organics ☐ Dissolved	Gases (RSK-175) ☐ Dissolved	d Oxygen (SM 45	00)			
☐ Carbon Dioxide (SM 4500) ☐ F	Ferrous Iron (SM 3500) 🗆 Hyd	rogen Sulfide (Ha	ach)			
Tedlar™ bag(s) free of condensation				. 🗆		Ø
CONTAINER TYPE:	A.	(Trip Blan	k Lot Numb	er:)
Aqueous: VOA VOAn VOAna2] 100PJ] 125AGBh ☐ 125	AGB p 12 125F	PB 🗆 125P8	Bznna	(pH9)
☐ 250AGB ☐ 250CGB ☐ 250CGBs (pH_	_2) Z 250PB 🗆 250PBn (pH2)	□ 500AGB □ 500	AGJ 🗖 500A	GJs (pH2	D 5	00PB
□ 1AGR □ 1AGBna₂ □ 1AGBs (pH 2)	☐ 1AGBs (O&G) ☐ 1PB ☐ 1PBna	(pH12) 🗆				
Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ	☐ Sleeve () ☐ EnCores® () □ TerraCores® (_) 🗆			
Air: ☐ Tedlar™ ☐ Canister ☐ Sorbent Tu						
Container: A = Amber, B = Bottle, C = Cle	ear, $E = Envelope$, $G = Glass$, $J = J$	ar, P = Plastic, and	Z = Ziploc/Re	sealable Bag	3	ide) . a . a !
Preservative: b = buffered, f = filtered, h =	:HCl, n = HNO₃, na = NaOH, na₂ =	$= Na_2S_2O_3, p = H_3P$	O ₄ , Labele	d/Checked	l by: <u>1</u>	77MW +11-
$s = H_2SO_4$, $u = ultra-pure$, x	= Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, znna = 2	Zn (CH₃CO₂)₂ + Na	ОН	Reviewed	l by: _	11/2

Calscience

WORK ORDER NUMBER: 18-09-0815

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: ESTCP C. Pendleton WR2274

Attention: Lea Kane

595 Market Street

Suite 610

San Francisco, CA 94105-2811

Approx

Approved for release on 09/26/2018 by:

Stephen Nowak Project Manager

Email your PM)

ResultLink >

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

	Client Project Name:	ESTCP C. Pendleton WR2274
--	----------------------	---------------------------

Work Order Number: 18-09-0815

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 RSK-175M (Aqueous). 4.2 EPA 200.7 ICP Metals (Aqueous). 4.3 SRL 524M-TCP 1,2,3-Trichloropropane (Aqueous).	6 6 8 10
5	Quality Control Sample Data	12 12 16
6	Sample Analysis Summary	21
7	Glossary of Terms and Qualifiers	22
8	Chain-of-Custody/Sample Receipt Form	23

Work Order Narrative

Work Order: 18-09-0815 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/12/18. They were assigned to Work Order 18-09-0815.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

Sample Summary

Client: Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Work Order:

Project Name:

18-09-0815

ESTCP C. Pendleton WR2274

PO Number:

Date/Time

Received:

Number of Containers: 09/12/18 18:30

67

Lea Kane Attn:

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
T-Blank 20180912	18-09-0815-1	09/12/18 08:50	2	Aqueous
E-Blank 20180912	18-09-0815-2	09/12/18 08:55	2	Aqueous
F-Blank 20180912	18-09-0815-3	09/12/18 09:00	2	Aqueous
DUP-20180912	18-09-0815-4	09/12/18 15:00	7	Aqueous
CP22-HP01-31-33	18-09-0815-5	09/12/18 11:05	7	Aqueous
CP22-HP01-35-37	18-09-0815-6	09/12/18 11:15	2	Aqueous
CP22-HP01-39-41	18-09-0815-7	09/12/18 11:10	7	Aqueous
CP22-HP02-31-33	18-09-0815-8	09/12/18 13:35	7	Aqueous
CP22-HP02-35-37	18-09-0815-9	09/12/18 13:20	7	Aqueous
CP22-HP02-39-41	18-09-0815-10	09/12/18 13:25	7	Aqueous
CP22-HP03-31-33	18-09-0815-11	09/12/18 15:45	7	Aqueous
CP22-HP03-35-37	18-09-0815-12	09/12/18 15:30	7	Aqueous
CP22-HP03-39-41	18-09-0815-13	09/12/18 15:55	3	Aqueous

Detections Summary

Client: Geosyntec Consultants Work Order: 18-09-0815

595 Market Street, Suite 610 Project Name: ESTCP C. Pendleton WR2274

San Francisco, CA 94105-2811 Received: 09/12/18

Attn: Lea Kane Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
DUP-20180912 (18-09-0815-4)						
1,2,3-Trichloropropane	0.27		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP01-31-33 (18-09-0815-5)						
Zinc	0.122		0.0100	mg/L	EPA 200.7	Filtered
1,2,3-Trichloropropane	0.29		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP01-35-37 (18-09-0815-6)						
1,2,3-Trichloropropane	0.17		0.010	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP01-39-41 (18-09-0815-7)						
Zinc	0.808		0.0100	mg/L	EPA 200.7	Filtered
Propene	1.65		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.28		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP02-31-33 (18-09-0815-8)						
Zinc	0.378		0.0100	mg/L	EPA 200.7	Filtered
Propene	4.56		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.089		0.010	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP02-35-37 (18-09-0815-9)						
Propene	2.36		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.36		0.050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP02-39-41 (18-09-0815-10)						
Propene	1.57		1.00	ug/L	RSK-175M	N/A
CP22-HP03-31-33 (18-09-0815-11)						
Zinc	0.0136		0.0100	mg/L	EPA 200.7	Filtered
1,2,3-Trichloropropane	0.17		0.010	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP03-35-37 (18-09-0815-12)						
Propene	2.14		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.027		0.0050	ug/L	SRL 524M-TCP	EPA 5030C

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Geosyntec Consultants			Date Recei	ved:			09/12/18
595 Market Street, Suite 610			Work Orde	r:			18-09-0815
San Francisco, CA 94105-2811			Preparation	n:			N/A
•			Method:				RSK-175M
			Units:				ug/L
Project: ESTCP C. Pendleton WR	2274					Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
DUP-20180912	18-09-0815-4-E	09/12/18 15:00	Aqueous	GC 61	N/A	09/13/18 13:25	180913L01
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP01-31-33	18-09-0815-5-E	09/12/18 11:05	Aqueous	GC 61	N/A	09/13/18 13:52	180913L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP01-39-41	18-09-0815-7-E	09/12/18 11:10	Aqueous	GC 61	N/A	09/13/18 14:16	180913L01
<u>Parameter</u>		Result	RL	<u> </u>	DF	Qua	<u>alifiers</u>
Propene		1.65	1.0	00	1.00		
CP22-HP02-31-33	18-09-0815-8-E	09/12/18 13:35	Aqueous	GC 61	N/A	09/13/18 14:42	180913L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
Propene		4.56	1.0	00	1.00		
CP22-HP02-35-37	18-09-0815-9-E	09/12/18 13:20	Aqueous	GC 61	N/A	09/13/18 15:07	180913L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Propene		2.36	1.0	00	1.00		
CP22-HP02-39-41	18-09-0815-10-E	09/12/18 13:25	Aqueous	GC 61	N/A	09/13/18 15:31	180913L01
<u>Parameter</u>		Result	<u>RL</u>	=	<u>DF</u>	Qua	<u>alifiers</u>
Propene		1.57	1.0	00	1.00		
CP22-HP03-31-33	18-09-0815-11-E	09/12/18 15:45	Aqueous	GC 61	N/A	09/13/18 15:56	180913L01
Parameter		Result	RL	-	DF	Qua	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP22-HP03-35-37	18-09-0815-12-E	09/12/18 15:30	Aqueous	GC 61	N/A	09/13/18 16:22	180913L01
Parameter		Result	RL		DF	Qua	<u>alifiers</u>
Dunnana		0.44	4 ^	20	4.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Propene

1.00

1.00

2.14

 Geosyntec Consultants
 Date Received:
 09/12/18

 595 Market Street, Suite 610
 Work Order:
 18-09-0815

 San Francisco, CA 94105-2811
 Preparation:
 N/A

 Method:
 RSK-175M

 Units:
 ug/L

Project: ESTCP C. Pendleton WR2274 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-325-109	N/A	Aqueous	GC 61	N/A	09/13/18 10:56	180913L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Propene		ND	1.0	00	1.00		

Geosyntec Consultants

Zinc

7inc

CP22-HP02-39-41

<u>Parameter</u>

Analytical Report

Date Received:

Work Order: 18-09-0815 595 Market Street, Suite 610 Preparation: San Francisco, CA 94105-2811 Filtered Method: EPA 200.7 Units: mg/L Project: ESTCP C. Pendleton WR2274 Page 1 of 2 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed 09/12/18 15:00 09/19/18 20:36 DUP-20180912 18-09-0815-4-G **ICP 8300** 09/18/18 180918LA1F Aqueous **Parameter** <u>RL</u> <u>DF</u> Qualifiers Result Zinc ND 0.0100 1.00 CP22-HP01-31-33 18-09-0815-5-G 09/19/18 09/12/18 Aqueous **ICP 8300** 09/18/18 180918LA1F 11:05 20:41 Result <u>RL</u> DF Qualifiers <u>Parameter</u> 0.0100 Zinc 0.122 1.00 09/12/18 CP22-HP01-39-41 18-09-0815-7-G **ICP 8300** 09/18/18 09/19/18 180918LA1F Aqueous 11:10 20:42 RL DF Qualifiers <u>Parameter</u> Result Zinc 0.808 0.0100 1.00 CP22-HP02-31-33 18-09-0815-8-G 09/12/18 09/19/18 180918LA1F Aqueous **ICP 8300** 09/18/18 20:44 13:35 **Parameter** <u>RL</u> <u>DF</u> Qualifiers Result Zinc 0.378 0.0100 1.00 CP22-HP02-35-37 18-09-0815-9-G 09/12/18 Aqueous **ICP 8300** 09/18/18 09/19/18 180918LA1F 13:20 20:45 <u>Parameter</u> Result RL DF Qualifiers

 CP22-HP03-31-33
 18-09-0815-11-G
 09/12/18 15:45
 Aqueous ICP 8300
 09/18/18 20:51
 09/19/18 20:51

 Parameter
 Result
 RE
 DF
 Qualifiers

0.0100

<u>RL</u>

0.0100

ICP 8300

Aqueous

1.00

09/18/18

DF

1.00

09/19/18 20:49 180918LA1F

Qualifiers

ND

13:25

ND

09/12/18

Result

Zinc 0.0136 0.0100 1.00

18-09-0815-10-G

CP22-HP03-35-37 18-09-0815-12-G 09/12/18 Aqueous **ICP 8300** 09/18/18 09/19/18 180918LA1F 20:52 15:30 DF Qualifiers <u>Parameter</u> Result <u>RL</u> Zinc ND 0.0100 1.00

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 09/12/18

 595 Market Street, Suite 610
 Work Order:
 18-09-0815

 San Francisco, CA 94105-2811
 Preparation:
 Filtered

 Method:
 EPA 200.7

 Units:
 mg/L

Project: ESTCP C. Pendleton WR2274 Page 2 of 2

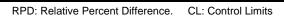
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-304-773	N/A	Aqueous	ICP 8300	09/18/18	09/19/18 19:58	180918LA1F
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Zinc		ND	0.0	100	1.00		

Geosyntec Consultants			Date Recei	ved:			09/12/18
595 Market Street, Suite 610			Work Order	r:			18-09-0815
San Francisco, CA 94105-2811			Preparation) :			EPA 5030C
			Method:			S	RL 524M-TCP
			Units:			_	ug/L
Project: ESTCP C. Pendleton WR	2274					Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
T-Blank 20180912	18-09-0815-1-A	09/12/18 08:50	Aqueous	GC/MS M	09/18/18	09/18/18 16:25	180918L048
Parameter	·	Result	RL	•	<u>DF</u>	Qu	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
E-Blank 20180912	18-09-0815-2-A	09/12/18 08:55	Aqueous	GC/MS M	09/18/18	09/18/18 16:54	180918L048
<u>Parameter</u>		Result	RL		DF	Qu	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
F-Blank 20180912	18-09-0815-3-A	09/12/18 09:00	Aqueous	GC/MS M	09/18/18	09/18/18 17:24	180918L048
Parameter		Result	RL		DF	Qu	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
DUP-20180912	18-09-0815-4-B	09/12/18 15:00	Aqueous	GC/MS M	09/19/18	09/19/18 11:16	180919L047
<u>Parameter</u>		Result	<u>RL</u>		DF	Qu	alifiers
1,2,3-Trichloropropane		0.27	0.0)25	5.00		
CP22-HP01-31-33	18-09-0815-5-B	09/12/18 11:05	Aqueous	GC/MS M	09/19/18	09/19/18 11:45	180919L047
Parameter		Result	RL	i	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
1,2,3-Trichloropropane		0.29	0.0)25	5.00		
CP22-HP01-35-37	18-09-0815-6-B	09/12/18 11:15	Aqueous	GC/MS M	09/24/18	09/24/18 11:33	180924L019
Parameter		Result	RL		DF	Qu	alifiers
1,2,3-Trichloropropane		0.17	0.0)10	2.00		
CP22-HP01-39-41	18-09-0815-7-B	09/12/18 11:10	Aqueous	GC/MS M	09/24/18	09/24/18 12:02	180924L019
Parameter		Result	RL		<u>DF</u>	Qu	alifiers
1,2,3-Trichloropropane		0.28	0.0)25	5.00		
CP22-HP02-31-33	18-09-0815-8-B	09/12/18 13:35	Aqueous	GC/MS M	09/24/18	09/24/18 12:32	180924L019
Parameter		Result	RL	:	<u>DF</u>	Qu	<u>alifiers</u>
1,2,3-Trichloropropane		0.089	0.0)10	2.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants			Date Recei	ved:			09/12/18		
595 Market Street, Suite 610		,	Work Orde	r:		18-09-0815			
San Francisco, CA 94105-2811			Preparation	n:			EPA 5030C		
			Method:			S	RL 524M-TCP		
			Units:				ug/L		
Project: ESTCP C. Pendleton WR.	2274					Pa	age 2 of 2		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
CP22-HP02-35-37	18-09-0815-9-B	09/12/18 13:20	Aqueous	GC/MS M	09/24/18	09/24/18 13:01	180924L019		
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>		
1,2,3-Trichloropropane		0.36	0.0)50	10.0				
CP22-HP02-39-41	18-09-0815-10-A	09/12/18 13:25	Aqueous	GC/MS M	09/19/18	09/19/18 15:43	180919L047		
<u>Parameter</u>		Result	RL	1	<u>DF</u>	Qua	alifiers		
1,2,3-Trichloropropane		ND	0.0	0050	1.00				
CP22-HP03-31-33	18-09-0815-11-B	09/12/18 15:45	Aqueous	GC/MS M	09/24/18	09/24/18 13:31	180924L019		
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>		
1,2,3-Trichloropropane		0.17	0.0)10	2.00				
CP22-HP03-35-37	18-09-0815-12-A	09/12/18 15:30	Aqueous	GC/MS M	09/19/18	09/19/18 16:42	180919L047		
<u>Parameter</u>		Result	RL	:	DF	Qua	alifiers		
1,2,3-Trichloropropane		0.027	0.0	0050	1.00				
CP22-HP03-39-41	18-09-0815-13-A	09/12/18 15:55	Aqueous	GC/MS M	09/19/18	09/19/18 17:12	180919L047		
<u>Parameter</u>		Result	<u>RL</u>	:	<u>DF</u>	Qua	alifiers		
1,2,3-Trichloropropane		ND	0.0	0050	1.00				
Method Blank	099-10-022-1471	N/A	Aqueous	GC/MS M	09/18/18	09/18/18 11:20	180918L048		
<u>Parameter</u>		Result	<u>RL</u>	:	<u>DF</u>	Qua	alifiers		
1,2,3-Trichloropropane		ND	0.0	0050	1.00				
Method Blank	099-10-022-1473	N/A	Aqueous	GC/MS M	09/19/18	09/19/18 10:43	180919L047		
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>		
1,2,3-Trichloropropane		ND	0.0	0050	1.00				
Method Blank	099-10-022-1474	N/A	Aqueous	GC/MS M	09/24/18	09/24/18 11:03	180924L019		
<u>Parameter</u>		Result	RL		DF	Qua	alifiers		
1,2,3-Trichloropropane		ND	0.0	0050	1.00				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
18-09-0815
San Francisco, CA 94105-2811
Preparation:
Method:
EPA 200.7

Project: ESTCP C. Pendleton WR2274 Page 1 of 4

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
DUP-20180912	Sample		Aqueous	s ICI	8300	09/18/18	09/19/18	20:36	180918SA1	4
DUP-20180912	Matrix Spike		Aqueous	s ICI	8300	09/18/18	09/19/18	20:38	180918SA1	4
DUP-20180912	Matrix Spike	Duplicate	Aqueous	s ICI	P 8300	09/18/18	09/19/18	20:39	180918SA1	4
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	ND	0.5000	0.3608	72	0.3286	66	80-120	9	0-20	3

Geosyntec Consultants

Date Received: 09/12/18

595 Market Street, Suite 610

Work Order: 18-09-0815

San Francisco, CA 94105-2811

Preparation: EPA 5030C

Method: SRL 524M-TCP

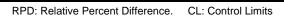
Project: ESTCP C. Pendleton WR2274 Page 2 of 4

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
18-09-0814-6	Sample		Aqueou	us G	C/MS M	09/18/18	09/18/18	12:57	180918S014	
18-09-0814-6	Matrix Spike		Aqueou	us G	C/MS M	09/18/18	09/18/18	13:56	180918S014	
18-09-0814-6	Matrix Spike I	Duplicate	Aqueou	us G	C/MS M	09/18/18	09/18/18	14:26	180918S014	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1.2.3-Trichloropropane	3.895	0.2500	4.085	76	4.030	54	70-130	1	0-20	3

Geosyntec Consultants

Date Received: 09/12/18

Work Order: 18-09-0815


San Francisco, CA 94105-2811

Preparation: EPA 5030C

Method: SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 3 of 4

Quality Control Sample ID	Type		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
DUP-20180912	Sample		Aqueou	s GC	C/MS M	09/19/18	09/19/18	11:16	1809198015	5
DUP-20180912	Matrix Spike		Aqueou	s GC	C/MS M	09/19/18	09/19/18	12:15	1809198015	5
DUP-20180912	Matrix Spike	Duplicate	Aqueou	s GC	C/MS M	09/19/18	09/19/18	12:45	1809198015	5
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.2655	0.02500	0.3155	200	0.3025	148	70-130	4	0-20	3

Geosyntec Consultants

Date Received:

Work Order:

18-09-0815

San Francisco, CA 94105-2811

Preparation:

Method:

SRL 524M-TCP

Dusing the FOTOD Co. Double to a WD0074	Dana 4 of 4
Project: ESTCP C. Pendleton WR2274	Page 4 of 4

Quality Control Sample ID	Type		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	ch Number
CP22-HP01-39-41	Sample		Aqueou	s G	C/MS M	09/24/18	09/24/18	12:02	180924S009	
CP22-HP01-39-41	Matrix Spike		Aqueou	s G	C/MS M	09/24/18	09/24/18	14:01	180924S009	
CP22-HP01-39-41	Matrix Spike	Duplicate	Aqueou	s G	C/MS M	09/24/18	09/24/18	14:30	180924S009	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.2815	0.02500	0.3705	356	0.3265	180	70-130	13	0-20	3

Quality Control - LCS/LCSD

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received:
Work Order:
Preparation:
Method:

18-09-0815 N/A

RSK-175M

09/12/18

Page 1 of 5

Project: ESTCP C. Pendleton WR2274

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-14-325-109	LCS	Aqı	ieous	GC 61	N/A	09/1	3/18 09:44	180913L01	
099-14-325-109	LCSD	Aqι	ieous	GC 61	N/A	09/1	3/18 10:12	180913L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Propene	103.0	95.57	93	95.58	93	80-120	0	0-20	

RPD: Relative Percent Difference. CL: Control Limits

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/12/18 18-09-0815 Filtered EPA 200.7

Project: ESTCP C. Pendleton WR2274 Page 2 of 5

Quality Control Sample ID	Type	Matrix	Instrument I	Date Prepared	Date Analyzed	LCS Batch Number
099-14-304-773	LCS	Aqueous	ICP 8300	09/18/18	09/19/18 20:00	180918LA1F
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Zinc		0.5000	0.5674	113	85-11	5

Geosyntec ConsultantsDate Received:09/12/18595 Market Street, Suite 610Work Order:18-09-0815San Francisco, CA 94105-2811Preparation:EPA 5030CMethod:SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 3 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-10-022-1471	LCS	Aqueous	GC/MS M	09/18/18	09/18/18 09:59	180918L048
<u>Parameter</u>		Spike Added	Conc. Recove	red LCS %R	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.005000	0.004800	96	80-120	0

Geosyntec Consultants

Date Received:

Work Order:

18-09-0815

San Francisco, CA 94105-2811

Preparation:

Method:

SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 4 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-10-022-1473	LCS	Aqueous	GC/MS M	09/19/18	09/19/18 10:08	180919L047
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.005000	0.005600	112	80-12	0

Geosyntec Consultants

Date Received:

Work Order:

18-09-0815

San Francisco, CA 94105-2811

Preparation:

Method:

SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 5 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-10-022-1474	LCS	Aqueous	GC/MS M	09/24/18	09/24/18 10:31	180924L019
Parameter		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.005000	0.005200	104	80-120	0

Sample Analysis Summary Report

Work Order: 18-09-0815				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 200.7	Filtered	110	ICP 8300	1
RSK-175M	N/A	1158	GC 61	2
SRL 524M-TCP	EPA 5030C	486	GC/MS M	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 18-09-0815 Page 1 of 1

<u>Qualifiers</u>	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

- Χ % Recovery and/or RPD out-of-range.
- Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Document Number: 11488

18-09-0815

Analysis Request and Chain of Custody Record

Condition of Lab Use Bottles White copy: to accompany samples Only Date 04||24 Yellow copy: field copy Page 1 of 2 Rush: Significant ephyrocener-s open Turn-around Time: Mosema columna unco Comments Assent Cohorvesonce Mild epherosana mild ephonesuma 1:13 cohorussume Normal Bottle Type and Volume/Preservative Number of Containers Required Analyses 1. Received by (148 FUTEL) (Signiture/Affiliation) иq ~ ~ SKL FLY **2AOCs py 8270** शाना है Metals **NOC2 p** - LKANL @ gersynter, com Date Sample Type 777 Time 200 Steve Nowale 525 35,60 5011 110 1520 138 1325 0580 1115 EPA 20074 Carrier/Waybill No. Project Contact Project Number とないと ab Contact Date 9/12/2018 مُ Special Instructions: ۲۸۶ (२ ۱৮८ 0 Sample Name Relinquished by CSTCP C. Pously to 2160812 CP22- 1481-35-37 TE-58-50#-22d T- Blank 2019912 (P22- HOI - 39-4) 20180912 Per- 14802-35-37 G22- HPO2- 31-33 Cp22- 1413-31-33 CP22-1402-59-41 CP22-1801-51-33 DUP - 20190112 اعمیانیا. کا Laboratory Name Samplers Names E-blank roject Name ab Address F-Blant

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674 6569 Fax: (858) 674-6586

Time

Date Time Date Time

Received by

Date **O**

Relinquished by

Signiture/Affiliation)

(Signiture/Affiliation)

Relinquished by

(Signiture/Affiliation)

Time

Date Time

Time

(Signiture/Affiliation)

3. Received by (Signiture/Affliation)

Geosyntec⁹

		ý			se		n of										ay	e 24	i OÍ	26	
·	~	nv samole	copy	<u>.</u>	Lab Use	Only	Condition of Bottles														
(5815)	Page 2 of	White copy: to accompany samples	Yellow copy: field copy	•			Comments	Motor ophiniseme		-											
ord					ľ	<u>/</u>															-
/ Rec					vative			-													
tody	yses				Preser		ainers														
Cus	A Anal		ns 49:	3 ~2 	/olume	_	Son Contraction							_	_						;
in of	Required Analyses	WS-1-7	····	Popus	e and \	<u> </u>	Number of Containers	-									_				
Cha	Re	124 - NY	· · · · · · · · · · · · · · · · · · ·	oovs et	Bottle Type and Volume/Preservative	$\overline{}$	٦	~													
and		VZG		Metal	å,	<u></u>		<u> </u>													
uest				AOC	K	<u></u>															
Analysis Request and Chain of Custody Record							Sample Type	ومهلم													
Analy	-		lber	-			Time	ادىم													, c
			Project Number	We2274			Date	क्षान्त्रा/७													
		Number:						2	.\										,		
		Continued from Document Number:	Project Name	BTCP C. Partle han			Sample Name	CP22-1403_39-4)												•	

Geosyntec 10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 consultants

Calscience

WORK ORDER NUMBER: 2609-2608

SAMPLE RECEIPT CHECKLIST

SAIVIPLE RECEIPT CHECKLIST	COOLER		/F _I
CLIENT: GEOSYNTEC DA	TE: <u>09 /</u>	121	<u> 2018</u>
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: -0.5°C); Temperature (w/o CF):	Blank		Sample JBUK
CUSTODY SEAL:			
Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A	Checke	d by: <u>U</u>	BUK
Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A	Checke		
	Yes	No	N/A
SAMPLE CONDITION:		No	
Chain-of-Custody (COC) document(s) received with samples			
COC document(s) received complete	🗗		
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers			
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished times.	_	_	
Sampler's name indicated on COC		ر ^ا ا	
Sample container label(s) consistent with COC		Ø	_ <u>\$</u>
Sample container(s) intact and in good condition	B		Conter
Proper containers for analyses requested	Z		D 5
Sufficient volume/mass for analyses requested	🗷		Refu
Samples received within holding time			
Aqueous samples for certain analyses received within 15-minute holding time			,
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen			Ø
Proper preservation chemical(s) noted on COC and/or sample container			
Unpreserved aqueous sample(s) received for certain analyses			
☐ Volatile Organics ☐ Total Metals ☑ Dissolved Metals			
Acid/base preserved samples - pH within acceptable range	🗖		Ø
Container(s) for certain analysis free of headspace	🗖	Z	
✓ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500)			
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)			
Tedlar™ bag(s) free of condensation	🗖		₽∕
(The District of Normal		0879	c î
CONTAINER TYPE: (Trip Blank Lot Num Aqueous: UVOA DVOAh UVOAnaz U 100PJ U 100PJnaz U 125AGB U 125AGBh U 125AGBp U 12			
Aqueous: □ VOA Ø VOAh □ VOAha₂ □ 100PJ □ 100PJ □ 125AGB	AGJs (pH 2	2) 🗆 50	OPB
□ 250AGB □ 250CGB □ 250CGBs (pH_2) /□ 250FB □ 250FB □ 250FB □ 1PBna (pH_12) □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □ □		´	
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () EnCores® () TerraCores® ()			
Air: ☐ Tedlar™ ☐ Canister ☐ Sorbent Tube ☐ PUF ☐ Other Matrix (): ☐	_ 0		
Container: A - Amber B - Bettle C = Clear F = Envelope G = Glass, J = Jar, P = Plastic, and Z = Ziploc/F	tesealable Ba	ıg	
Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ S ₂ O ₃ , p = H ₃ PO ₄ , Labe	led/Checke	d by:	<u>1163</u>
$s = H_2SO_4$, $u = ultra-pure$, $x = Na_2SO_3+NaHSO_4$. H_2O , $znna = Zn (CH_3CO_2)_2 + NaOH$	Reviewe	d by: _	1715
2 - LISO At a comparation traffic and the comparation of the comparati			

Calscience

WORK ORDER NUMBER: 18-09-0815

SAMPLE ANOMALY REPORT

DATE: 09 /12 / 2018

SAMPLES, CONTAINERS, AND LABELS:		Comme	 nts		
☐ Sample(s) NOT RECEIVED but listed on COC					
☐ Sample(s) received but NOT LISTED on COC					
☐ Holding time expired (list client or ECI sample ID and a	nalysis)				
☐ Insufficient sample amount for requested analysis (list a					
☐ Improper container(s) used (list analysis)					
☐ Improper preservative used (list analysis)					
☐ pH outside acceptable range (list analysis)					
☐ No preservative noted on COC or label (list analysis an	d notify lab)				
☐ Sample container(s) not labeled					
☐ Client sample label(s) illegible (list container type and a	nalysis)				
Client sample label(s) do not match COC (comment)	•	(-12)	2051	e vials	are laneled
☐ Project information		- 215	CP22	-HP	
☑ Client sample ID		da	te and .	time m	atched
☐ Sampling date and/or time					
☐ Number of container(s)					
☐ Requested analysis					
☐ Sample container(s) compromised (comment)					
□ Broken					
☐ Water present in sample container					
☐ Air sample container(s) compromised (comment)		<u> </u>			. y
☐ Flat					
☐ Very low in volume			·		· ·
☐ Leaking (not transferred; duplicate bag submitted)					
☐ Leaking (transferred into ECI Tedlar™ bags*)		<u> </u>			
☐ Leaking (transferred into client's Tedlar™ bags*)					
* Transferred at client's request.					
MISCELLANEOUS: (Describe)		Commer	nts		
HEADSPACE:					
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved	gas analysis)	(Containers w	ith bubble for othe	r analysis)	
ECI ECI Total ECI ECI	Total	ECI Sample ID	ECI Container ID	Total Number**	Requested Analysis
Composition of the composition o	Number	Gariple 10	OOMAINE 15	Trumber	/ requested / maryoto
PE6					
-12 & D 6					
-13 ABC 3					
Comments:					
Communic.				Re	eported by: TTL
** Record the total number of containers (i.e., vials or bottles) for the affect	ted sample.				viewed by:

Calscience

WORK ORDER NUMBER: 18-09-0979

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: ESTCP C. Pendleton WR2274

Attention: Lea Kane

595 Market Street

Suite 610

San Francisco, CA 94105-2811

Email your PM >

ResultLink >

Approved for release on 10/01/2018 by: Stephen Nowak

Project Manager

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: ESTCP C	. Pendleton	WR2274
------------------------------	-------------	--------

Work Order Number: 18-09-0979

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 RSK-175M (Aqueous). 4.2 EPA 200.7 ICP Metals (Aqueous). 4.3 SRL 524M-TCP 1,2,3-Trichloropropane (Aqueous).	6 6 8 10
5	Quality Control Sample Data. 5.1 MS/MSD. 5.2 LCS/LCSD.	13 13 18
6	Sample Analysis Summary	23
7	Glossary of Terms and Qualifiers	24
8	Chain-of-Custody/Sample Receipt Form	25

Work Order Narrative

Work Order: 18-09-0979 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/13/18. They were assigned to Work Order 18-09-0979.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

ESTCP C. Pendleton WR2274

Sample Summary

Client: Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Work Order:

Project Name:

PO Number:

Date/Time Received:

Number of Containers:

09/13/18 19:15

18-09-0979

96

Lea Kane Attn:

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
T-Blank 20180913	18-09-0979-1	09/13/18 07:15	2	Aqueous
E-Blank 20180913	18-09-0979-2	09/13/18 07:20	2	Aqueous
F-Blank 20180913	18-09-0979-3	09/13/18 07:25	2	Aqueous
DUP 20180913	18-09-0979-4	09/13/18 07:30	7	Aqueous
CP22-HP04-31-33	18-09-0979-5	09/13/18 08:30	7	Aqueous
CP22-HP04-35-37	18-09-0979-6	09/13/18 08:40	7	Aqueous
CP22-HP04-39-41	18-09-0979-7	09/13/18 08:50	7	Aqueous
CP22-HP05-31-33	18-09-0979-8	09/13/18 11:30	7	Aqueous
CP22-HP05-35-37	18-09-0979-9	09/13/18 11:25	7	Aqueous
CP22-HP05-39-41	18-09-0979-10	09/13/18 11:20	7	Aqueous
CP22-HP06-31-33	18-09-0979-11	09/13/18 12:55	6	Aqueous
CP22-HP06-35-37	18-09-0979-12	09/13/18 12:45	7	Aqueous
CP22-HP06-39-41	18-09-0979-13	09/13/18 12:50	7	Aqueous
CP22-HP07-31-33	18-09-0979-14	09/13/18 14:15	7	Aqueous
CP22-HP07-35-37	18-09-0979-15	09/13/18 14:05	7	Aqueous
CP22-HP07-39-41	18-09-0979-16	09/13/18 14:10	7	Aqueous

Detections Summary

Client: Geosyntec Consultants

Work Order: 18-09-0979

595 Market Street, Suite 610

Project Name: ESTCP C. Pendleton WR2274

San Francisco, CA 94105-2811

Received: 09/13/18

Attn: Lea Kane Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
DUP 20180913 (18-09-0979-4)						
1,2,3-Trichloropropane	0.017		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP04-31-33 (18-09-0979-5)						
Propene	1.06		1.00	ug/L	RSK-175M	N/A
CP22-HP04-35-37 (18-09-0979-6)						
Propene	1.29		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.016		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP04-39-41 (18-09-0979-7)						
Zinc	0.0570		0.0100	mg/L	EPA 200.7	Filtered
CP22-HP05-31-33 (18-09-0979-8)						
1,2,3-Trichloropropane	0.057		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP05-35-37 (18-09-0979-9)						
Propene	1.44		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.20		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP05-39-41 (18-09-0979-10)						
Propene	2.62		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.055		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP06-31-33 (18-09-0979-11)						
Propene	6.12		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.024		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP06-35-37 (18-09-0979-12)						
1,2,3-Trichloropropane	0.32		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP06-39-41 (18-09-0979-13)						
Propene	9.98		1.00	ug/L	RSK-175M	N/A
CP22-HP07-31-33 (18-09-0979-14)						
1,2,3-Trichloropropane	0.062		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP07-35-37 (18-09-0979-15)						
1,2,3-Trichloropropane	0.17		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP22-HP07-39-41 (18-09-0979-16)						
Zinc	0.0104		0.0100	mg/L	EPA 200.7	Filtered
1,2,3-Trichloropropane	0.059		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
• •				•		

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Geosyntec Consultants			Date Recei	ved:			09/13/18
595 Market Street, Suite 610			Work Orde	:			18-09-0979
San Francisco, CA 94105-2811			Preparation	1:			N/A
			Method:				RSK-175M
			Units:				ug/L
Project: ESTCP C. Pendleton WR	2274					Pa	ige 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
DUP 20180913	18-09-0979-4-D	09/13/18 07:30	Aqueous	GC 61	N/A	09/15/18 11:14	180915L01
<u>Parameter</u>	·	Result	RL		DF	Qua	alifiers
Propene		ND	1.0	0	1.00		
CP22-HP04-31-33	18-09-0979-5-D	09/13/18 08:30	Aqueous	GC 61	N/A	09/15/18 11:38	180915L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Propene		1.06	1.0	0	1.00		
CP22-HP04-35-37	18-09-0979-6-D	09/13/18 08:40	Aqueous	GC 61	N/A	09/15/18 12:03	180915L01
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
Propene		1.29	1.0	0	1.00		
CP22-HP04-39-41	18-09-0979-7-D	09/13/18 08:50	Aqueous	GC 61	N/A	09/15/18 12:26	180915L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Propene		ND	1.0	0	1.00		
CP22-HP05-31-33	18-09-0979-8-D	09/13/18 11:30	Aqueous	GC 61	N/A	09/15/18 12:51	180915L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Propene		ND	1.0	0	1.00		
CP22-HP05-35-37	18-09-0979-9-D	09/13/18 11:25	Aqueous	GC 61	N/A	09/15/18 13:16	180915L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Propene		1.44	1.0	0	1.00		
CP22-HP05-39-41	18-09-0979-10-D	09/13/18 11:20	Aqueous	GC 61	N/A	09/15/18 13:40	180915L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Propene		2.62	1.0	0	1.00		
CP22-HP06-31-33	18-09-0979-11-D	09/13/18 12:55	Aqueous	GC 61	N/A	09/15/18 14:06	180915L01
Parameter		Result	RL		DF	Qua	alifiers
Propene		6.12	1.0	0	1.00		

 Geosyntec Consultants
 Date Received:
 09/13/18

 595 Market Street, Suite 610
 Work Order:
 18-09-0979

 San Francisco, CA 94105-2811
 Preparation:
 N/A

 Method:
 RSK-175M

 Units:
 ug/L

 Project: ESTCP C. Pendleton WR2274
 Page 2 of 2

 Client Sample Number
 Lab Sample
 Date/Time
 Matrix
 Instrument
 Date
 Date/Time
 QC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP06-35-37	18-09-0979-12-D	09/13/18 12:45	Aqueous	GC 61	N/A	09/15/18 14:33	180915L01
Parameter		Result	RL		<u>DF</u>	Qual	<u>ifiers</u>
Propene		ND	1.0	0	1.00		
CP22-HP06-39-41	18-09-0979-13-D	09/13/18 12:50	Aqueous	GC 61	N/A	09/15/18 14:57	180915L01
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qual</u>	<u>ifiers</u>
Propene		9.98	1.0	0	1.00		
CP22-HP07-31-33	18-09-0979-14-D	09/13/18 14:15	Aqueous	GC 61	N/A	09/15/18 15:22	180915L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qual	<u>ifiers</u>
Propene		ND	1.0	0	1.00		
CP22-HP07-35-37	18-09-0979-15-D	09/13/18 14:05	Aqueous	GC 61	N/A	09/15/18 15:48	180915L01

CP22-HP07-35-37	18-09-0979-15-D	09/13/18 14:05	Aqueous	GC 61	N/A	09/15/18 15:48	180915L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Quali	fiers
Propene		ND	1.0	0	1.00		

CP22-HP07-39-41	18-09-0979-16-D	09/13/18 14:10	Aqueous GC 61	N/A	09/15/18 180915L01 16:13
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Propene		ND	1.00	1.00	

Method Blank	099-14-325-111	N/A	Aqueous	GC 61	N/A	09/15/18 10:45	180915L01
Parameter		Result	<u>RL</u>		<u>DF</u>	Quali	fiers
Propene		ND	1.0	0	1.00		

Geosyntec Consultants

Date Received:

Work Order:

18-09-0979

San Francisco, CA 94105-2811

Preparation:

Method:

Units:

Project: ESTCP C. Pendleton WR2274

Page 1 of 2

Client Sample Number

Lab Sample

Date/Time

Matrix

Instrument

Date

Date/Time

Date

Date/Time

OC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
DUP 20180913	18-09-0979-4-G	09/13/18 07:30	Aqueous	ICP 8300	09/19/18	09/21/18 21:56	180919LA2F
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qu	alifiers
Zinc		ND	0.0)100	1.00		
CP22-HP04-31-33	18-09-0979-5-G	09/13/18 08:30	Aqueous	ICP 8300	09/19/18	09/21/18 21:58	180919LA2F
<u>Parameter</u>		Result	<u>RL</u> <u>DF</u>		<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Zinc		ND	0.0	100	1.00		
CP22-HP04-35-37	18-09-0979-6-G	09/13/18 08:40	Aqueous	ICP 8300	09/19/18	09/21/18 21:59	180919LA2F
Parameter		Result	RL	•	<u>DF</u>	Qu	alifiers
Zinc		ND	0.0	0100	1.00		
CP22-HP04-39-41	18-09-0979-7-G	09/13/18 08:50	Aqueous	ICP 8300	09/19/18	09/21/18 22:00	180919LA2F
Parameter		Result	RL	:	<u>DF</u>	Qu	alifiers
Zinc		0.0570	0.0)100	1.00		
CP22-HP05-31-33	18-09-0979-8-G	09/13/18 11:30	Aqueous	ICP 8300	09/19/18	09/21/18 22:02	180919LA2F
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Zinc		ND	0.0)100	1.00		
CP22-HP05-35-37	18-09-0979-9-G	09/13/18 11:25	Aqueous	ICP 8300	09/19/18	09/21/18 22:03	180919LA2F
Parameter		Result	RL	:	DF	Qua	alifiers
Zinc		ND	0.0	100	1.00		
CP22-HP05-39-41	18-09-0979-10-G	09/13/18 11:20	Aqueous	ICP 8300	09/19/18	09/21/18 22:08	180919LA2F
<u>Parameter</u>		Result	RL		<u>DF</u>	Qu	alifiers
Zinc		ND	0.0	0100	1.00		
CP22-HP06-35-37	18-09-0979-12-G	09/13/18 12:45	Aqueous	ICP 8300	09/19/18	09/21/18 22:09	180919LA2F
Parameter		Result	RL	·	<u>DF</u>	Qu	<u>alifiers</u>
Zinc		ND	0.0	100	1.00		

 Geosyntec Consultants
 Date Received:
 09/13/18

 595 Market Street, Suite 610
 Work Order:
 18-09-0979

 San Francisco, CA 94105-2811
 Preparation:
 Filtered

 Method:
 EPA 200.7

 Units:
 mg/L

Project: ESTCP C. Pendleton WR2	Pa	Page 2 of 2					
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP06-39-41	18-09-0979-13-G	09/13/18 12:50	Aqueous	ICP 8300	09/19/18	09/21/18 22:11	180919LA2F
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		ND	0.0)100	1.00		
CP22-HP07-31-33	18-09-0979-14-G	09/13/18 14:15	Aqueous	ICP 8300	09/19/18	09/21/18 22:12	180919LA2F
<u>Parameter</u>		Result	<u>RL</u>	1	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		ND	0.0	100	1.00		
CP22-HP07-35-37	18-09-0979-15-G	09/13/18 14:05	Aqueous	ICP 8300	09/19/18	09/21/18 22:13	180919LA2F
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>llifiers</u>
Zinc		ND	0.0	100	1.00		
CP22-HP07-39-41	18-09-0979-16-G	09/13/18 14:10	Aqueous	ICP 8300	09/19/18	09/21/18 22:18	180919LA2F
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		0.0104	0.0)100	1.00		

Method Blank	099-14-304-776	N/A	Aqueous	ICP 8300	09/19/18	09/21/18 21:50	180919LA2F
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Zinc		ND	0.0	100	1.00		

Geosyntec Consultants			Date Recei	ved:			09/13/18
595 Market Street, Suite 610			Work Order	r:			18-09-0979
San Francisco, CA 94105-2811			Preparation	n:			EPA 5030C
			Method:			s	RL 524M-TCP
			Units:				ug/L
Project: ESTCP C. Pendleton WR	R2274					Pa	age 1 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
T-Blank 20180913	18-09-0979-1-A	09/13/18 07:15	Aqueous	GC/MS M	09/24/18	09/24/18 19:07	180924L019
Parameter		Result	<u>RL</u> <u>DF</u>		Qua	<u>alifiers</u>	
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
E-Blank 20180913	18-09-0979-2-A	09/13/18 07:20	Aqueous	GC/MS M	09/24/18	09/24/18 19:36	180924L019
Parameter		Result	RL	•	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
F-Blank 20180913	18-09-0979-3-A	09/13/18 07:25	Aqueous	GC/MS M	09/24/18	09/24/18 20:06	180924L019
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
DUP 20180913	18-09-0979-4-A	09/13/18 07:30	Aqueous	GC/MS M	09/24/18	09/24/18 20:35	180924L019
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		0.017	0.0	0050	1.00		
CP22-HP04-31-33	18-09-0979-5-A	09/13/18 08:30	Aqueous	GC/MS M	09/24/18	09/24/18 21:05	180924L019
Parameter		Result	<u>RL</u>	i	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-HP04-35-37	18-09-0979-6-A	09/13/18 08:40	Aqueous	GC/MS M	09/24/18	09/24/18 21:35	180924L019
Parameter		Result	RL	•	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		0.016	0.0	0050	1.00		
CP22-HP04-39-41	18-09-0979-7-A	09/13/18 08:50	Aqueous	GC/MS M	09/24/18	09/24/18 22:04	180924L019
Parameter		Result	RL	:	DF	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-HP05-31-33	18-09-0979-8-A	09/13/18 11:30	Aqueous	GC/MS M	09/25/18	09/25/18 18:55	180925L055
Parameter		Result	RL		<u>DF</u>	Qua	alifiers

Geosyntec Consultants			Date Recei	ved:			09/13/18
595 Market Street, Suite 610			Work Order	r:			18-09-0979
San Francisco, CA 94105-2811			Preparation	n:			EPA 5030C
			Method:			S	RL 524M-TCP
			Units:			_	ug/L
Project: ESTCP C. Pendleton WR	2274					Pa	age 2 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP22-HP05-35-37	18-09-0979-9-A	09/13/18 11:25	Aqueous	GC/MS M	09/25/18	09/25/18 11:00	180925L055
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.20	0.0)25	5.00		
CP22-HP05-39-41	18-09-0979-10-A	09/13/18 11:20	Aqueous	GC/MS M	09/25/18	09/25/18 19:24	180925L055
<u>Parameter</u>		Result	RL		DF	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.055		0050	1.00		
CP22-HP06-31-33	18-09-0979-11-A	09/13/18 12:55	Aqueous	GC/MS M	09/25/18	09/25/18 19:54	180925L055
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
1,2,3-Trichloropropane		0.024	0.0	0050	1.00		
CP22-HP06-35-37	18-09-0979-12-A	09/13/18 12:45	Aqueous	GC/MS M	09/25/18	09/25/18 11:30	180925L055
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		0.32	0.0)25	5.00		
CP22-HP06-39-41	18-09-0979-13-A	09/13/18 12:50	Aqueous	GC/MS M	09/25/18	09/25/18 20:23	180925L055
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		
CP22-HP07-31-33	18-09-0979-14-A	09/13/18 14:15	Aqueous	GC/MS M	09/25/18	09/25/18 20:53	180925L055
Parameter	•	Result	RL	:	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		0.062	0.0	0050	1.00		
CP22-HP07-35-37	18-09-0979-15-A	09/13/18 14:05	Aqueous	GC/MS M	09/25/18	09/25/18 12:00	180925L055
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		0.17	0.0)25	5.00		
CP22-HP07-39-41	18-09-0979-16-B	09/13/18 14:10	Aqueous	GC/MS M	09/27/18	09/27/18 12:08	180927L022
Parameter		Result	RL		DF	Qua	<u>alifiers</u>
1,2,3-Trichloropropane		0.059	0.0	0050	1.00		

Page 3 of 3

Analytical Report

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Preparation:

Method:

Units:

Units:

09/13/18

09/13/18

09/13/18

09/13/18

09/13/18

09/13/18

18-09-0979

18-09-0979

EPA 5030C

Method:

Units:

ug/L

Project: ESTCP C. Pendleton WR2274

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-022-1474	N/A	Aqueous	GC/MS M	09/24/18	09/24/18 11:03	180924L019
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>llifiers</u>
1,2,3-Trichloropropane		ND	0.0	0050	1.00		

Method Blank	099-10-022-1475	N/A	Aqueous	GC/MS M	09/25/18	09/25/18 10:31	180925L055
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qu</u>	alifiers
1,2,3-Trichloropropane		ND	0.00	050	1.00		

Method Blank	099-10-022-1476	N/A	Aqueous GC/MS M	09/27/18	09/27/18 11:38	180927L022
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qua	alifiers
1,2,3-Trichloropropane		ND	0.0050	1.00		

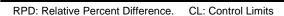
Geosyntec Consultants

Date Received:

Work Order:

18-09-0979

San Francisco, CA 94105-2811


Preparation:

Method:

EPA 200.7

Project: ESTCP C. Pendleton WR2274 Page 1 of 5

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
DUP 20180913	Sample		Aqueous	s ICI	P 8300	09/19/18	09/21/18	21:56	180919SA2	
DUP 20180913	Matrix Spike		Aqueous	s ICI	P 8300	09/19/18	09/21/18	21:53	180919SA2	
DUP 20180913	Matrix Spike	Duplicate	Aqueous	s ICI	P 8300	09/19/18	09/21/18	21:55	180919SA2	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	ND	0.5000	0.5855	117	0.5813	116	80-120	1	0-20	

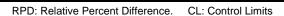
Geosyntec Consultants

Date Received:

Work Order:

18-09-0979

San Francisco, CA 94105-2811

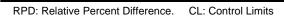

Preparation:

Method:

EPA 200.7

Project: ESTCP C. Pendleton WR2274 Page 2 of 5

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
CP22-HP07-35-37	Sample		Aqueou	s ICI	P 8300	09/19/18	09/21/18	22:13	180919SA2	A
CP22-HP07-35-37	Matrix Spike		Aqueou	s ICI	P 8300	09/19/18	09/21/18	22:15	180919SA2	A
CP22-HP07-35-37	Matrix Spike	Duplicate	Aqueou	s ICI	P 8300	09/19/18	09/21/18	22:16	180919SA2	A
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
Zinc	ND	0.5000	0.6161	123	0.6080	122	80-120	1	0-20	3



Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
18-09-0979
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 3 of 5

Quality Control Sample ID	Type		Matrix	In	strument	Date Prepared	Date Ana	yzed	MS/MSD Bat	ch Number
18-09-0815-7	Sample		Aqueou	s G	C/MS M	09/24/18	09/24/18	12:02	180924\$009	
18-09-0815-7	Matrix Spike		Aqueou	s G	C/MS M	09/24/18	09/24/18	14:01	180924S009	
18-09-0815-7	Matrix Spike D	uplicate	Aqueou	s G	C/MS M	09/24/18	09/24/18	14:30	180924S009	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.2815	0.02500	0.3705	356	0.3265	180	70-130	13	0-20	3

Geosyntec ConsultantsDate Received:09/13/18595 Market Street, Suite 610Work Order:18-09-0979San Francisco, CA 94105-2811Preparation:EPA 5030CMethod:SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 4 of 5

Quality Control Sample ID	Type		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
CP22-HP06-35-37	Sample		Aqueou	s G	C/MS M	09/25/18	09/25/18	11:30	180925S028	3
CP22-HP06-35-37	Matrix Spike		Aqueou	s G	C/MS M	09/25/18	09/25/18	12:29	180925\$028	1
CP22-HP06-35-37	Matrix Spike	Duplicate	Aqueou	s G	C/MS M	09/25/18	09/25/18	12:59	180925S028	3
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.3185	0.02500	0.3505	128	0.3750	226	70-130	7	0-20	3

Geosyntec Consultants

Date Received:

Work Order:

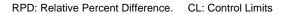
18-09-0979

San Francisco, CA 94105-2811

Preparation:

Method:

Date Received:


09/13/18

09/13/18

SPA 5030C

Project: ESTCP C. Pendleton WR2274 Page 5 of 5

Quality Control Sample ID	Type		Matrix	In	nstrument	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
18-09-1119-5	Sample		Aqueou	s G	C/MS M	09/27/18	09/27/18	12:37	180927S006	
18-09-1119-5	Matrix Spike		Aqueou	s G	C/MS M	09/27/18	09/27/18	13:07	180927S006	
18-09-1119-5	Matrix Spike D	uplicate	Aqueou	s G	C/MS M	09/27/18	09/27/18	13:37	180927S006	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.5480	0.05000	0.6140	132	0.6870	278	70-130	11	0-20	3

Quality Control - LCS/LCSD

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

18-09-0979 N/A

09/13/18

RSK-175M

Project: ESTCP C. Pendleton WR2274

Page 1 of 5

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD B	atch Number
099-14-325-111	LCS	Aqı	leous	GC 61	N/A	09/1	5/18 09:48	180915L01	
099-14-325-111	LCSD	Aqı	leous	GC 61	N/A	09/1	5/18 10:16	180915L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Propene	103.0	94.52	92	94.83	92	80-120	0	0-20	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: 09/13/18 18-09-0979 Filtered

Method:

EPA 200.7

Project: ESTCP C. Pendleton WR2274

Page 2 of 5

Quality Control Sample ID	Type	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-14-304-776	LCS	Aqueous	ICP 8300 0	9/19/18	09/21/18 21:52	180919LA2F
<u>Parameter</u>		Spike Added	Conc. Recovered	d LCS %Re	ec. %Rec.	. CL Qualifiers
Zinc		0.5000	0.5048	101	85-115	5

Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
18-09-0979
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 3 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-10-022-1474	LCS	Aqueous	GC/MS M	09/24/18	09/24/18 10:31	180924L019
Parameter		Spike Added	Conc. Recover	red LCS %R	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.005000	0.005200	104	80-120)

Geosyntec ConsultantsDate Received:09/13/18595 Market Street, Suite 610Work Order:18-09-0979San Francisco, CA 94105-2811Preparation:EPA 5030CMethod:SRL 524M-TCP

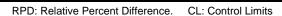
Project: ESTCP C. Pendleton WR2274 Page 4 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-10-022-1475	LCS	Aqueous	GC/MS M	09/25/18	09/25/18 09:59	180925L055
Parameter		Spike Added	Conc. Recovere	ed LCS %R	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.005000	0.005500	110	80-12	0

Geosyntec Consultants

Date Received: 09/13/18

Work Order: 18-09-0979


San Francisco, CA 94105-2811

Preparation: EPA 5030C

Method: SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274 Page 5 of 5

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-10-022-1476	LCS	Aqueous	GC/MS M	09/27/18	09/27/18 10:38	180927L022
Parameter		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.005000	0.005500	110	80-120	0

Sample Analysis Summary Report

Work Order: 18-09-0979				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 200.7	Filtered	771	ICP 8300	1
RSK-175M	N/A	1158	GC 61	2
SRL 524M-TCP	EPA 5030C	486	GC/MS M	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 18-09-0979 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without furthe clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

- ine sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Document Number:, 11490

Analysis Request and Chain of Custody Record

Condition of Lab Use Bottles White copy: to accompany samples Only 18-09-6979 Yellow copy: field copy Page / of 2 □ Rush: Date Time _Time Date Sisuiftent ephyruesuna Turn-around Time: Comments Modern & honeston mill ophicusana M:13 ephynouses Normal 図 Bottle Type and Volume/Preservative **Number of Containers** Required Analyses 1. Received by 2. Received by (Signiture/Affiliation) (Signiture/Affiliation) AST Spl 2 SVOCs by 8270 2 J/ [3] K Metals **NOC2 p**\lambda Date q Time Time Date Sample Type Project Contact Cea Kam - LKame@yessynke.com Vahr Time 0440 0730 9580 0725 0830 2140 5711 1245 13 1255 Carrier/Waybill No. Project Number Lab Contact ろみへと ab Phone Date 81181/6 Sample Name Special Instructions: Relinquished by 2. Relinquished by クミ・SE・SC CP22-1806-31-33 ti-si -si#-770 42- 415 - 39-41 E-Black 2018 0713 F-81-K 2013 Qu. 1815 - 51-33 G2-28-18-22-33 (Signiture/Affiliation) 122- ARM - 35-41 (Signiture/Affiliation) T- Black 2250713 Ester C. Phylletin Samplers Names B. Pocker 19 2080213 Laboratory Name Colscience CP22- HPO4-31-33 roject Name ab Address 30 0

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 Geosyntec^o

Time

Date

Relinquished by

(Signiture/Affiliation)

consultants

Date Time

3. Received by

(Signiture/Affiliation)

consultants

WORK ORDER NUMBER: 18-09-2897

	Calscience	SAMPLE RECEIPT	CHECKLIST	c	OOLER	1	OF <u>L</u>
CLIENT: GEOS	yntec.			DAT	E: <u>09 /</u>	13/	2018
Thermometer ID: SC6 (☐ Sample(s) outside ☐ Sample(s) outside	(CF: -0.5°C); Te e temperature c e temperature c at ambient temp	O°C, not frozen except sedimemperature (w/o CF):	<u>&</u> °C (w/ CF): _ <u>₹</u> y:) illed on same day c		Blank Checked		Sample UBU)
	nt and Intact	☐ Present but Not Intact☐ Present but Not Intact☐	Not Present Not Present	□ N/A □ N/A	Checked Checked		
SAMPLE CONDITION:					Yes	No	N/A
		received with samples			. z		
COC document(s) recei	ived complete				. p		
☐ Sampling date ☐	3 Sampling time	e □ Matrix □ Number of co	ontainers		,	_	
		rith COC					
		condition					
		ted					
		equested					
		ses received within 15-minute			,		
		solved Sulfide			. 🗖		Ø
•		on COC and/or sample cont					
Unpreserved aqueou	us sample(s) re	ceived for certain analyses			€.		
		nin acceptable range		******	🗖		12
Container(s) for certain	analysis free o	f headspace	*		🖵		
Volatile Organics	Dissolved (Gases (RSK-175) ☐ Dissolverrous Iron (SM 3500) ☐ H	ved Oxygen (SM 45	500)			
					. 🗆		Ø
			(Trin Blar	nk Lot Numb	er: 180	1829	C
□ 250AGB □ 250CGB □ 1AGB □ 1AGB □ 1AGBna₂ □ Solid: □ 4ozCGJ □ 8ozCAir: □ Tedlar™ □ Caniste	□ 250CGBs (pH_ 1AGBs (pH_2) t CGJ □ 16ozCGJ er □ Sorbent Tut = Bottle, C = Clea	100PJ 100PJna ₂ 125AGB 2) 250PB 250PBn (pH	B □ 125AGBh □ 125 2) □ 500AGB □ 500 na (pH12) □) □ TerraCores® (Matrix (Jar, P = Plastic, and	SAGBp	PB	Bznna 2)	(pH9) 600PB
Preservative: h = buffered	f = filtered, h =	HCI, n = HNO ₃ , na = NaOH, na	$_{2}$ = Na $_{2}$ S $_{2}$ U $_{3}$, p = H $_{3}$ F	'∪4, Labele	o/Checked	ı ∪y. ॄ	

 $s = H_2SO_4$, u = ultra-pure, $x = Na_2SO_3+NaHSO_4$. H_2O , $znna = Zn (CH_3CO_2)_2 + NaOH$

Reviewed by:

Calscience

WORK ORDER NUMBER: 18-09-1119

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: ESTCP C. Pendleton WR2274

Attention: Lea Kane

595 Market Street

Suite 610

San Francisco, CA 94105-2811

Email your PM >

ResultLink >

Approved for release on 10/01/2018 by:

Stephen Nowak Project Manager

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: ESTCP	C. Pendleton	WR2274
----------------------------	--------------	--------

Work Order Number: 18-09-1119

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 RSK-175M (Aqueous). 4.2 EPA 200.7 ICP Metals (Aqueous). 4.3 SRL 524M-TCP 1,2,3-Trichloropropane (Aqueous).	6 6 8 10
5	Quality Control Sample Data. 5.1 MS/MSD. 5.2 LCS/LCSD.	13 13 17
6	Sample Analysis Summary	21
7	Glossary of Terms and Qualifiers	22
8	Chain-of-Custody/Sample Receipt Form	23

Work Order Narrative

Work Order: 18-09-1119 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/15/18. They were assigned to Work Order 18-09-1119.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

Sample Summary

Client: Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Work Order:

Project Name:

ESTCP C. Pendleton WR2274

PO Number:

Date/Time Received:

Number of

Containers:

09/15/18 19:30

400

18-09-1119

102

Attn: Lea Kane

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
T-Blank 20180914	18-09-1119-1	09/14/18 07:00	2	Aqueous
E-Blank 20180914	18-09-1119-2	09/14/18 15:00	2	Aqueous
F-Blank 20180914	18-09-1119-3	09/14/18 13:00	2	Aqueous
DUP01-20180914	18-09-1119-4	09/14/18 15:50	7	Aqueous
DUP02-20180914	18-09-1119-5	09/14/18 16:00	7	Aqueous
CP-22-HP08-31-33	18-09-1119-6	09/14/18 07:50	7	Aqueous
CP-22-HP08-35-37	18-09-1119-7	09/14/18 07:40	7	Aqueous
CP-22-HP08-39-41	18-09-1119-8	09/14/18 07:30	7	Aqueous
CP-22-HP09-31-33	18-09-1119-9	09/14/18 09:05	6	Aqueous
CP-22-HP09-35-37	18-09-1119-10	09/14/18 09:15	7	Aqueous
CP-22-HP10-31-33	18-09-1119-11	09/14/18 10:55	6	Aqueous
CP-22-HP10-35-37	18-09-1119-12	09/14/18 10:50	7	Aqueous
CP-22-HP10-39-41	18-09-1119-13	09/14/18 10:40	7	Aqueous
CP-22-HP11-35-37	18-09-1119-14	09/14/18 12:30	7	Aqueous
CP-22-HP11-39-41	18-09-1119-15	09/14/18 12:20	7	Aqueous
CP-22-HP12-31-33	18-09-1119-16	09/14/18 14:00	7	Aqueous
CP-22-HP12-39-41	18-09-1119-17	09/14/18 13:40	7	Aqueous

Detections Summary

Client: Geosyntec Consultants Work Order: 18-09-1119

595 Market Street, Suite 610 Project Name: ESTCP C. Pendleton WR2274

San Francisco, CA 94105-2811 Received: 09/15/18

Attn: Lea Kane Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
DUP01-20180914 (18-09-1119-4)						
1,2,3-Trichloropropane	0.021		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
DUP02-20180914 (18-09-1119-5)				Ü		
1,2,3-Trichloropropane	0.55		0.050	ug/L	SRL 524M-TCP	EPA 5030C
CP-22-HP08-31-33 (18-09-1119-6)				· ·		
Propene	2.28		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.081		0.010	ug/L	SRL 524M-TCP	EPA 5030C
CP-22-HP08-35-37 (18-09-1119-7)				-		
1,2,3-Trichloropropane	0.43		0.050	ug/L	SRL 524M-TCP	EPA 5030C
CP-22-HP08-39-41 (18-09-1119-8)						
1,2,3-Trichloropropane	0.024		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP-22-HP09-31-33 (18-09-1119-9)						
1,2,3-Trichloropropane	0.32		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP-22-HP09-35-37 (18-09-1119-10)						
1,2,3-Trichloropropane	3.2		0.25	ug/L	SRL 524M-TCP	EPA 5030C
CP-22-HP10-31-33 (18-09-1119-11)						
Propene	2.04		1.00	ug/L	RSK-175M	N/A
1,2,3-Trichloropropane	0.037		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP-22-HP10-35-37 (18-09-1119-12)						
1,2,3-Trichloropropane	5.1		0.50	ug/L	SRL 524M-TCP	EPA 5030C
CP-22-HP10-39-41 (18-09-1119-13)						
1,2,3-Trichloropropane	0.0095		0.0050	ug/L	SRL 524M-TCP	EPA 5030C
CP-22-HP11-35-37 (18-09-1119-14)						
1,2,3-Trichloropropane	0.27		0.025	ug/L	SRL 524M-TCP	EPA 5030C
CP-22-HP11-39-41 (18-09-1119-15)						
1,2,3-Trichloropropane	0.092		0.010	ug/L	SRL 524M-TCP	EPA 5030C
CP-22-HP12-31-33 (18-09-1119-16)						
1,2,3-Trichloropropane	0.11		0.010	ug/L	SRL 524M-TCP	EPA 5030C
CP-22-HP12-39-41 (18-09-1119-17)						
1,2,3-Trichloropropane	0.030		0.0050	ug/L	SRL 524M-TCP	EPA 5030C

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Analytical Report

Geosyntec Consultants			Date Recei	ved:			09/15/18		
595 Market Street, Suite 610			Work Order: 18-09-11						
San Francisco, CA 94105-2811			Preparation	N/A					
			Method:				RSK-175M		
			Units:				ug/L		
Project: ESTCP C. Pendleton WR	2274					Pa	age 1 of 2		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
DUP01-20180914	18-09-1119-4-D	09/14/18 15:50	Aqueous	GC 61	N/A	09/18/18 14:40	180918L01		
Parameter		Result	RL	:	<u>DF</u>	Qu	alifiers		
Propene		ND	1.0	00	1.00				
DUP02-20180914	18-09-1119-5-D	09/14/18 16:00	Aqueous	GC 61	N/A	09/18/18 15:06	180918L01		
Parameter		Result	RL		<u>DF</u>	Qu	<u>alifiers</u>		
Propene		ND	1.0	00	1.00				
CP-22-HP08-31-33	18-09-1119-6-D	09/14/18 07:50	Aqueous	GC 61	N/A	09/18/18 15:31	180918L01		
Parameter		Result	RL		<u>DF</u>	Qu	<u>alifiers</u>		
Propene		2.28	1.0	00	1.00				
CP-22-HP08-35-37	18-09-1119-7-D	09/14/18 07:40	Aqueous	GC 61	N/A	09/18/18 15:54	180918L01		
<u>Parameter</u>		Result	RL		<u>DF</u>	Qu	<u>alifiers</u>		
Propene		ND	1.0	00	1.00				
CP-22-HP08-39-41	18-09-1119-8-D	09/14/18 07:30	Aqueous	GC 61	N/A	09/18/18 16:18	180918L01		
Parameter		Result	RL	i	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>		
Propene		ND	1.0	00	1.00				
CP-22-HP09-31-33	18-09-1119-9-D	09/14/18 09:05	Aqueous	GC 61	N/A	09/18/18 16:42	180918L01		
<u>Parameter</u>		Result	RL	:	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>		
Propene		ND	1.0	00	1.00				
CP-22-HP09-35-37	18-09-1119-10-D	09/14/18 09:15	Aqueous	GC 61	N/A	09/18/18 17:05	180918L01		
Parameter		Result	RL	•	<u>DF</u>	Qu	alifiers		
Propene		ND	1.0	00	1.00				
CP-22-HP10-31-33	18-09-1119-11-D	09/14/18 10:55	Aqueous	GC 61	N/A	09/18/18 17:29	180918L01		
<u>Parameter</u>		Result	RL		DF	Qu	alifiers		
Propene		2.04	1.0	00	1.00				

09/15/18

Geosyntec Consultants

Analytical Report

Date Received:

595 Market Street, Suite 610 Work Order:							18-09-1119
San Francisco, CA 94105-2811			Preparation	n:			N/A
			Method:	RSK-175M			
			Units:				ug/L
Project: ESTCP C. Pendleton WR:	2274					Pa	age 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP-22-HP10-35-37	18-09-1119-12-D	09/14/18 10:50	Aqueous	GC 61	N/A	09/18/18 17:57	180918L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP-22-HP10-39-41	18-09-1119-13-D	09/14/18 10:40	Aqueous	GC 61	N/A	09/18/18 18:23	180918L01
<u>Parameter</u>		Result	RL	i	<u>DF</u>	<u>Qua</u>	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP-22-HP11-35-37	18-09-1119-14-D	09/14/18 12:30	Aqueous	GC 61	N/A	09/18/18 18:48	180918L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP-22-HP11-39-41	18-09-1119-15-D	09/14/18 12:20	Aqueous	GC 61	N/A	09/18/18 19:15	180918L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
CP-22-HP12-31-33	18-09-1119-16-D	09/14/18 14:00	Aqueous	GC 61	N/A	09/18/18 19:43	180918L01
<u>Parameter</u>		Result	RL	i	<u>DF</u>	<u>Qua</u>	<u>alifiers</u>
Propene		ND	1.0	00	1.00		
CP-22-HP12-39-41	18-09-1119-17-D	09/14/18 13:40	Aqueous	GC 61	N/A	09/18/18 20:07	180918L01
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Propene		ND	1.0	00	1.00		
Method Blank	099-14-325-110	N/A	Aqueous	GC 61	N/A	09/18/18 12:49	180918L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Propene		ND	1.0	00	1.00		

Analytical Report

 Geosyntec Consultants
 Date Received:
 09/15/18

 595 Market Street, Suite 610
 Work Order:
 18-09-1119

 San Francisco, CA 94105-2811
 Preparation:
 Filtered

 Method:
 EPA 200.7

 Units:
 mg/L

 Project: ESTCP C. Pendleton WR2274
 Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
DUP01-20180914	18-09-1119-4-G	09/14/18 15:50	Aqueous	ICP 8300	09/20/18	09/24/18 13:36	180920LA2	
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qu	alifiers	
Zinc		ND	0.0	100	1.00			
DUP02-20180914	18-09-1119-5-G	09/14/18 16:00	Aqueous	ICP 8300	09/20/18	09/24/18 13:42	180920LA2	
<u>Parameter</u>		Result	RL	·	DF	Qu	alifiers	
Zinc		ND	0.0)100	1.00			
CP-22-HP08-31-33	18-09-1119-6-G	09/14/18 07:50	Aqueous	ICP 8300	09/20/18	09/24/18 13:44	180920LA2	
<u>Parameter</u>		Result	RL		DF	Qu	alifiers	
Zinc		ND	0.0100		1.00			
CP-22-HP08-35-37	18-09-1119-7-G	09/14/18 07:40	Aqueous	ICP 8300	09/20/18	09/24/18 13:45	180920LA2	
<u>Parameter</u>		Result	RL		<u>DF</u>	Qu	alifiers	
Zinc		ND	0.0100		1.00			
CP-22-HP08-39-41	18-09-1119-8-G	09/14/18 07:30	Aqueous	ICP 8300	09/20/18	09/24/18 13:46	180920LA2	
<u>Parameter</u>		Result	RL	:	DF	Qu	alifiers	
Zinc		ND	0.0	100	1.00			
CP-22-HP09-35-37	18-09-1119-10-G	09/14/18 09:15	Aqueous	ICP 8300	09/20/18	09/24/18 13:54	180920LA2	
Parameter Parameter		Result	RL		DF	Qu	alifiers	
Zinc		ND	0.0	0100	1.00			
CP-22-HP10-35-37	18-09-1119-12-G	09/14/18 10:50	Aqueous	ICP 8300	09/20/18	09/22/18 13:22	180920LA2	
<u>Parameter</u>		Result	RL		<u>DF</u>	Qu	alifiers	
Zinc		ND	0.0	100	1.00			
CP-22-HP10-39-41	18-09-1119-13-G	09/14/18 10:40	Aqueous	ICP 8300	09/20/18	09/24/18 13:55	180920LA2	
<u>Parameter</u>		Result	RL		<u>DF</u>	Qu	alifiers	
Zinc		ND	0.0	100	1.00			

Zinc

Analytical Report

 Geosyntec Consultants
 Date Received:
 09/15/18

 595 Market Street, Suite 610
 Work Order:
 18-09-1119

 San Francisco, CA 94105-2811
 Preparation:
 Filtered

 Method:
 EPA 200.7

 Units:
 mg/L

Project: ESTCP C. Pendleton WR2274 Page 2 of 2

•							3 -
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP-22-HP11-35-37	18-09-1119-14-G	09/14/18 12:30	Aqueous	ICP 8300	09/20/18	09/24/18 13:56	180920LA2
<u>Parameter</u>		Result	<u>RL</u> <u>DF</u>		Qua	alifiers	
Zinc		ND	0.0)100	1.00		
CP-22-HP11-39-41	18-09-1119-15-G	09/14/18 12:20	Aqueous	ICP 8300	09/20/18	09/24/18 13:58	180920LA2
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qualifiers	
Zinc		ND	0.0)100	1.00		
CP-22-HP12-31-33	18-09-1119-16-G	09/14/18 14:00	Aqueous	ICP 8300	09/20/18	09/24/18 13:59	180920LA2
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qualifiers	
Zinc		ND	0.0)100	1.00		
CP-22-HP12-39-41	18-09-1119-17-G	09/14/18 13:40	Aqueous	ICP 8300	09/20/18	09/24/18 14:01	180920LA2
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Zinc		ND	0.0)100	1.00		
Method Blank	099-14-304-778	N/A	Aqueous	ICP 8300	09/20/18	09/22/18 13:19	180920LA2
<u>Parameter</u>		Result	RL		DF	Qua	alifiers

0.0100

1.00

ND

Analytical Report

Geosyntec Consultants			Date Recei	ved:			09/15/18	
595 Market Street, Suite 610			Work Order	·:			18-09-1119	
San Francisco, CA 94105-2811			Preparation	EPA 5030C				
			Method:			S	RL 524M-TCP	
			Units:				ug/L	
Project: ESTCP C. Pendleton WR:	2274					Pa	ige 1 of 3	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
T-Blank 20180914	18-09-1119-1-A	09/14/18 07:00	Aqueous	GC/MS M	09/27/18	09/27/18 15:06	180927L022	
Parameter		Result	RL		DF	Qua	alifiers	
1,2,3-Trichloropropane		ND	0.0	050	1.00			
E-Blank 20180914	18-09-1119-2-A	09/14/18 15:00	Aqueous	GC/MS M	09/27/18	09/27/18 15:36	180927L022	
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers	
1,2,3-Trichloropropane		ND	0.0050		1.00			
F-Blank 20180914	18-09-1119-3-A	09/14/18 13:00	Aqueous	GC/MS M	09/27/18	09/27/18 16:05	180927L022	
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers	
1,2,3-Trichloropropane		ND	0.0	0050	1.00			
DUP01-20180914	18-09-1119-4-B	09/14/18 15:50	Aqueous	GC/MS M	09/27/18	09/27/18 14:36	180927L022	
Parameter		Result	RL		<u>DF</u>	Qua	alifiers	
1,2,3-Trichloropropane		0.021	0.0	050	1.00			
DUP02-20180914	18-09-1119-5-B	09/14/18 16:00	Aqueous	GC/MS M	09/27/18	09/27/18 12:37	180927L022	
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>	
1,2,3-Trichloropropane		0.55	0.0	50	10.0			
CP-22-HP08-31-33	18-09-1119-6-B	09/14/18 07:50	Aqueous	GC/MS M	09/27/18	09/27/18 14:07	180927L022	
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers	
1,2,3-Trichloropropane		0.081	0.0	110	2.00			
CP-22-HP08-35-37	18-09-1119-7-B	09/14/18 07:40	Aqueous	GC/MS M	09/27/18	09/27/18 18:34	180927L022	
Parameter		Result	RL		DF	Qua	alifiers	
1,2,3-Trichloropropane		0.43	0.0	50	10.0			
CP-22-HP08-39-41	18-09-1119-8-B	09/14/18 07:30	Aqueous	GC/MS M	09/27/18	09/27/18 17:35	180927L022	
Parameter		Result	RL		<u>DF</u>	Qua	alifiers	
1,2,3-Trichloropropane		0.024	0.0	050	1.00			

Analytical Report

Geosyntec Consultants			Date Recei	ved:			09/15/18		
595 Market Street, Suite 610			Work Order: 18-09-1119						
San Francisco, CA 94105-2811			Preparation: EPA 503						
Gail Francisco, 67(61100 2011			Method: SRL 524M-TC						
			Units:			· ·	ug/L		
Project: ESTCP C. Pendleton WR:	2274		Offits.			Pa	age 2 of 3		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
CP-22-HP09-31-33	18-09-1119-9-B	09/14/18 09:05	Aqueous	GC/MS M	09/27/18	09/27/18 19:04	180927L022		
<u>Parameter</u>		Result	RL		<u>DF</u>	<u>Qu</u>	<u>alifiers</u>		
1,2,3-Trichloropropane		0.32	0.0)25	5.00				
CP-22-HP09-35-37	18-09-1119-10-B	09/14/18 09:15	Aqueous	GC/MS M	09/27/18	09/27/18 19:33	180927L022		
<u>Parameter</u>		Result	RL	-	DF	Qu	alifiers		
1,2,3-Trichloropropane		3.2	0.25 50.0						
CP-22-HP10-31-33	18-09-1119-11-B	09/14/18 10:55	Aqueous	GC/MS M	09/27/18	09/27/18 18:04	180927L022		
Parameter		Result	RL		<u>DF</u>	Qua	alifiers		
1,2,3-Trichloropropane		0.037	0.0	0050	1.00				
CP-22-HP10-35-37	18-09-1119-12-B	09/14/18 10:50	Aqueous	GC/MS M	09/27/18	09/27/18 20:03	180927L022		
Parameter		Result	RL		<u>DF</u>	Qu	alifiers		
1,2,3-Trichloropropane		5.1	0.5	50	100				
CP-22-HP10-39-41	18-09-1119-13-A	09/14/18 10:40	Aqueous	GC/MS M	09/27/18	09/27/18 20:33	180927L022		
Parameter		Result	<u>RL</u>	.	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>		
1,2,3-Trichloropropane		0.0095	0.0	0050	1.00				
CP-22-HP11-35-37	18-09-1119-14-B	09/14/18 12:30	Aqueous	GC/MS M	09/28/18	09/28/18 11:27	180928L012		
Parameter		Result	RL		<u>DF</u>	Qu	alifiers		
1,2,3-Trichloropropane		0.27	0.0)25	5.00				
CP-22-HP11-39-41	18-09-1119-15-B	09/14/18 12:20	Aqueous	GC/MS M	09/28/18	09/28/18 11:57	180928L012		
Parameter		Result	RL		DF	Qu	alifiers		
1,2,3-Trichloropropane		0.092	0.0)10	2.00				
CP-22-HP12-31-33	18-09-1119-16-B	09/14/18 14:00	Aqueous	GC/MS M	09/28/18	09/28/18 12:27	180928L012		
Parameter		Result	RL		DF	Qu	<u>alifiers</u>		

Page 3 of 3

Analytical Report

Geosyntec Consultants Date Received: 09/15/18 595 Market Street, Suite 610 Work Order: 18-09-1119 **EPA 5030C** San Francisco, CA 94105-2811 Preparation: Method: SRL 524M-TCP Units: ug/L

Project: ESTCP C. Pendleton WR2274

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP-22-HP12-39-41	18-09-1119-17-B	09/14/18 13:40	Aqueous	GC/MS M	09/28/18	09/28/18 10:58	180928L012

<u>Parameter</u> Result <u>RL</u> <u>DF</u> Qualifiers 0.030 0.0050 1.00 1,2,3-Trichloropropane

Method Blank	099-10-022-1476	N/A	Aqueous	GC/MS M	09/27/18	09/27/18 11:38	180927L022
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
1,2,3-Trichloropropane		ND	0.0	050	1.00		

Method Blank	099-10-022-1477	N/A	Aqueous GC/MS M	09/28/18	09/28/18 180928L012 10:28	2
<u>Parameter</u>	·	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	
1.2.3-Trichloropropane		ND	0.0050	1.00		

Geosyntec Consultants

Date Received:

Work Order:

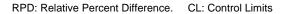
18-09-1119

San Francisco, CA 94105-2811

Preparation:

Method:

Date Received:


09/15/18

Filtered

EPA 200.7

Project: ESTCP C. Pendleton WR2274 Page 1 of 4

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
DUP01-20180914	Sample		Aqueous	s ICI	P 8300	09/20/18	09/24/18	13:36	180920SA2	
DUP01-20180914	Matrix Spike		Aqueous	s ICI	P 8300	09/20/18	09/24/18	13:38	180920SA2	
DUP01-20180914	Matrix Spike	Duplicate	Aqueous	s ICI	P 8300	09/20/18	09/24/18	13:39	180920SA2	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	ND	0.5000	0.4289	86	0.4902	98	80-120	13	0-20	

Geosyntec Consultants

Date Received:

Work Order:

18-09-1119

San Francisco, CA 94105-2811

Preparation:

Method:

Date Received:

09/15/18

Filtered

EPA 200.7

Project: ESTCP C. Pendleton WR2274 Page 2 of 4

Quality Control Sample ID	Type		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
CP-22-HP10-35-37	Sample		Aqueou	s IC	P 8300	09/20/18	09/22/18	13:22	180920SA2	4
CP-22-HP10-35-37	Matrix Spike		Aqueou	s IC	P 8300	09/20/18	09/22/18	13:24	180920SA2	4
CP-22-HP10-35-37	Matrix Spike	Duplicate	Aqueou	s IC	P 8300	09/20/18	09/22/18	13:25	180920SA2	4
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	ND	0.5000	0.5144	103	0.5129	103	80-120	0	0-20	

Geosyntec Consultants

Date Received:

Work Order:

18-09-1119

San Francisco, CA 94105-2811

Preparation:

Method:

Date Received:

09/15/18

Preparation:

EPA 5030C

Project: ESTCP C. Pendleton WR2274 Page 3 of 4

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
DUP02-20180914	Sample		Aqueou	s G	C/MS M	09/27/18	09/27/18	12:37	180927S006	
DUP02-20180914	Matrix Spike		Aqueou	s G	C/MS M	09/27/18	09/27/18	13:07	180927S006	
DUP02-20180914	Matrix Spike D	Ouplicate	Aqueou	s G	C/MS M	09/27/18	09/27/18	13:37	180927S006	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.5480	0.05000	0.6140	132	0.6870	278	70-130	11	0-20	3

Geosyntec Consultants

Date Received:

Work Order:

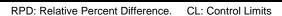
18-09-1119

San Francisco, CA 94105-2811

Preparation:

Method:

Date Received:


09/15/18

Preparation:

EPA 5030C

Project: ESTCP C. Pendleton WR2274 Page 4 of 4

Quality Control Sample ID	Type		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
CP-22-HP11-35-37	Sample		Aqueou	s G	C/MS M	09/28/18	09/28/18	11:27	180928S006	;
CP-22-HP11-35-37	Matrix Spike		Aqueou	s G	C/MS M	09/28/18	09/28/18	12:56	180928S006	
CP-22-HP11-35-37	Matrix Spike	Duplicate	Aqueou	s G	C/MS M	09/28/18	09/28/18	13:26	180928\$006	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.2710	0.02500	0.2925	86	0.3190	192	70-130	9	0-20	3

Quality Control - LCS/LCSD

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

18-09-1119 N/A

09/15/18

RSK-175M

Project: ESTCP C. Pendleton WR2274

Page 1 of 4

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date Pre	pared Da	ate Analyzed	LCS/LCSD B	atch Number
099-14-325-110	LCS	Aqı	ueous	GC 61	N/A	09	/18/18 10:11	180918L01	
099-14-325-110	LCSD	Aqı	ueous	GC 61	N/A	09	/18/18 10:38	180918L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. C	L RPD	RPD CL	Qualifiers
Propene	103.0	95.49	93	95.70	93	80-120	0	0-20	

Quality Control - LCS

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/15/18 18-09-1119 Filtered EPA 200.7

Project: ESTCP C. Pendleton WR2274

Page 2 of 4

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-304-778	LCS	Aqueous	ICP 8300	09/20/18	09/22/18 13:21	180920LA2
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Zinc		0.5000	0.4578	92	85-11	5

09/15/18

18-09-1119

Page 3 of 4

Quality Control - LCS

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Preparation:

Method:

EPA 5030C SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-10-022-1476	LCS	Aqueous	GC/MS M	09/27/18	09/27/18 10:38	180927L022
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %R	ec. %Rec	c. CL Qualifiers
1.2.3-Trichloropropane		0.005000	0.005500	110	80-12	0

Quality Control - LCS

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation:

18-09-1119 EPA 5030C

09/15/18

Method:

SRL 524M-TCP

Project: ESTCP C. Pendleton WR2274

Page 4 of 4

Quality Control Sample ID	Type	Matrix	Instrument D	ate Prepared	Date Analyzed	LCS Batch Number
099-10-022-1477	LCS	Aqueous	GC/MS M 09	9/28/18	09/28/18 09:58	180928L012
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Re	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.005000	0.005600	112	80-120)

Sample Analysis Summary Report

Work Order: 18-09-1119	Page 1 of 1			
<u>Method</u>	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 200.7	Filtered	110	ICP 8300	1
RSK-175M	N/A	1158	GC 61	2
SRL 524M-TCP	EPA 5030C	486	GC/MS M	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 18-09-1119 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

- Y % Recovery and/or RPD out-of-range
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Document Number:, 11491

Analysis Request and Chain of Custody Record

		Analy	Analysis Reque		hain c	of Cust	st and Chain of Custody Record	18-09-1119	5
Project Name	Project Number しんユンフィ	3 Se 2			Requir	Required Analyses	ses	Page of 2	2
	Project Cont	act (Kame	((came geogus fec com)		ارد	8.8 (4374.)			
	Lab Contact S. No ممالا	م الا		0728	- wi	n] √3		White copy: to accompany samples	oany samples
	Lab Phone			· · ·	بى	6. 6.	-	Yellow copy: field copy	ld copy
	Carrier/Waybill No.	oil No.		VOCs Metals	746 546 Palm	443 4 ~2 7/5 V		•	•
				Bottl	e Type an	d Volume/F	Bottle Type and Volume/Preservative		Lab Use
									Only
Sample Name	Date	Time	Type		Number	Number of Containers	iners	Comments	Condition or Bottles
T-Black 20190714	81/hn/b	0300	WARE		٦				/
E-81-16 20180914		1500		•	٦				2
F-Blac Zorgony		1300			2				2
Dupo 1-201809 14		1550			~	3			¢
DUPOR-20180714		•••			~	3			h
CP22-1809-51-33		0750			^	3 ,		mild ophicas and	9
Cp12-#4-35-37		0740			^	- ^			7
G22-4808-39-41		0736			^	3 1			S
422-1409-31-33		0105			~	~			9
CP 22-1409 -35-37		09.5			~	3		N. A.	70
G2-1410-31-53		1055			>	3		Makmak ephanussance	//
G22-1810-35-57	→	1050	→		<u> </u>	5			12
Special Instructions: 0~12 0~12 00 CD22-HP12-34-41-31-33 6-	run C1922	-HP12-54	4-31-33 6		Sample	Enandity ?	EPA-200,7) F Sample frantity is dutering to be	Turn-around Time:	
atenak		1				•		Dx Normal □ Rush:	sh:
1. Relinquished by (Signiture/Affiliation)			Date Time	1271 81/21/6	1. Rec (Signiture	1. Received by (Signiture/Affiliation)		Date (7) Time	09 4 8
2. Relinquished by (Signiture/Affiliation)		,	Date Q	-	2. Rec (Signiture	2. Received by (Signiture/Affiliation)		Date	3 8/1/2
		7			6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)	

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 Geosyntec⁹

Time Date

3. Relinquished by (Signiture/Affliation)

consultants

Date Time

3. Received by (Signiture/Affiliation)

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586

consultants

WORK ORDER NUMBER: 18 0 0 0 0 1 29 1 9

Calscience SAMPLE RECEIPT CHECKLIST C	OOLER	<u> </u>	F <u>1</u>
CLIENT: GEOSYNTEC DAT	E: <u>09 /</u>	14/2	018
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: -0.5°C); Temperature (w/o CF):	Blank Checked		ample
CUSTODY SEAL: Cooler	Checked Checked		
SAMPLE CONDITION:	Yes	No	N/A
Chain-of-Custody (COC) document(s) received with samples			
COC document(s) received complete	. Z		
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers			
□ No analysis requested □ Not relinquished □ No relinquished date □ No relinquished time	,		*
Sampler's name indicated on COC	. Z		
Sample container label(s) consistent with COC	. 🗆	Z	
Sample container(s) intact and in good condition	. 🗷		
Proper containers for analyses requested	. 七 /		
Sufficient volume/mass for analyses requested	. 🗹		
Samples received within holding time	. z		
Aqueous samples for certain analyses received within 15-minute holding time			_
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	. 🗆 🦯		1
Proper preservation chemical(s) noted on COC and/or sample container	. 🗷		
Unpreserved aqueous sample(s) received for certain analyses			
□ Volatile Organics □ Total Metals ☑ Dissolved Metals			
Acid/base preserved samples - pH within acceptable range	. 🗖		P
Container(s) for certain analysis free of headspace		Z/	
☑ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 4500)			
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)			
Tedlar™ bag(s) free of condensation	. 🗆		Z
		829	Ci
CONTAINER TYPE: (Trip Blank Lot Numb Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ □ 100PJna₂ □ 125AGB □ 125AGBh □ 125AGBp □ 125F □ 250AGB □ 250CGB □ 250CGBs (pH_2) □ 250PBn □ 250PBn (pH_2) □ 500AGB □ 500AGJ □ 500AG □ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □ □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve () □ EnCores® () □ TerraCores® () □ Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other Matrix (): □	PB	B znna (pl 2) □ 500 □	H9) PB
Container: $A = Amber$, $B = Bottle$, $C = Clear$, $E = Envelope$, $G = Glass$, $J = Jar$, $P = Plastic$, and $Z = Ziploc/Researched$	sealable Ba	g /	1/21
Preservative: $\mathbf{b} = \text{buffered}$ $\mathbf{f} = \text{filtered}$, $\mathbf{h} = \text{HCl}$, $\mathbf{n} = \text{HNO}_3$, $\mathbf{na} = \text{NaOH}$, $\mathbf{na_2} = \text{Na}_2\text{S}_2\text{O}_3$, $\mathbf{p} = \text{H}_3\text{PO}_4$, Labele			$\mathcal{L}_{\mathcal{L}}$

 $\mathbf{s} = \mathsf{H}_2\mathsf{SO}_4,\,\mathbf{u} = \mathsf{ultra-pure},\,\mathbf{x} = \mathsf{Na}_2\mathsf{SO}_3 + \mathsf{Na}\mathsf{HSO}_4.\mathsf{H}_2\mathsf{O},\,\mathbf{znna} = \mathsf{Zn}\;(\mathsf{CH}_3\mathsf{CO}_2)_2 + \mathsf{Na}\mathsf{OH}$

Reviewed by: #4/

Calscience

SAMPLE ANOMALY REPORT

DATE: 09 / 14 / 2018

								_	
SAMPLES,	CONTAIN	ERS, AN	D LABELS	S:		Commer	nts		
☐ Sample(s)	NOT RECE	IVED but	listed on CC	C					
☐ Sample(s)	received but	t NOT LIS	TED on CC	C					
☐ Holding tim	ne expired (li	ist client o	r ECI samp	le ID and anal	ysis)				
☐ Insufficient	t sample amo	ount for re	quested an	alysis (list ana	alysis)	***************************************			
☐ Improper o	container(s) ເ	used (list a	analysis)						
☐ Improper p	oreservative	used (list	analysis)						
☐ pH outside	acceptable	range (list	t analysis)						.,
☐ No preserv	vative noted	on COC o	r label (list	analysis and r	notify lab)				,
☐ Sample co	ontainer(s) no	ot labeled						•	
☐ Client sam	ple label(s) i	llegible (li	st container	type and ana	lysis)	$\left(-4\right)$	con tai		for
Z Client sam	ple label(s)	do not ma	tch COC (co	omment)				200.7	(Lab filter)
□ Project	information					10	beled	as	
Z Client s	sample ID								
☐ Samplii	ng date and/	or time					UPOZ	- 20	180914
□ Numbe	er of containe	er(s)							
☐ Reques	sted analysis	;							
☐ Sample co	ontainer(s) co	mpromise	ed (commer	nt)					
☐ Broken	ı								
□ Water p	present in sa	mple cont	ainer						
☐ Air sample	container(s)) compron	nised (comn	nent)					
□ Flat									
□ Very lo	w in volume								
☐ Leakino	g (not transfe	erred; dup	licate bag s	ubmitted)					
☐ Leakino	g (transferred	d into ECI	Tedlar™ ba	ags*)					
☐ Leakino	g (transferred	d into clier	nt's Tedlar™	⁴ bags*)					
* Transferred	d at client's requ	est.							
MISCELLA	NEOUS: (D	escribe)				Commer	nts		
HEADSPAC	CE.								
		or ¼ inch for	volatile organi	c or dissolved gas	analysis)	(Containers wi	th bubble for othe	r analysis)	
ECI Sample ID	ECI Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**	Requested Analysis
7		6							
/ /		6							
Comments:									. []2
_									Reported by:
** Record the tot	tal number of co	ntainers (i.e.,	vials or bottles	s) for the affected	sample.			F	Reported by: H4MW

Calscience

WORK ORDER NUMBER: 18-09-1544

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: ESTCP C. Pendleton / WR2274

Attention: Lea Kane

595 Market Street

Suite 610

San Francisco, CA 94105-2811

ResultLink >

Email your PM >

Approved for release on 10/01/2018 by:

Stephen Nowak Project Manager

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	ESTCP C.	Pendleton /	WR2274

Work Order Number: 18-09-1544

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 8015B (M) C6-C44 (Solid). 4.2 EPA 8015B (M) C6-C44 (Aqueous). 4.3 EPA 6010B/7471A CAC Title 22 Metals (Solid). 4.4 EPA 6010B/7470A CAC Title 22 Metals (Aqueous). 4.5 EPA 7470A Mercury (Aqueous). 4.6 EPA 7471A Mercury (Solid). 4.7 EPA 8260B Volatile Organics (Solid). 4.8 EPA 8260B Volatile Organics (Aqueous).	6 8 10 12 14 15 16 20
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.	24 24 30
6	Sample Analysis Summary	40
7	Glossary of Terms and Qualifiers	41
8	Chain-of-Custody/Sample Receipt Form	42

Work Order Narrative

Work Order: 18-09-1544 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/20/18. They were assigned to Work Order 18-09-1544.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

Sample Summary

Client: Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Work Order:

Project Name:

ESTCP C. Pendleton / WR2274

PO Number:

Date/Time Received:

Number of

Containers:

09/20/18 18:50

18-09-1544

7

Attn: Lea Kane

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
IDW-SOIL-20180919	18-09-1544-1	09/19/18 15:30	2	Solid
IDW-WATER-20180919	18-09-1544-2	09/19/18 15:45	5	Aqueous

Detections Summary

Client: Geosyntec Consultants Work Order: 18-09-1544

595 Market Street, Suite 610 Project Name: ESTCP C. Pendleton / WR2274

San Francisco, CA 94105-2811 Received: 09/20/18

Attn: Lea Kane Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
IDW-SOIL-20180919 (18-09-1544-1)						
Arsenic	4.79		0.732	mg/kg	EPA 6010B	EPA 3050B
Barium	154		0.488	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.552		0.244	mg/kg	EPA 6010B	EPA 3050B
Chromium	21.2		0.244	mg/kg	EPA 6010B	EPA 3050B
Cobalt	8.54		0.244	mg/kg	EPA 6010B	EPA 3050B
Copper	12.7		0.488	mg/kg	EPA 6010B	EPA 3050B
Nickel	7.83		0.244	mg/kg	EPA 6010B	EPA 3050B
Vanadium	46.6		0.244	mg/kg	EPA 6010B	EPA 3050B
Zinc	54.6		0.976	mg/kg	EPA 6010B	EPA 3050B
IDW-WATER-20180919 (18-09-1544-2)						
Arsenic	0.597		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Barium	0.763		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Chromium	0.101		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Cobalt	0.0349		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Copper	0.328		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Lead	0.0253		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Nickel	0.0432		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Thallium	0.0173		0.0150	mg/L	EPA 6010B	EPA 3010A Total
Vanadium	0.235		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Zinc	0.485		0.0100	mg/L	EPA 6010B	EPA 3010A Total
C6-C44 Total	170		96	ug/L	EPA 8015B (M)	EPA 3510C

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Analytical Report

Geosyntec Consultants Date Received: 09/20/18 595 Market Street, Suite 610 Work Order: 18-09-1544 **EPA 3550B** San Francisco, CA 94105-2811 Preparation: Method: EPA 8015B (M) Units: mg/kg

Page 1 of 2 Project: ESTCP C. Pendleton / WR2274

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-SOIL-20180919	18-09-1544-1-B	09/19/18 15:30	Solid	GC 46	09/25/18	09/26/18 00:18	180925B04
<u>Parameter</u>		<u>Result</u>	RL	1	<u>DF</u>	Qua	<u>llifiers</u>
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
n-Octacosane		97	61-	-145			

Analytical Report

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Prep

 Date Received:
 09/20/18

 Work Order:
 18-09-1544

 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Units:
 mg/kg

Project: ESTCP C. Pendleton / WR2274

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-3302	N/A	Solid	GC 46	09/25/18	09/25/18 20:48	180925B04
<u>Parameter</u>		Result	<u>RL</u>		DF	Qua	alifiers
C6		ND	5.0		1.00		
C7		ND	5.0		1.00		
C8		ND	5.0		1.00		
C9-C10		ND	5.0		1.00		
C11-C12		ND	5.0		1.00		
C13-C14		ND	5.0		1.00		
C15-C16		ND	5.0		1.00		
C17-C18		ND	5.0		1.00		
C19-C20		ND	5.0		1.00		
C21-C22		ND	5.0		1.00		
C23-C24		ND	5.0		1.00		
C25-C28		ND	5.0		1.00		
C29-C32		ND	5.0		1.00		
C33-C36		ND	5.0		1.00		
C37-C40		ND	5.0		1.00		
C41-C44		ND	5.0		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
n-Octacosane		91	61-1	145			

n-Octacosane

Analytical Report

 Geosyntec Consultants
 Date Received:
 09/20/18

 595 Market Street, Suite 610
 Work Order:
 18-09-1544

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: ESTCP C. Pendleton / WR2274 Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-WATER-20180919	18-09-1544-2-E	09/19/18 15:45	Aqueous	GC 49	09/25/18	09/27/18 10:28	180925B11A
<u>Parameter</u>		Result	RL		DF	Qua	<u>llifiers</u>
C6		ND	96		1.00		
C7		ND	96		1.00		
C8		ND	96		1.00		
C9-C10		ND	96		1.00		
C11-C12		ND	96		1.00		
C13-C14		ND	96		1.00		
C15-C16		ND	96		1.00		
C17-C18		ND	96		1.00		
C19-C20		ND	96		1.00		
C21-C22		ND	96		1.00		
C23-C24		ND	96		1.00		
C25-C28		ND	96		1.00		
C29-C32		ND	96		1.00		
C33-C36		ND	96		1.00		
C37-C40		ND	96		1.00		
C41-C44		ND	96		1.00		
C6-C44 Total		170	96		1.00		
<u>Surrogate</u>		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		

68-140

88

n-Octacosane

Analytical Report

 Geosyntec Consultants
 Date Received:
 09/20/18

 595 Market Street, Suite 610
 Work Order:
 18-09-1544

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: ESTCP C. Pendleton / WR2274 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-498-634	N/A	Aqueous	GC 49	09/25/18	09/25/18 22:50	180925B11A
Parameter	·	Result	RL		<u>DF</u>	Qua	lifiers
C6		ND	100)	1.00		
C7		ND	100)	1.00		
C8		ND	100)	1.00		
C9-C10		ND	100)	1.00		
C11-C12		ND	100)	1.00		
C13-C14		ND	100)	1.00		
C15-C16		ND	100)	1.00		
C17-C18		ND	100)	1.00		
C19-C20		ND	100)	1.00		
C21-C22		ND	100)	1.00		
C23-C24		ND	100)	1.00		
C25-C28		ND	100)	1.00		
C29-C32		ND	100)	1.00		
C33-C36		ND	100)	1.00		
C37-C40		ND	100)	1.00		
C41-C44		ND	100)	1.00		
C6-C44 Total		ND	100)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		

103

68-140

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

18-09-1544 EPA 3050B EPA 6010B mg/kg

09/20/18

Project: ESTCP C. Pendleton / WR2274

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-SOIL-20180919	18-09-1544-1-A	09/19/18 15:30	Solid	ICP 8300	09/26/18	09/27/18 12:23	180926L03
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	lifiers
Antimony		ND	C).732	0.976		
Arsenic		4.79	C).732	0.976		
Barium		154	C).488	0.976		
Beryllium		0.552	C).244	0.976		
Cadmium		ND	C).488	0.976		
Chromium		21.2	C).244	0.976		
Cobalt		8.54	C).244	0.976		
Copper		12.7	C	0.488	0.976		
Lead		ND	C).488	0.976		
Molybdenum		ND	C).244	0.976		
Nickel		7.83	C).244	0.976		
Selenium		ND	C).732	0.976		
Silver		ND	C).244	0.976		
Thallium		ND	C).732	0.976		
Vanadium		46.6	C).244	0.976		
Zinc		54.6	C).976	0.976		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

18-09-1544 **EPA 3050B** EPA 6010B

09/20/18

Units:

mg/kg Page 2 of 2

Project: ESTCP C. Pendleton / WR2274

Date/Time OC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-27022	N/A	Solid	ICP 8300	09/26/18	09/27/18 20:07	180926L03
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	C	.735	0.980		
Arsenic		ND	C	.735	0.980		
Barium		ND	C	.490	0.980		
Beryllium		ND	C	.245	0.980		
Cadmium		ND	C	.490	0.980		
Chromium		ND	C	.245	0.980		
Cobalt		ND	C	.245	0.980		
Copper		ND	C	.490	0.980		
Lead		ND	C	.490	0.980		
Molybdenum		ND	C	.245	0.980		
Nickel		ND	C	.245	0.980		
Selenium		ND	C	.735	0.980		
Silver		ND	C	.245	0.980		
Thallium		ND	C	.735	0.980		
Vanadium		ND	C	.245	0.980		
Zinc		ND	C	.980	0.980		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

09/20/18 18-09-1544 EPA 3010A Total EPA 6010B mg/L

Project: ESTCP C. Pendleton / WR2274

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-WATER-20180919	18-09-1544-2-D	09/19/18 15:45	Aqueous	ICP 8300	09/26/18	09/27/18 13:31	180926LA1
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0	0150	1.00		
Arsenic		0.597	0.0	0100	1.00		
Barium		0.763	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		0.101	0.0	0100	1.00		
Cobalt		0.0349	0.0	0100	1.00		
Copper		0.328	0.0	0100	1.00		
Lead		0.0253	0.0	0100	1.00		
Molybdenum		ND	0.0	0100	1.00		
Nickel		0.0432	0.0	0100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		0.0173	0.0)150	1.00		
Vanadium		0.235	0.0	0100	1.00		
Zinc		0.485	0.0	0100	1.00		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

09/20/18 18-09-1544 EPA 3010A Total EPA 6010B mg/L

Project: ESTCP C. Pendleton / WR2274

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-003-17052	N/A	Aqueous	ICP 8300	09/26/18	09/26/18 12:51	180926LA1
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	0.0	150	1.00		
Arsenic		ND	0.0	100	1.00		
Barium		ND	0.0	100	1.00		
Beryllium		ND	0.0	100	1.00		
Cadmium		ND	0.0	100	1.00		
Chromium		ND	0.0	100	1.00		
Cobalt		ND	0.0	100	1.00		
Copper		ND	0.0	100	1.00		
Lead		ND	0.0	100	1.00		
Molybdenum		ND	0.0	100	1.00		
Nickel		ND	0.0	100	1.00		
Selenium		ND	0.0	150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0	150	1.00		
Vanadium		ND	0.0	100	1.00		
Zinc		ND	0.0	100	1.00		

Geosyntec Consultants

Date Received:

Work Order:

18-09-1544

San Francisco, CA 94105-2811

Preparation:

Method:

EPA 7470A Total

Units: mg/L

Project: ESTCP C. Pendleton / WR2274 Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-WATER-20180919	18-09-1544-2-D	09/19/18 15:45	Aqueous	Mercury 07	09/26/18	09/26/18 16:38	180926LA3
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Mercury		ND	0.0	00500	1.00		
Method Blank	099-04-008-8697	N/A	Aqueous	Mercury 07	09/26/18	09/26/18	180926LA3

Method Blank	099-04-008-8697	N/A	Aqueous Mercury 07	09/26/18	09/26/18 15:54	180926LA3
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND	0.000500	1.00		

Geosyntec ConsultantsDate Received:09/20/18595 Market Street, Suite 610Work Order:18-09-1544San Francisco, CA 94105-2811Preparation:EPA 7471A Total

Method: EPA 7471A Units: mg/kg

Project: ESTCP C. Pendleton / WR2274 Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-SOIL-20180919	18-09-1544-1-A	09/19/18 15:30	Solid	Mercury 08	09/27/18	09/27/18 16:18	180927L04
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND	0	.0847	1.00		

Method Blank	099-16-272-4167	N/A	Solid	Mercury 08	09/27/18	09/27/18 15:39	180927L04
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND	0.08	06	1.00		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

Units:

EPA 5030C EPA 8260B ug/kg

09/20/18

18-09-1544

Project: ESTCP C. Pendleton / WR2274

Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-SOIL-20180919	18-09-1544-1-B	09/19/18 15:30	Solid	GC/MS BB	09/21/18	09/25/18 10:20	180924L013
<u>Parameter</u>		Result	<u>R</u>	L	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	1:	30	1.00		
Benzene		ND	5	.0	1.00		
Bromobenzene		ND	5	.0	1.00		
Bromochloromethane		ND	5	.0	1.00		
Bromodichloromethane		ND	5	.0	1.00		
Bromoform		ND	5	.0	1.00		
Bromomethane		ND	2	5	1.00		
2-Butanone		ND	5	0	1.00		
n-Butylbenzene		ND	5	.0	1.00		
sec-Butylbenzene		ND	5	.0	1.00		
tert-Butylbenzene		ND	5	.0	1.00		
Carbon Disulfide		ND	5	0	1.00		
Carbon Tetrachloride		ND	5	.0	1.00		
Chlorobenzene		ND	5	.0	1.00		
Chloroethane		ND	5	.0	1.00		
Chloroform		ND	5	.0	1.00		
Chloromethane		ND	2	5	1.00		
2-Chlorotoluene		ND	5	.0	1.00		
4-Chlorotoluene		ND	5	.0	1.00		
Dibromochloromethane		ND	5	.0	1.00		
1,2-Dibromo-3-Chloropropane		ND	10	0	1.00		
1,2-Dibromoethane		ND	5	.0	1.00		
Dibromomethane		ND	5	.0	1.00		
1,2-Dichlorobenzene		ND	5	.0	1.00		
1,3-Dichlorobenzene		ND	5	.0	1.00		
1,4-Dichlorobenzene		ND	5	.0	1.00		
Dichlorodifluoromethane		ND	5.	.0	1.00		
1,1-Dichloroethane		ND	5	.0	1.00		
1,2-Dichloroethane		ND	5	.0	1.00		
1,1-Dichloroethene		ND	5	.0	1.00		
c-1,2-Dichloroethene		ND		.0	1.00		
t-1,2-Dichloroethene		ND	5.	.0	1.00		
1,2-Dichloropropane		ND	5.	.0	1.00		
1,3-Dichloropropane		ND		.0	1.00		
2,2-Dichloropropane		ND	5	.0	1.00		

RL: Reporting Limit. DF: Dilution Factor.

MDL: Method Detection Limit.

Geosyntec Consultants Date Received: 09/20/18 595 Market Street, Suite 610 Work Order: 18-09-1544 EPA 5030C San Francisco, CA 94105-2811 Preparation: Method: EPA 8260B Units: ug/kg Page 2 of 4

Project: ESTCP C. Pendleton / WR2274

				1 3.90 = 31 1
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	5.0	1.00	
c-1,3-Dichloropropene	ND	5.0	1.00	
t-1,3-Dichloropropene	ND	5.0	1.00	
Ethylbenzene	ND	5.0	1.00	
2-Hexanone	ND	50	1.00	
Isopropylbenzene	ND	5.0	1.00	
p-Isopropyltoluene	ND	5.0	1.00	
Methylene Chloride	ND	50	1.00	
4-Methyl-2-Pentanone	ND	50	1.00	
Naphthalene	ND	50	1.00	
n-Propylbenzene	ND	5.0	1.00	
Styrene	ND	5.0	1.00	
1,1,1,2-Tetrachloroethane	ND	5.0	1.00	
1,1,2,2-Tetrachloroethane	ND	5.0	1.00	
Tetrachloroethene	ND	5.0	1.00	
Toluene	ND	5.0	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.0	1.00	
1,1,1-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00	
Trichloroethene	ND	5.0	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	5.0	1.00	
Trichlorofluoromethane	ND	50	1.00	
1,3,5-Trimethylbenzene	ND	5.0	1.00	
Vinyl Acetate	ND	50	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	5.0	1.00	
o-Xylene	ND	5.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	88	60-132		
Dibromofluoromethane	95	63-141		
1,2-Dichloroethane-d4	84	62-146		
Toluene-d8	107	70-130		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

18-09-1544 EPA 5030C EPA 8260B

09/20/18

Units:

ug/kg Page 3 of 4

Project: ESTCP C. Pendleton / WR2274

Date/Time Collected QC Batch ID Client Sample Number Lab Sample Matrix Instrument Date Date/Time Prepared Number Analyzed 09/25/18 05:27 **Method Blank** 099-14-314-1111 N/A Solid GC/MS BB 09/24/18 180924L013 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND 120 1.00 Acetone ND Benzene 5.0 1.00 ND Bromobenzene 5.0 1.00 Bromochloromethane ND 5.0 1.00 Bromodichloromethane ND 5.0 1.00 **Bromoform** ND 5.0 1.00 **Bromomethane** ND 25 1.00 2-Butanone ND 50 1.00 n-Butylbenzene ND 5.0 1.00 sec-Butylbenzene ND 5.0 1.00 tert-Butylbenzene ND 5.0 1.00 Carbon Disulfide ND 50 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chloroethane ND 5.0 1.00 Chloroform ND 5.0 1.00 Chloromethane ND 25 1.00 2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 Dibromochloromethane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 ND 5.0 1,2-Dichloroethane 1.00 1,1-Dichloroethene ND 5.0 1.00

RL: Reporting Limit.

c-1,2-Dichloroethene

t-1,2-Dichloroethene

1,2-Dichloropropane1,3-Dichloropropane

2,2-Dichloropropane

DF: Dilution Factor.

MDL: Method Detection Limit.

5.0

5.0

5.0

5.0

5.0

1.00

1.00

1.00

1.00

1.00

ND

ND

ND

ND

ND

 Geosyntec Consultants
 Date Received:
 09/20/18

 595 Market Street, Suite 610
 Work Order:
 18-09-1544

 San Francisco, CA 94105-2811
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: ESTCP C. Pendleton / WR2274
 Page 4 of 4

			Page 4 of 4
Result	<u>RL</u>	<u>DF</u>	Qualifiers
ND	5.0	1.00	
ND	50	1.00	
ND	5.0	1.00	
ND	5.0	1.00	
ND	50	1.00	
ND	50	1.00	
ND	50	1.00	
ND	5.0	1.00	
ND	10	1.00	
ND	5.0	1.00	
ND	5.0	1.00	
ND	5.0	1.00	
ND	50	1.00	
ND	5.0	1.00	
ND	5.0	1.00	
ND	5.0	1.00	
ND	50	1.00	
ND	5.0	1.00	
ND	50	1.00	
ND	5.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>	
84	60-132		
96	63-141		
89	62-146		
108	70-130		
	ND N	ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 50 ND 5.0	ND 5.0 1.00 ND 50 1.00 ND 5.0 1.00

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received:
Work Order:
Preparation:
Method:

18-09-1544 EPA 5030C EPA 8260B

09/20/18

ug/L

Units:

Page 1 of 4

Project: ESTCP C. Pendleton / WR2274

QC Batch ID Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time Prepared Number Collected Analyzed 09/28/18 08:51 09/19/18 15:45 IDW-WATER-20180919 18-09-1544-2-A Aqueous **GC/MS PP** 09/27/18 180927L045 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND 20 1.00 Acetone ND Benzene 1.0 1.00 ND Bromobenzene 1.0 1.00 Bromochloromethane ND 2.0 1.00 Bromodichloromethane ND 1.0 1.00 **Bromoform** ND 5.0 1.00 **Bromomethane** ND 50 1.00 2-Butanone ND 20 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.00 1.0 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 2.0 1.00 Chlorobenzene ND 1.0 1.00 Chloroethane ND 5.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 10 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 ND 1.0 1,2-Dichloroethane 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane 1,3-Dichloropropane ND 1.0 1.00 ND 1.00 2,2-Dichloropropane 1.0

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Geosyntec Consultants Date Received: 09/20/18 595 Market Street, Suite 610 Work Order: 18-09-1544 **EPA 5030C** San Francisco, CA 94105-2811 Preparation: Method: EPA 8260B Units: ug/L Page 2 of 4

Project: ESTCP C. Pendleton / WR2274

				1 3.9 - 31 1
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	2.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	2.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	94	78-120		
Dibromofluoromethane	103	80-126		
1,2-Dichloroethane-d4	95	80-129		
Toluene-d8	98	80-120		

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

18-09-1544 EPA 5030C EPA 8260B

09/20/18

ug/L

Units:

Page 3 of 4

Project: ESTCP C. Pendleton / WR2274

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-316-4231	N/A	Aqueous	GC/MS PP	09/27/18	09/28/18 05:39	180927L045
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	20		1.00		
Benzene		ND	1.0)	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	2.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	5.0)	1.00		
Bromomethane		ND	50		1.00		
2-Butanone		ND	20		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	2.0)	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	2.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	5.0		1.00		
1,1-Dichloroethane		ND	1.0		1.00		
1,2-Dichloroethane		ND	1.0		1.00		
1,1-Dichloroethene		ND	1.0		1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0		1.00		
1,2-Dichloropropane		ND	1.0		1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	1.0		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Geosyntec Consultants Date Received: 09/20/18 595 Market Street, Suite 610 Work Order: 18-09-1544 **EPA 5030C** San Francisco, CA 94105-2811 Preparation: Method: EPA 8260B Units: ug/L

Project: ESTCP C. Pendleton / WR2274

Page 4 of 4

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	2.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	2.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	92	78-120		
Dibromofluoromethane	103	80-126		
1,2-Dichloroethane-d4	95	80-129		
Toluene-d8	97	80-120		

Geosyntec Consultants

Date Received:

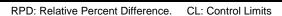
09/20/18

Work Order:

18-09-1544

San Francisco, CA 94105-2811

Preparation:


EPA 3550B

Method:

EPA 8015B (M)

Project: ESTCP C. Pendleton / WR2274 Page 1 of 6

Quality Control Sample ID	Type	Matrix	Instru	ument	Date Prepared	Date Anal	yzed	MS/MSD Bat	tch Number
18-09-1634-4	Sample	Solid	GC 4	6	09/25/18	09/25/18 2	23:17	180925S04	
18-09-1634-4	Matrix Spike	Solid	GC 4	6	09/25/18	09/25/18 2	21:28	180925S04	
18-09-1634-4	Matrix Spike Duplic	ate Solid	GC 4	6	09/25/18	09/25/18 2	21:56	180925S04	
Parameter	Sample Spike Conc. Adde		MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	ND 400.0	355.1	89	357.5	89	64-130	1	0-15	

Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Preparation:

Method:

18-09-1544 EPA 3050B EPA 6010B

09/20/18

Project: ESTCP C. Pendleton / WR2274 Page 2 of 6

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	ed Date Ana	lyzed	MS/MSD Ba	tch Number
18-09-1649-2	Sample		Solid	ICP	8300	09/26/18	09/27/18	20:10	180926S03	
18-09-1649-2	Matrix Spike		Solid	ICP	8300	09/26/18	09/27/18	20:15	180926S03	
18-09-1649-2	Matrix Spike	Duplicate	Solid	ICP	8300	09/26/18	09/27/18	20:16	180926S03	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	13.26	53	14.27	57	50-115	7	0-20	
Arsenic	1.661	25.00	27.84	105	27.33	103	75-125	2	0-20	
Barium	81.40	25.00	89.74	33	80.48	0	75-125	11	0-20	3
Beryllium	0.3032	25.00	28.10	111	27.97	111	75-125	0	0-20	
Cadmium	ND	25.00	28.62	114	28.27	113	75-125	1	0-20	
Chromium	11.44	25.00	40.68	117	38.36	108	75-125	6	0-20	
Cobalt	3.935	25.00	33.21	117	31.99	112	75-125	4	0-20	
Copper	6.885	25.00	35.57	115	37.44	122	75-125	5	0-20	
Lead	18.71	25.00	38.56	79	35.23	66	75-125	9	0-20	3
Molybdenum	ND	25.00	26.05	104	25.95	104	75-125	0	0-20	
Nickel	6.207	25.00	32.74	106	31.83	102	75-125	3	0-20	
Selenium	ND	25.00	26.13	105	26.69	107	75-125	2	0-20	
Silver	ND	12.50	14.12	113	14.19	114	75-125	0	0-20	
Thallium	ND	25.00	24.29	97	23.89	96	75-125	2	0-20	
Vanadium	13.31	25.00	42.21	116	42.19	116	75-125	0	0-20	
Zinc	34.30	25.00	64.64	121	63.72	118	75-125	1	0-20	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

18-09-1544 EPA 3010A Total EPA 6010B

09/20/18

Project: ESTCP C. Pendleton / WR2274

Page 3 of 6

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepar	ed Date Ana	lyzed	MS/MSD Bat	ch Number
18-09-1797-2	Sample		Aqueou	s	ICP 8300	09/26/18	09/26/18	12:55	180926SA1	
18-09-1797-2	Matrix Spike		Aqueou	s	ICP 8300	09/26/18	09/26/18	12:57	180926SA1	
18-09-1797-2	Matrix Spike	Duplicate	Aqueou	s	ICP 8300	09/26/18	09/26/18	12:58	180926SA1	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Re	MSD c. Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	0.5000	0.4666	93	0.4684	94	72-132	0	0-10	
Arsenic	ND	0.5000	0.4942	99	0.4921	98	80-140	0	0-11	
Barium	0.2403	0.5000	0.7891	110	0.7923	110	87-123	0	0-6	
Beryllium	ND	0.5000	0.5093	102	0.5152	103	89-119	1	0-8	
Cadmium	ND	0.5000	0.5415	108	0.5438	109	82-124	0	0-7	
Chromium	ND	0.5000	0.5231	105	0.5221	104	86-122	0	0-8	
Cobalt	ND	0.5000	0.5403	108	0.5443	109	83-125	1	0-7	
Copper	0.01562	0.5000	0.5274	102	0.5297	103	78-126	0	0-7	
Lead	ND	0.5000	0.5927	119	0.5963	119	84-120	1	0-7	
Molybdenum	ND	0.5000	0.5314	106	0.5352	107	78-126	1	0-7	
Nickel	0.01410	0.5000	0.5214	101	0.5273	103	84-120	1	0-7	
Selenium	ND	0.5000	0.5198	104	0.5133	103	79-127	1	0-9	
Silver	ND	0.2500	0.2032	81	0.1895	76	86-128	7	0-7	3
Thallium	ND	0.5000	0.5231	105	0.5190	104	79-121	1	0-8	
Vanadium	ND	0.5000	0.5082	102	0.5099	102	88-118	0	0-7	
Zinc	0.01978	0.5000	0.5392	104	0.5474	106	89-131	2	0-8	

Geosyntec ConsultantsDate Received:09/20/18595 Market Street, Suite 610Work Order:18-09-1544San Francisco, CA 94105-2811Preparation:EPA 7470A TotalMethod:EPA 7470A

Project: ESTCP C. Pendleton / WR2274 Page 4 of 6

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	d Date Analyzed		MS/MSD Batch Number	
18-09-1138-1	Sample		Aqueous	Me	ercury 07	09/26/18	09/26/18	16:03	180926SA3	
18-09-1138-1	Matrix Spike		Aqueous	. Me	ercury 07	09/26/18	09/26/18	16:06	180926SA3	
18-09-1138-1	Matrix Spike	Duplicate	Aqueous	. Me	ercury 07	09/26/18	09/26/18	16:08	180926SA3	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.01000	0.008558	86	0.008686	87	55-133	1	0-20	

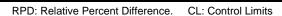
Geosyntec Consultants

Date Received:

Work Order:

18-09-1544

San Francisco, CA 94105-2811


Preparation:

Method:

EPA 7471A Total

Project: ESTCP C. Pendleton / WR2274 Page 5 of 6

Quality Control Sample ID	Туре		Matrix	Instrument		Date Prepared	d Date Analyzed		MS/MSD Batch Number	
18-09-1649-2	Sample		Solid	Mer	cury 08	09/27/18	09/27/18	15:43	180927S04	
18-09-1649-2	Matrix Spike		Solid	Mer	cury 08	09/27/18	09/27/18	15:46	180927S04	
18-09-1649-2	Matrix Spike Duplicate		Solid	olid Mercury 08		09/27/18	09/27/18	15:48	180927S04	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.8350	0.7721	92	0.7757	93	71-137	0	0-14	

Geosyntec Consultants
Date Received:

595 Market Street, Suite 610
Work Order:
18-09-1544
San Francisco, CA 94105-2811
Preparation:
EPA 5030C
Method:
EPA 8260B

Project: ESTCP C. Pendleton / WR2274 Page 6 of 6

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
18-09-1560-2	Sample		Solid	GC	C/MS BB	09/21/18	09/25/18	06:20	180924S007	•
18-09-1560-2	Matrix Spike		Solid	GC	C/MS BB	09/21/18	09/25/18	06:47	180924S007	•
18-09-1560-2	Matrix Spike	Duplicate	Solid	GC	C/MS BB	09/21/18	09/25/18	07:14	1809248007	•
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Benzene	ND	50.00	33.79	68	39.08	78	61-127	15	0-20	
Carbon Tetrachloride	ND	50.00	35.28	71	37.90	76	51-135	7	0-29	
Chlorobenzene	ND	50.00	33.07	66	34.53	69	57-123	4	0-20	
1,2-Dibromoethane	ND	50.00	39.48	79	40.23	80	64-124	2	0-20	
1,2-Dichlorobenzene	ND	50.00	33.76	68	35.52	71	35-131	5	0-25	
1,2-Dichloroethane	ND	50.00	32.09	64	35.77	72	80-120	11	0-20	3
1,1-Dichloroethene	ND	50.00	35.40	71	38.73	77	47-143	9	0-25	
Ethylbenzene	ND	50.00	31.67	63	33.44	67	57-129	5	0-22	
Toluene	6.025	50.00	38.84	66	47.25	82	63-123	20	0-20	
Trichloroethene	ND	50.00	40.62	81	42.45	85	44-158	4	0-20	
Vinyl Chloride	ND	50.00	38.58	77	37.54	75	49-139	3	0-47	
p/m-Xylene	ND	100.0	62.39	62	66.51	67	70-130	6	0-30	3
o-Xylene	ND	50.00	31.26	63	33.52	67	70-130	7	0-30	3
Methyl-t-Butyl Ether (MTBE)	ND	50.00	31.83	64	33.16	66	57-123	4	0-21	

Geosyntec Consultants

Date Received:

09/20/18

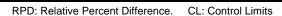
595 Market Street, Suite 610

Work Order:

18-09-1544

San Francisco, CA 94105-2811

Preparation:


EPA 3550B

Method:

EPA 8015B (M)

Project: ESTCP C. Pendleton / WR2274 Page 1 of 10

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-490-3302	LCS	Solid	GC 46	09/25/18	09/25/18 21:08	180925B04
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Diesel		400.0	353.1	88	75-123	3

Quality Control - LCS/LCSD

 Geosyntec Consultants
 Date Received:
 09/20/18

 595 Market Street, Suite 610
 Work Order:
 18-09-1544

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Project: ESTCP C. Pendleton / WR2274
 Page 2 of 10

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-498-634	LCS	Aqı	ueous	GC 49	09/25/18	09/2	5/18 23:10	180925B11A	
099-15-498-634	LCSD	Aqı	ueous	GC 49	09/25/18	09/2	5/18 23:29	180925B11A	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	4000	3893	97	4026	101	69-123	3	0-30	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811

Date Received: Work Order: Preparation: Method:

18-09-1544 **EPA 3050B EPA 6010B**

09/20/18

Project: ESTCP C. Pendleton / WR2274

Page 3 of 10

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prepa	ared Date Analyz	ed LCS Batch N	lumber
097-01-002-27022	LCS	Solid	ICP 8300	09/26/18	09/27/18 20	:09 180926L03	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	22.42	90	80-120	73-127	
Arsenic		25.00	22.25	89	80-120	73-127	
Barium		25.00	25.88	104	80-120	73-127	
Beryllium		25.00	25.49	102	80-120	73-127	
Cadmium		25.00	25.47	102	80-120	73-127	
Chromium		25.00	24.61	98	80-120	73-127	
Cobalt		25.00	25.26	101	80-120	73-127	
Copper		25.00	23.77	95	80-120	73-127	
Lead		25.00	27.29	109	80-120	73-127	
Molybdenum		25.00	24.40	98	80-120	73-127	
Nickel		25.00	24.93	100	80-120	73-127	
Selenium		25.00	24.14	97	80-120	73-127	
Silver		12.50	11.31	90	80-120	73-127	
Thallium		25.00	25.01	100	80-120	73-127	
Vanadium		25.00	23.76	95	80-120	73-127	
Zinc		25.00	26.60	106	80-120	73-127	

Total number of LCS compounds: 16 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811

Date Received: Work Order: Preparation: Method:

18-09-1544 EPA 3010A Total **EPA 6010B**

09/20/18

Project: ESTCP C. Pendleton / WR2274

Page 4 of 10

Quality Control Sample ID	Туре	Matrix	(Instrument	Date Prepa	ared Da	te Analyzed	LCS Batch N	umber
097-01-003-17052	LCS	Aque	ous	ICP 8300	09/26/18	09/	/26/18 12:52	180926LA1	
<u>Parameter</u>		Spike Added	Conc.	Recovered	LCS %Rec.	%Rec.	CL ME	<u>CL</u>	Qualifiers
Antimony		0.5000	0.4256		85	80-120	73	-127	
Arsenic		0.5000	0.4093		82	80-120	73	-127	
Barium		0.5000	0.4925		98	80-120	73	-127	
Beryllium		0.5000	0.4491		90	80-120	73	-127	
Cadmium		0.5000	0.4862		97	80-120	73	-127	
Chromium		0.5000	0.4693		94	80-120	73	-127	
Cobalt		0.5000	0.4715		94	80-120	73	-127	
Copper		0.5000	0.4580		92	80-120	73	-127	
Lead		0.5000	0.5473		109	80-120	73	-127	
Molybdenum		0.5000	0.4722		94	80-120	73	-127	
Nickel		0.5000	0.4710		94	80-120	73	-127	
Selenium		0.5000	0.4410		88	80-120	73	-127	
Silver		0.2500	0.2223		89	80-120	73	-127	
Thallium		0.5000	0.4777		96	80-120	73	-127	
Vanadium		0.5000	0.4526		91	80-120	73	-127	
Zinc		0.5000	0.4506		90	80-120	73	-127	

Total number of LCS compounds: 16 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Geosyntec Consultants

Date Received:

Work Order:

18-09-1544

San Francisco, CA 94105-2811

Preparation:

Method:

Date Received:

09/20/18

EPA 7470A Total

Project: ESTCP C. Pendleton / WR2274 Page 5 of 10

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-04-008-8697	LCS	Aqueous	Mercury 07	09/26/18	09/26/18 16:01	180926LA3
Parameter		Spike Added	Conc. Recove	red LCS %R	ec. %Rec	. CL Qualifiers
Mercury		0.01000	0.008531	85	80-12	0

Geosyntec ConsultantsDate Received:09/20/18595 Market Street, Suite 610Work Order:18-09-1544San Francisco, CA 94105-2811Preparation:EPA 7471A TotalMethod:EPA 7471A

Project: ESTCP C. Pendleton / WR2274 Page 6 of 10

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-4167	LCS	Solid	Mercury 08	09/27/18	09/27/18 15:41	180927L04
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %R	ec. %Rec	c. CL Qualifiers
Mercury		0.8350	0.7564	91	85-12	1

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method:

18-09-1544 EPA 5030C EPA 8260B

09/20/18

Page 7 of 10

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prepa	ared Date Analy	zed LCS Batch N	Number
099-14-314-1111	LCS	Solid	GC/MS B	B 09/24/18	09/25/18 0	4:34 180924L013	3
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Acetone		50.00	44.92	90	70-130	60-140	
Benzene		50.00	39.83	80	78-120	71-127	
Bromobenzene		50.00	39.72	79	70-130	60-140	
Bromochloromethane		50.00	45.12	90	70-130	60-140	
Bromodichloromethane		50.00	39.14	78	70-130	60-140	
Bromoform		50.00	42.95	86	70-130	60-140	
Bromomethane		50.00	36.78	74	70-130	60-140	
2-Butanone		50.00	46.22	92	70-130	60-140	
n-Butylbenzene		50.00	40.24	80	77-123	69-131	
sec-Butylbenzene		50.00	41.02	82	70-130	60-140	
tert-Butylbenzene		50.00	39.99	80	70-130	60-140	
Carbon Disulfide		50.00	40.89	82	70-130	60-140	
Carbon Tetrachloride		50.00	40.26	81	49-139	34-154	
Chlorobenzene		50.00	41.99	84	79-120	72-127	
Chloroethane		50.00	40.55	81	70-130	60-140	
Chloroform		50.00	42.09	84	70-130	60-140	
Chloromethane		50.00	36.65	73	70-130	60-140	
2-Chlorotoluene		50.00	36.15	72	70-130	60-140	
4-Chlorotoluene		50.00	39.03	78	70-130	60-140	
Dibromochloromethane		50.00	44.94	90	70-130	60-140	
1,2-Dibromo-3-Chloropropane		50.00	42.25	85	70-130	60-140	
1,2-Dibromoethane		50.00	49.72	99	70-130	60-140	
Dibromomethane		50.00	41.10	82	70-130	60-140	
1,2-Dichlorobenzene		50.00	43.17	86	75-120	68-128	
1,3-Dichlorobenzene		50.00	41.28	83	70-130	60-140	
1,4-Dichlorobenzene		50.00	41.45	83	70-130	60-140	
Dichlorodifluoromethane		50.00	34.73	69	70-130	60-140	ME
1,1-Dichloroethane		50.00	37.33	75	70-130	60-140	
1,2-Dichloroethane		50.00	40.19	80	70-130	60-140	
1,1-Dichloroethene		50.00	38.44	77	74-122	66-130	
c-1,2-Dichloroethene		50.00	43.29	87	70-130	60-140	
t-1,2-Dichloroethene		50.00	42.25	84	70-130	60-140	
1,2-Dichloropropane		50.00	48.25	96	79-115	73-121	
1,3-Dichloropropane		50.00	47.90	96	70-130	60-140	
2,2-Dichloropropane		50.00	37.15	74	70-130	60-140	
1,1-Dichloropropene		50.00	39.91	80	70-130	60-140	
c-1,3-Dichloropropene		50.00	38.73	77	70-130	60-140	
t-1,3-Dichloropropene		50.00	43.02	86	70-130	60-140	

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/20/18 18-09-1544 EPA 5030C EPA 8260B

Project: ESTCP C. Pendleton / WR2274

Page 8 of 10

<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
Ethylbenzene	50.00	38.74	77	76-120	69-127	
2-Hexanone	50.00	44.84	90	70-130	60-140	
Isopropylbenzene	50.00	37.38	75	70-130	60-140	
p-Isopropyltoluene	50.00	40.43	81	70-130	60-140	
Methylene Chloride	50.00	44.20	88	70-130	60-140	
4-Methyl-2-Pentanone	50.00	48.07	96	70-130	60-140	
Naphthalene	50.00	45.80	92	70-130	60-140	
n-Propylbenzene	50.00	35.99	72	70-130	60-140	
Styrene	50.00	40.06	80	70-130	60-140	
1,1,1,2-Tetrachloroethane	50.00	43.32	87	70-130	60-140	
1,1,2,2-Tetrachloroethane	50.00	43.89	88	70-130	60-140	
Tetrachloroethene	50.00	58.03	116	70-130	60-140	
Toluene	50.00	44.96	90	77-120	70-127	
1,2,3-Trichlorobenzene	50.00	44.02	88	70-130	60-140	
1,2,4-Trichlorobenzene	50.00	41.67	83	70-130	60-140	
1,1,1-Trichloroethane	50.00	38.76	78	70-130	60-140	
1,1,2-Trichloroethane	50.00	47.32	95	70-130	60-140	
1,1,2-Trichloro-1,2,2-Trifluoroethane	50.00	38.40	77	70-130	60-140	
Trichloroethene	50.00	45.62	91	70-130	60-140	
1,2,3-Trichloropropane	50.00	39.35	79	70-130	60-140	
1,2,4-Trimethylbenzene	50.00	40.94	82	70-130	60-140	
Trichlorofluoromethane	50.00	42.77	86	70-130	60-140	
1,3,5-Trimethylbenzene	50.00	36.71	73	70-130	60-140	
Vinyl Acetate	50.00	35.50	71	70-130	60-140	
Vinyl Chloride	50.00	41.37	83	68-122	59-131	
p/m-Xylene	100.0	77.20	77	70-130	60-140	
o-Xylene	50.00	38.38	77	70-130	60-140	
Methyl-t-Butyl Ether (MTBE)	50.00	39.15	78	77-120	70-127	

Total number of LCS compounds: 66
Total number of ME compounds: 1
Total number of ME compounds allowed: 3
LCS ME CL validation result: Pass

Quality Control - LCS/LCSD

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/20/18 18-09-1544 EPA 5030C EPA 8260B

Project: ESTCP C. Pendleton / WR2274

Page 9 of 10

Quality Control Sample ID	Туре		Matrix		Instrument	·	•		LCS/LCSD Ba	tch Number
099-14-316-4231	LCS		Aqueous	•	GC/MS PP	09/27/18	09/2	8/18 03:50	180927L045	
099-14-316-4231	LCSD		Aqueous	;	GC/MS PP	09/27/18	09/2	8/18 04:17	180927L045	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.		%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Acetone	50.00	48.68	97	48.20	96	50-150	33-167	1	0-30	
Benzene	50.00	51.29	103	50.15	100	78-120	71-127	2	0-21	
Bromobenzene	50.00	54.44	109	53.46	107	80-120	73-127	2	0-20	
Bromochloromethane	50.00	56.47	113	56.52	113	77-125	69-133	0	0-22	
Bromodichloromethane	50.00	54.49	109	53.55	107	80-125	72-132	2	0-20	
Bromoform	50.00	60.79	122	60.90	122	68-128	58-138	0	0-30	
Bromomethane	50.00	54.54	109	56.52	113	50-150	33-167	4	0-30	
2-Butanone	50.00	45.92	92	48.29	97	53-137	39-151	5	0-30	
n-Butylbenzene	50.00	53.48	107	51.89	104	78-132	69-141	3	0-23	
sec-Butylbenzene	50.00	51.71	103	50.22	100	80-125	72-132	3	0-20	
tert-Butylbenzene	50.00	49.97	100	49.42	99	80-125	72-132	1	0-20	
Carbon Disulfide	50.00	51.98	104	50.76	102	50-150	33-167	2	0-30	
Carbon Tetrachloride	50.00	55.64	111	53.93	108	67-139	55-151	3	0-30	
Chlorobenzene	50.00	53.32	107	51.78	104	80-120	73-127	3	0-20	
Chloroethane	50.00	49.23	98	48.98	98	64-130	53-141	1	0-30	
Chloroform	50.00	53.28	107	53.11	106	77-120	70-127	0	0-23	
Chloromethane	50.00	48.69	97	48.85	98	56-128	44-140	0	0-30	
2-Chlorotoluene	50.00	53.31	107	51.95	104	80-121	73-128	3	0-20	
4-Chlorotoluene	50.00	53.00	106	51.89	104	80-120	73-127	2	0-20	
Dibromochloromethane	50.00	57.26	115	56.80	114	77-125	69-133	1	0-21	
1,2-Dibromo-3-Chloropropane	50.00	51.29	103	51.19	102	68-128	58-138	0	0-30	
1,2-Dibromoethane	50.00	53.91	108	53.87	108	80-120	73-127	0	0-30	
Dibromomethane	50.00	53.59	107	53.30	107	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	50.00	52.85	106	52.60	105	80-120	73-127	0	0-20	
1,3-Dichlorobenzene	50.00	53.25	106	52.24	104	80-120	73-127	2	0-20	
1,4-Dichlorobenzene	50.00	51.61	103	50.71	101	80-120	73-127	2	0-20	
Dichlorodifluoromethane	50.00	49.32	99	48.65	97	50-150	33-167	1	0-30	
1,1-Dichloroethane	50.00	45.86	92	45.08	90	73-127	64-136	2	0-30	
1,2-Dichloroethane	50.00	50.97	102	50.99	102	75-123	67-131	0	0-24	
1,1-Dichloroethene	50.00	51.06	102	50.19	100	64-136	52-148	2	0-30	
c-1,2-Dichloroethene	50.00	55.02	110	54.88	110	78-120	71-127	0	0-23	
t-1,2-Dichloroethene	50.00	55.39	111	54.89	110	70-130	60-140	1	0-30	
1,2-Dichloropropane	50.00	50.57	101	50.45	101	80-120	73-127	0	0-20	
1,3-Dichloropropane	50.00	51.52	103	51.55	103	80-120	73-127	0	0-20	
2,2-Dichloropropane	50.00	44.86	90	43.02		53-155	36-172	4	0-30	
1,1-Dichloropropene	50.00	50.94	102	50.37		73-127	64-136		0-30	

Quality Control - LCS/LCSD

Geosyntec Consultants 595 Market Street, Suite 610 San Francisco, CA 94105-2811 Date Received: Work Order: Preparation: Method: 09/20/18 18-09-1544 EPA 5030C EPA 8260B

Project: ESTCP C. Pendleton / WR2274

Page 10 of 10

<u>Parameter</u>	<u>Spike</u> Added	LCS Cond	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
c-1,3-Dichloropropene	50.00	55.07	110	54.54	109	80-129	72-137	1	0-21	
t-1,3-Dichloropropene	50.00	48.38	97	48.17	96	78-132	69-141	0	0-22	
Ethylbenzene	50.00	53.19	106	51.57	103	80-120	73-127	3	0-20	
2-Hexanone	50.00	47.47	95	46.49	93	59-131	47-143	2	0-30	
Isopropylbenzene	50.00	52.61	105	50.65	101	80-126	72-134	4	0-20	
p-Isopropyltoluene	50.00	52.04	104	50.95	102	80-129	72-137	2	0-20	
Methylene Chloride	50.00	51.13	102	50.74	101	73-127	64-136	1	0-25	
4-Methyl-2-Pentanone	50.00	48.19	96	47.88	96	68-122	59-131	1	0-30	
Naphthalene	50.00	51.97	104	52.87	106	64-136	52-148	2	0-30	
n-Propylbenzene	50.00	53.66	107	51.93	104	80-125	72-132	3	0-20	
Styrene	50.00	53.92	108	53.03	106	80-122	73-129	2	0-20	
1,1,1,2-Tetrachloroethane	50.00	57.12	114	56.11	112	80-126	72-134	2	0-30	
1,1,2,2-Tetrachloroethane	50.00	48.50	97	49.81	100	76-120	69-127	3	0-28	
Tetrachloroethene	50.00	80.33	161	71.49	143	54-144	39-159	12	0-30	Χ
Toluene	50.00	53.48	107	51.82	104	80-122	73-129	3	0-20	
1,2,3-Trichlorobenzene	50.00	55.42	111	55.72	111	76-130	67-139	1	0-30	
1,2,4-Trichlorobenzene	50.00	56.60	113	56.81	114	74-134	64-144	0	0-30	
1,1,1-Trichloroethane	50.00	52.01	104	51.69	103	73-127	64-136	1	0-30	
1,1,2-Trichloro-1,2,2- Trifluoroethane	50.00	50.81	102	49.97	100	53-155	36-172	2	0-30	
1,1,2-Trichloroethane	50.00	52.01	104	52.23	104	80-120	73-127	0	0-30	
Trichloroethene	50.00	56.22	112	53.73	107	77-125	69-133	5	0-22	
Trichlorofluoromethane	50.00	52.55	105	50.77	102	69-141	57-153	3	0-30	
1,2,3-Trichloropropane	50.00	53.79	108	52.61	105	77-125	69-133	2	0-30	
1,2,4-Trimethylbenzene	50.00	51.08	102	50.38	101	80-123	73-130	1	0-30	
1,3,5-Trimethylbenzene	50.00	52.03	104	50.46	101	80-126	72-134	3	0-20	
Vinyl Acetate	50.00	40.59	81	46.71	93	50-150	33-167	14	0-30	
Vinyl Chloride	50.00	50.98	102	49.05	98	63-135	51-147	4	0-30	
p/m-Xylene	100.0	102.6	103	99.60	100	80-125	72-132	3	0-30	
o-Xylene	50.00	51.59	103	50.44	101	80-125	72-132	2	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	40.49	81	41.26	83	77-120	70-127	2	0-24	

Total number of LCS compounds: 66

Total number of ME compounds: 0

Total number of ME compounds allowed: 3

LCS ME CL validation result: Pass

Sample Analysis Summary Report

Work Order: 18-09-1544				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3010A Total	771	ICP 8300	1
EPA 6010B	EPA 3050B	771	ICP 8300	1
EPA 7470A	EPA 7470A Total	868	Mercury 07	1
EPA 7471A	EPA 7471A Total	868	Mercury 08	1
EPA 8015B (M)	EPA 3510C	1028	GC 49	1
EPA 8015B (M)	EPA 3550B	1028	GC 46	1
EPA 8260B	EPA 5030C	1120	GC/MS BB	2
EPA 8260B	EPA 5030C	1176	GC/MS PP	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 18-09-1544 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

- % Recovery and/or RPD out-of-range.
- Χ
- Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Document Number:, 11499

White copy: to accompany samples 18-09-1544 Yellow copy: field copy T of X Normal Rush: Turn-around Time: Comments Page **Analysis Request and Chain of Custody Record** Bottle Type and Volume/Preservative Number of Containers Required Analyses xx ሂ X AOCE PA BTOR TOH IS ASSOCIATED LISTS Sample Type 35 S. .. Time 1530 アイツ Lab Contact Shore No Alc Carrier/Waybill No. Project Number しんこと子4 Project Contact Le Care 81/61/6 Date ab Phone I) W - WATER - 20180919 TDW-50FC- 20180919 Special Instructions: Sample Name CSTEP C. Parsham

2. (Cocheril) Laboratory Name Celscience

ab Address

roject Name

Condition of

Bottles

Lab Use

Only

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 Geosyntec^o

Date 4(かぼ

Date 2 Time

Received by

Time Date

2. Relinquished by

(Signiture/Affiliation)

Relinquished by

(Signiture/Affiliation)

onsultants

Relinquished by

(Signiture/Affiliation)

Date Time

3. Received by (Signiture/Affiliation)

(Signiture/Affiliation)

1. Received by

8)/72/6

Date Time

(Signiture/Affiliation)

Time,

Time

Date

Calscience

WORK ORDER NUMBER: 1800 1901 1544

SAMPLE RECEIPT CHECKLIST

COOLER \ OF

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		'				
CLIENT: GEOSYNTEC DAT	E: <u>09 /</u>	201	<u> 2018</u>				
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: -0.5°C); Temperature (w/o CF): 3 - 7°C (w/ CF): 3 - 2°C; □ Sample(s) outside temperature criteria (PM/APM contacted by:) □ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling	Blank	□ S	ample				
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: ☐ Air ☐ Filter	Checked	d by: <u>L</u>	BUK				
CUSTODY SEAL:							
Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A	Checked	d by: <u>C</u>	BUK				
Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A	Checked	d by: <u>И</u>	150				
SAMPLE CONDITION:	Yes	No	N/A				
Chain-of-Custody (COC) document(s) received with samples	. 💅						
COC document(s) received complete		Ø					
☐ Sampling date ☐ Sampling time ☐ Matrix 🗖 Number of containers	9/2/18						
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished time	• /						
Sampler's name indicated on COC	. 🗷						
Sample container label(s) consistent with COC							
Sample container(s) intact and in good condition	_						
Proper containers for analyses requested							
Sufficient volume/mass for analyses requested							
Samples received within holding time	. <u>p</u> /						
Aqueous samples for certain analyses received within 15-minute holding time		w ³					
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	. 🗖		9				
Proper preservation chemical(s) noted on COC and/or sample container	. 9/		Ó				
Unpreserved aqueous sample(s) received for certain analyses							
☐ Volatile Organics ☐ Total Metals ☐ Dissolved Metals							
Acid/base preserved samples - pH within acceptable range	p						
Container(s) for certain analysis free of headspace	9						
✓ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 4500)							
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)			/				
Tedlar™ bag(s) free of condensation	. 🗆		ø				
CONTAINER TYPE: (3) (Trip Blank Lot Numb	er:)				
Aqueous: UOA VOAh UVOAna2 U100PJ U100PJna2 U125AGB U125AGB U125AGB U125AGB U125AGB							
□ 250AGB □ 250CGB □ 250CGBs (pH_2) □ 250PB □ 250PBn (pH_2) □ 500AGB □ 500AGJ □ 500A							
□ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □ □							
Solid: 40zCGJ 80zCGJ 160zCGJ Sleeve () EnCores® () TerraCores® () Other Matrix ()							
Air: ☐ Tedlar™ ☐ Canister ☐ Sorbent Tube ☐ PUF ☐ Other Matrix (): ☐							
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Resealable Bag							
Preservative: $\mathbf{b} = \text{buffered}$, $\mathbf{f} = \text{filtered}$, $\mathbf{h} = \text{HCl}$, $\mathbf{n} = \text{HNO}_3$, $\mathbf{na} = \text{NaOH}$, $\mathbf{na}_2 = \text{Na}_2\text{S}_2\text{O}_3$, $\mathbf{p} = \text{H}_3\text{PO}_4$, Labeled Lab							
$s = H_2SO_4$, $u = ultra$ -pure, $x = Na_2SO_3+NaHSO_4$. H_2O , $znna = Zn (CH_3CO_2)_2 + NaOH$	Reviewed	u vy. <u>"(</u>	v.				

Calscience

WORK ORDER NUMBER: 18-09-1544

SAMPLE ANOMALY REPORT

DATE: <u>09 /20 / 2018</u>

□ Sample(s) NOT RECEIVED but listed on COC □ Sample(s) received but NOT LISTED on COC □ Insufficient sample amount for requested analysis (list analysis) □ Improper container(s) used (list analysis) □ Improper container(s) used (list analysis) □ Improper preservative used (list analysis) □ No preservative noted on COC or label (list analysis) □ No preservative noted on COC or label (list analysis) □ Sample container(s) not labeled □ Client sample label(s) lilegible (list container type and analysis) □ Client sample label(s) lilegible (list container type and analysis) □ Project information □ Client sample label(s) and the comment (lient) □ Project information □ Client sample ID □ Sampling date and/or time □ Number of container(s) □ Requested analysis □ Sample container(s) compromised (comment) □ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume □ Leaking (transferred into ECI Tedlar™ bags*) □ Transferred Leakins request MISCELLANEOUS: (Describe) Comments Containers with bubble > 6 mm or 'k inch for volatile organic or dissolved gas analysis) Sample to Comment Number Samble Container Number Number Recosted Analysis	SAMPLES, CONTAINERS, AND LABELS:	Comments								
□ Holding time expired (list client or ECI sample ID and analysis) □ Insufficient sample amount for requested analysis (list analysis) □ Improper preservative used (list analysis) □ No preservative noted on COC or label (list analysis) □ Sample container(s) not labeled □ Client sample label(s) illegible (list container type and analysis) □ Client sample label(s) illegible (list container type and analysis) □ Client sample label(s) illegible (list container type and analysis) □ Client sample label(s) illegible (list container type and analysis) □ Sampling date and/or time □ Alumber of container(s) □ Requested analysis □ Sample container(s) □ Broken □ Water present in sample container □ Alir sample container(s) compromised (comment) □ Flat □ Very low in volume □ Leaking (transferred; duplicate bag submitted) □ Leaking (transferred into Client's Tedlar™ bags*) □ Comments Comments Comments Comments Comments Comments	☐ Sample(s) NOT RECEIVED but listed on COC									
□ Insufficient sample amount for requested analysis (list analysis) □ Improper container(s) used (list analysis) □ Proproper preservative used (list analysis) □ Proproper preservative noted on COC or label (list analysis) □ No preservative noted on COC or label (list analysis and notify lab) □ Sample container(s) not labeled □ Client sample label(s) lilegible (list container type and analysis) □ Client sample label(s) do not match COC (comment) □ Project information □ Client sample label(s) do not match COC (comment) □ Project information □ Client sample label(s) do not match COC (comment) □ Sampling date and/or time ☑ Number of container(s) □ Requested analysis □ Sample container(s) compromised (comment) □ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume □ Leaking (not transferred; duplicate bag submitted) □ Leaking (transferred into CEI Tedlar™ bags*) □ Leaking (transferred into CEInellar* bags*) □ Leaking (transferred into Celent's Tedlar* bags*) □ Leaking (Transferred	☐ Sample(s) received but NOT LISTED on COC									
Improper container(s) used (list analysis) Improper preservative used (list analysis) PH outside acceptable range (list analysis) No preservative noted on COC or label (list analysis and notify lab) Sample container(s) not labeled Client sample label(s) illegible (list container type and analysis) Client sample label(s) do not match COC (comment) Project information Client sample label(s) do not match COC (comment) Project information Client sample label(s) do not match COC (comment) Requested analysis Sample container(s) compromised (comment) Requested analysis Sample container(s) compromised (comment) Piat Valier present in sample container Air sample container(s) compromised (comment) Flat Very low in volume Leaking (transferred into client's Tedlar™ bags¹) Leaking (transferred into client's Tedlar™ bags¹) Leaking (transferred into client's Tedlar™ bags²) Leaking (transferred into client's Tedlar™ bags²) Comments Comments Comments Comment C	☐ Holding time expired (list client or ECI sample ID and analysis)									
Improper preservative used (list analysis) PH outside acceptable range (list analysis) No preservative noted on COC or label (list analysis and notify lab) Sample container(s) not labeled Client sample label(s) lilegible (list container type and analysis) Client sample label(s) lilegible (list container type and analysis) Client sample label(s) do not match COC (comment) Project information Client sample label(s) do not match COC (comment) Project information Client sample label(s) do not match COC (comment) Project information Client sample label(s) do not match COC (comment) Project information Client sample label(s) do not match COC (comment) Project information Requested analysis Sample container(s) Requested analysis Sample container(s) compromised (comment) Revoken Water present in sample container Leaking (transferred; duplicate bag submitted) Leaking (transferred into Client's Tedlar™ bags*) Leaking (transferred into Client's Tedlar™ bags*) Transferred at client's request. MISCELLANEOUS: (Describe) Comments Comments Comment	☐ Insufficient sample amount for requested analysis (list analysis)									
□ PH outside acceptable range (list analysis) □ No preservative noted on COC or label (list analysis and notify lab) □ Sample container(s) illegible (list container type and analysis) □ Client sample label(s) illegible (list container type and analysis) □ Project information □ Client sample ID □ Sampling date and/or time □ Number of container(s) □ Requested analysis □ Sample container(s) compromised (comment) □ Proken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Prat □ Very low in volume □ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into ECI Tedlar™ bags*) □ Transferred at client's request. MISCELLANEOUS: (Describe) Comments Containers with bubble > 6 mm or ½ inch for volatile organic or dissolved gas analysis) ECI Sample ID Containers with bubble > 6 mm or ½ inch for volatile organic or dissolved gas analysis) ECI Sample ID Containers with bubble for other analysis) Comments Comments	☐ Improper container(s) used (list analysis)									
No preservative noted on COC or label (list analysis and notify lab) Sample container(s) not labeled Client sample label(s) illegible (list container type and analysis) Client sample label(s) do not match COC (comment) Project information Client sample label(s) do not match COC (comment) Project information Client sample ID Sampling date and/or time Number of container(s) Requested analysis Sample container(s) compromised (comment) Broken Water present in sample container Air sample container(s) compromised (comment) Flat Very low in volume Leaking (not transferred; duplicate bag submitted) Leaking (transferred into Ecil Tedlar™ bags*) Leaking (transferred into Ecil Tedlar™ bags*) Transferred at client's request. MISCELLANEOUS: (Describe) Comments Comments Container Number Requested Analysis Container Number Requested Analysis Comments Container Number Requested Analysis Comments Co	☐ Improper preservative used (list analysis)									
Sample container(s) not labeled □ Client sample label(s) do not match COC (comment) □ Project information □ Client sample ID □ Sampling date and/or time □ Number of container(s) □ Requested analysis □ Sample container(s) □ Roken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Filat □ Very low in volume □ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into client's Tedlar™ bags*) □ Leaking (transferred into client's Tedlar™ bags*) □ Transferred at client's request. MISCELLANEOUS: (Describe) Comments Comments Containers with bubble for other analysis) □ Containers with bubble for other analysis) □ Containers with bubble for other analysis) □ Containers with bubble for other analysis) □ Container ID Number □ Recuested Analysis □ Container ID Number □ Recuested Analysis □ Comments	☐ pH outside acceptable range (list analysis)									
Client sample label(s) illegible (list container type and analysis) □ Client sample label(s) do not match COC (comment) □ Project information □ Client sample ID □ Sampling date and/or time □ Number of container(s) □ Requested analysis □ Sample container(s) compromised (comment) □ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume □ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into client's Tedlar™ bags*) □ Transferred at client's request. MISCELLANEOUS: (Describe) Comments Comments Comments Comments Comments Comments	☐ No preservative noted on COC or label (list analysis and notify lat	o)								
Client sample label(s) do not match COC (comment) Project information Client sample ID Sampling date and/or time Number of container(s) Requested analysis Requested analysis Requested analysis Repuested Analysis	☐ Sample container(s) not labeled									
□ Project information □ Client sample ID □ Sampling date and/or time □ Number of container(s) □ Requested analysis □ Sample container(s) compromised (comment) □ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume □ Leaking (not transferred; duplicate bag submitted) □ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into client's Tedlar™ bags*) □ Transferred at client's request. MISCELLANEOUS: (Describe) Comments (Containers with bubble > 6 mm or ½ inch for volatile organic or dissolved gas analysis) □ Sample ID Container ID Number* Sample ID Container ID Number* Requested Analysis Comments:	☐ Client sample label(s) illegible (list container type and analysis)									
Comments: Citient sample ID Sampling date and/or time Number of container(s) Requested analysis C-J - 2 Sample container(s) compromised (comment) Broken Water present in sample container Air sample container(s) compromised (comment) Flat Very low in volume Leaking (not transferred; duplicate bag submitted) Leaking (transferred into ECI Tedlar™ bags*) Leaking (transferred into client's Tedlar™ bags*) Transferred at client's request. MISCELLANEOUS: (Describe) Comments ECI Total SCI Total SCI Total Sample ID Container ID Number* Requested Analysis ECI Total Sci Total Sci Total Sample ID Container ID Number* Requested Analysis Comments:	☐ Client sample label(s) do not match COC (comment)									
Sampling date and/or time Number of container(s) Requested analysis C-1 - 2 Broken Water present in sample container Air sample container(s) compromised (comment) Flat Very low in volume Leaking (not transferred; duplicate bag submitted) Leaking (transferred into ECI Tedlar™ bags*) Leaking (transferred into ECI Tedlar™ bags*) Transferred at client's request. MISCELLANEOUS: (Describe) Comments Miscellaners with bubble > 6 mm or ½ inch for volatile organic or dissolved gas analysis) ECI ECI Total ECI Total Sample ID Container ID Number* Requested Analysis ECI ECI Total Sample ID Container ID Number* Requested Analysis Comments:	☐ Project information									
Number of container(s) Requested analysis Sample container(s) compromised (comment) Broken Water present in sample container Air sample container(s) compromised (comment) Flat Very low in volume Leaking (not transferred; duplicate bag submitted) Leaking (transferred into ECI Tedlar™ bags*) Leaking (transferred into client's Tedlar™ bags*) Transferred at client's request. MISCELLANEOUS: (Describe) Comments Containers with bubble > 6 mm or ½ inch for volatile organic or dissolved gas analysis) ECI	☐ Client sample ID									
□ Requested analysis □ Sample container(s) compromised (comment) □ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume □ Leaking (not transferred; duplicate bag submitted) □ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into client's Tedlar™ bags*) ¹ Transferred at client's request. MISCELLANEOUS: (Describe) Comments Comments (Containers with bubble > 6 mm or ½ inch for volatile organic or dissolved gas analysis) □ ECI Sci Total Sample ID Container ID Number* Requested Analysis □ Comments: Comments:	☐ Sampling date and/or time	Number of containers received:								
Sample container(s) compromised (comment) □ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume □ Leaking (not transferred; duplicate bag submitted) □ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into client's Tedlar™ bags*) **Transferred at client's request. MISCELLANEOUS: (Describe) Comments Comments (Containers with bubble > 6 mm or ½ inch for volatile organic or dissolved gas analysis) ECI	Number of container(s)									
□ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume □ Leaking (not transferred; duplicate bag submitted) □ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into client's Tedlar™ bags*) * 'Transferred at client's request. MISCELLANEOUS: (Describe) Comments Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis) ECI	☐ Requested analysis	<u>C-1) 2</u>								
□ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume □ Leaking (not transferred; duplicate bag submitted) □ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into client's Tedlar™ bags*) * *Transferred at client's request. MISCELLANEOUS: (Describe) Comments Container with bubble > 6 mm or ½ inch for volatile organic or dissolved gas analysis) ECI Total Number** Sample ID Container ID Number** Requested Analysis	☐ Sample container(s) compromised (comment)	(-2) 5								
□ Air sample container(s) compromised (comment) □ Flat □ Very low in volume □ Leaking (not transferred; duplicate bag submitted) □ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into client's Tedlar™ bags*) *Transferred at client's request. MISCELLANEOUS: (Describe) Comments (Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis) □ ECI	☐ Broken	<u></u>								
□ Flat □ Very low in volume □ Leaking (not transferred; duplicate bag submitted) □ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into client's Tedlar™ bags*) * Transferred at client's request. MISCELLANEOUS: (Describe) Comments (Containers with bubble > 6 mm or ½ inch for volatile organic or dissolved gas analysis) □ ECI	☐ Water present in sample container									
Usery low in volume □ Leaking (not transferred; duplicate bag submitted) □ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into client's Tedlar™ bags*) • Transferred at client's request. MISCELLANEOUS: (Describe) Comments Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis) ECI	☐ Air sample container(s) compromised (comment)									
□ Leaking (transferred into ECI Tedlar™ bags*) □ Leaking (transferred into client's Tedlar™ bags*) □ Leaking (transferred into client's Tedlar™ bags*) *Transferred at client's request. MISCELLANEOUS: (Describe) Comments Comments (Containers with bubble > 6 mm or ½ inch for volatile organic or dissolved gas analysis) ECI Sample ID Container ID Number** Sample ID Container ID Number** Sample ID Container ID Number** Requested Analysis Comments:	□ Flat									
□ Leaking (transferred into Cilent's Tedlar™ bags*) □ Leaking (transferred into client's Tedlar™ bags*) * Transferred at client's request. MISCELLANEOUS: (Describe) Comments (Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis) ECI Sample ID Container ID Number** Sample ID Container ID Number** Requested Analysis Comments:	☐ Very low in volume									
□ Leaking (transferred into client's Tedlar™ bags*) * Transferred at client's request. MISCELLANEOUS: (Describe) Comments HEADSPACE: (Containers with bubble > 6 mm or ½ inch for volatile organic or dissolved gas analysis) ECI Sample ID Container ID Number* Sample ID Container ID Number* Requested Analysis Comments:	☐ Leaking (not transferred; duplicate bag submitted)									
*Transferred at client's request. MISCELLANEOUS: (Describe) Comments HEADSPACE: (Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis) ECI Sample ID Container ID Number** Sample ID Container ID Number** Requested Analysis Comments:	☐ Leaking (transferred into ECI Tedlar™ bags*)									
MISCELLANEOUS: (Describe) Comments HEADSPACE: (Containers with bubble > 6 mm or ½ inch for volatile organic or dissolved gas analysis) ECI ECI Total Sample ID Container ID Number** Sample ID Container ID Number** Requested Analysis Comments:	☐ Leaking (transferred into client's Tedlar™ bags*)									
HEADSPACE: (Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis) ECI Sample ID Container ID Number** Sample ID Container ID Number** Requested Analysis Comments:	* Transferred at client's request.									
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis) ECI	MISCELLANEOUS: (Describe)	Comments								
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis) ECI										
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis) ECI	HEADSPACE:									
ECI Sample ID Container ID Number** Sample ID Container ID Number** Requested Analysis ECI Container ID Number** Sample ID Container ID Number** ECI Sample ID Container ID Number** ECI Sample ID Container ID Number** Requested Analysis Comments:		(Containers with bubble for other analysis)								
Comments:	ECI ECI Total ECI ECI Total	ECI ECI Total								
Comments: Reported by: UFSO Reviewed by: UFSO	Sample ID Container ID Number** Sample ID Container ID Number	Sample ID Container ID Number Requested Allalysis								
Comments: Reported by: UFSO Reviewed by: UFSO										
Comments: Reported by: 450										
Comments: Reported by: UFSO Reviewed by: 2.64.1										
Comments: Reported by: UFSO										
Reported by: 480										
Paviawad by: a. L. I	Comments:	Penorted hy: 4F50								
	** Record the total number of containers (i.e., vials or bottles) for the affected sample.	Reviewed by: 3.66								

Calscience

WORK ORDER NUMBER: 18-09-1545

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: ESTCP C. Pendleton / WR2274

Attention: Lea Kane

595 Market Street

Suite 610

San Francisco, CA 94105-2811

ResultLink >

Email your PM >

Approved for release on 10/01/2018 by:

Stephen Nowak Project Manager

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	ESTCP C. Pendleton / WR2274

Work Order Number: 18-09-1545

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	6
4	Client Sample Data	9
5	Quality Control Sample Data5.1 MS/MSD5.2 LCS/LCSD	16 16 19
6	Sample Analysis Summary	22
7	Glossary of Terms and Qualifiers	23
8	Chain-of-Custody/Sample Receipt Form	24

Work Order Narrative

Work Order: 18-09-1545 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/20/18. They were assigned to Work Order 18-09-1545.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

Sample Summary

Client: Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Work Order:

Project Name:

ESTCP C. Pendleton / WR2274

PO Number:

Date/Time Received:

Number of

Containers:

09/20/18 18:50

47

18-09-1545

47

Attn: Lea Kane

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
P02E-1'-38	18-09-1545-1	09/17/18 14:20	1	Solid
P02E-1'-41	18-09-1545-2	09/17/18 14:25	1	Solid
P02E-1'-45	18-09-1545-3	09/17/18 14:30	1	Solid
P02E-3'-36	18-09-1545-4	09/17/18 12:30	1	Solid
P02E-3'-40	18-09-1545-5	09/17/18 12:35	1	Solid
P02E-3'-44	18-09-1545-6	09/17/18 12:40	1	Solid
P02E-5'-35	18-09-1545-7	09/17/18 09:40	1	Solid
P02E-5'-38	18-09-1545-8	09/17/18 09:45	1	Solid
P02E-5'-42	18-09-1545-9	09/17/18 09:50	1	Solid
P02W-1'-37	18-09-1545-10	09/18/18 09:40	1	Solid
P02W-1'-39	18-09-1545-11	09/18/18 09:45	1	Solid
P02W-1'-43	18-09-1545-12	09/18/18 09:50	1	Solid
P02W-3'-38	18-09-1545-13	09/18/18 08:30	1	Solid
P02W-3'-42	18-09-1545-14	09/18/18 08:40	1	Solid
P02W-3'-45	18-09-1545-15	09/18/18 08:45	1	Solid
P02W-5'-36	18-09-1545-16	09/17/18 16:00	1	Solid
P02W-5'-41	18-09-1545-17	09/17/18 16:05	1	Solid
P02W-5'-45	18-09-1545-18	09/17/18 16:10	1	Solid
P08W-1'-35	18-09-1545-19	09/18/18 14:15	1	Solid
P08W-1'-39	18-09-1545-20	09/18/18 14:20	1	Solid
P08W-1'-40	18-09-1545-21	09/18/18 14:25	1	Solid
P08W-3'-35	18-09-1545-22	09/18/18 12:10	1	Solid
P08W-3'-38	18-09-1545-23	09/18/18 12:15	1	Solid
P08W-3'-40	18-09-1545-24	09/18/18 12:20	1	Solid
P08W-3'-45	18-09-1545-25	09/18/18 12:25	1	Solid
P08W-5'-35	18-09-1545-26	09/18/18 11:00	1	Solid
P08W-5'-36	18-09-1545-27	09/18/18 11:05	1	Solid
P08W-5'-41	18-09-1545-28	09/18/18 11:10	1	Solid
P08E-1'-35	18-09-1545-29	09/19/18 10:00	1	Solid
P08E-1'-37	18-09-1545-30	09/19/18 10:05	1	Solid
P08E-1'-44	18-09-1545-31	09/19/18 10:10	1	Solid
P08E-3'-38	18-09-1545-32	09/18/18 15:00	1	Solid
P08E-3'-40	18-09-1545-33	09/18/18 15:05	1	Solid
P08E-3'-42	18-09-1545-34	09/18/18 15:10	1	Solid
P08E-5'-38	18-09-1545-35	09/19/18 08:20	1	Solid
P08E-5'-40	18-09-1545-36	09/19/18 08:25	1	Solid
P08E-5'-42	18-09-1545-37	09/19/18 08:30	1	Solid
P08N-1'-34	18-09-1545-38	09/19/18 14:00	1	Solid
P08N-1'-36	18-09-1545-39	09/19/18 14:05	1	Solid
P08N-1'-38	18-09-1545-40	09/19/18 14:10	1	Solid
P08N-3'-34	18-09-1545-41	09/19/18 12:40	1	Solid
P08N-3'-35	18-09-1545-42	09/19/18 12:45	1	Solid

Sample Summary

Client: Geosyntec Consultants

595 Market Street, Suite 610

San Francisco, CA 94105-2811

Work Order: Project Name:

ESTCP C. Pendleton / WR2274

PO Number:

Date/Time

09/20/18 18:50 Received:

Number of Containers: 47

18-09-1545

Lea Kane Attn:

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
IP08N-3'-38	18-09-1545-43	09/19/18 12:50	1	Solid
IP08N-5'-35	18-09-1545-44	09/19/18 11:30	1	Solid
IP08N-5'-37	18-09-1545-45	09/19/18 11:35	1	Solid
IP08N-5'-42	18-09-1545-46	09/19/18 11:40	1	Solid
IP08N-3'-41	18-09-1545-47	09/19/18 12:55	1	Solid

Detections Summary

Client: Geosyntec Consultants Work Order: 18-09-1545

595 Market Street, Suite 610 Project Name: ESTCP C. Pendleton / WR2274

San Francisco, CA 94105-2811 Received: 09/20/18

Attn: Lea Kane Page 1 of 3

Attil. Eca Italie						r age r or o
Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
IP02E-1'-38 (18-09-1545-1)						
Zinc	53.2		1.01	mg/kg	EPA 6010B	EPA 3050B
IP02E-1'-41 (18-09-1545-2)						
Zinc	36.6		0.985	mg/kg	EPA 6010B	EPA 3050B
IP02E-1'-45 (18-09-1545-3)						
Zinc	42.7		1.01	mg/kg	EPA 6010B	EPA 3050B
IP02E-3'-36 (18-09-1545-4)						
Zinc	98.7		1.01	mg/kg	EPA 6010B	EPA 3050B
IP02E-3'-40 (18-09-1545-5)						
Zinc	36.4		1.00	mg/kg	EPA 6010B	EPA 3050B
IP02E-3'-44 (18-09-1545-6)						
Zinc	59.1		1.04	mg/kg	EPA 6010B	EPA 3050B
IP02E-5'-35 (18-09-1545-7)						
Zinc	49.4		0.952	mg/kg	EPA 6010B	EPA 3050B
IP02E-5'-38 (18-09-1545-8)						
Zinc	41.5		0.990	mg/kg	EPA 6010B	EPA 3050B
IP02E-5'-42 (18-09-1545-9)						
Zinc	66.3		0.952	mg/kg	EPA 6010B	EPA 3050B
IP02W-1'-37 (18-09-1545-10)						
Zinc	65.6		0.971	mg/kg	EPA 6010B	EPA 3050B
IP02W-1'-39 (18-09-1545-11)						
Zinc	63.4		0.966	mg/kg	EPA 6010B	EPA 3050B
IP02W-1'-43 (18-09-1545-12)						
Zinc	46.6		1.01	mg/kg	EPA 6010B	EPA 3050B
IP02W-3'-38 (18-09-1545-13)						
Zinc	65.0		0.966	mg/kg	EPA 6010B	EPA 3050B
IP02W-3'-42 (18-09-1545-14)						
Zinc	47.4		0.980	mg/kg	EPA 6010B	EPA 3050B
IP02W-3'-45 (18-09-1545-15)						
Zinc	46.1		0.985	mg/kg	EPA 6010B	EPA 3050B
IP02W-5'-36 (18-09-1545-16)						
Zinc	45.4		1.01	mg/kg	EPA 6010B	EPA 3050B
IP02W-5'-41 (18-09-1545-17)						
Zinc	45.6		0.990	mg/kg	EPA 6010B	EPA 3050B
IP02W-5'-45 (18-09-1545-18)						
Zinc	41.9		1.01	mg/kg	EPA 6010B	EPA 3050B
IP08W-1'-35 (18-09-1545-19)						
Zinc	65.0		1.03	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Detections Summary

Client: Geosyntec Consultants Work Order: 18-09-1545

595 Market Street, Suite 610 Project Name: ESTCP C. Pendleton / WR2274

San Francisco, CA 94105-2811 Received: 09/20/18

Attn: Lea Kane Page 2 of 3

Titli: Eca Italic						1 age 2 of 0
Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
IP08W-1'-39 (18-09-1545-20)						
Zinc	117		1.01	mg/kg	EPA 6010B	EPA 3050B
IP08W-1'-40 (18-09-1545-21)				99	_,,,,,,,,	
Zinc	67.3		0.980	mg/kg	EPA 6010B	EPA 3050B
IP08W-3'-35 (18-09-1545-22)				0 0		
Zinc	98.0		0.971	mg/kg	EPA 6010B	EPA 3050B
IP08W-3'-38 (18-09-1545-23)						
Zinc	70.1		1.01	mg/kg	EPA 6010B	EPA 3050B
IP08W-3'-40 (18-09-1545-24)						
Zinc	53.4		0.990	mg/kg	EPA 6010B	EPA 3050B
IP08W-3'-45 (18-09-1545-25)						
Zinc	57.1		0.990	mg/kg	EPA 6010B	EPA 3050B
IP08W-5'-35 (18-09-1545-26)						
Zinc	75.4		1.01	mg/kg	EPA 6010B	EPA 3050B
IP08W-5'-36 (18-09-1545-27)						
Zinc	75.5		0.976	mg/kg	EPA 6010B	EPA 3050B
IP08W-5'-41 (18-09-1545-28)						
Zinc	51.8		0.976	mg/kg	EPA 6010B	EPA 3050B
IP08E-1'-35 (18-09-1545-29)						
Zinc	72.2		0.966	mg/kg	EPA 6010B	EPA 3050B
IP08E-1'-37 (18-09-1545-30)						
Zinc	43.1		0.962	mg/kg	EPA 6010B	EPA 3050B
IP08E-1'-44 (18-09-1545-31)						
Zinc	44.0		0.990	mg/kg	EPA 6010B	EPA 3050B
IP08E-3'-38 (18-09-1545-32)						
Zinc	159		1.00	mg/kg	EPA 6010B	EPA 3050B
IP08E-3'-40 (18-09-1545-33)						
Zinc	72.5		0.980	mg/kg	EPA 6010B	EPA 3050B
IP08E-3'-42 (18-09-1545-34)						
Zinc	65.2		0.976	mg/kg	EPA 6010B	EPA 3050B
IP08E-5'-38 (18-09-1545-35)						
Zinc	42.6		1.01	mg/kg	EPA 6010B	EPA 3050B
IP08E-5'-40 (18-09-1545-36)						
Zinc	44.5		0.995	mg/kg	EPA 6010B	EPA 3050B
IP08E-5'-42 (18-09-1545-37)						
Zinc	43.7		1.00	mg/kg	EPA 6010B	EPA 3050B
IP08N-1'-34 (18-09-1545-38)						
Zinc	82.2		1.04	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Detections Summary

18-09-1545

Client: Geosyntec Consultants Work Order:

595 Market Street, Suite 610 Project Name: ESTCP C. Pendleton / WR2274

San Francisco, CA 94105-2811 Received: 09/20/18

Attn: Lea Kane Page 3 of 3

Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
75.8		1.04	mg/kg	EPA 6010B	EPA 3050B
84.0		1.00	mg/kg	EPA 6010B	EPA 3050B
67.4		1.00	mg/kg	EPA 6010B	EPA 3050B
59.2		0.957	mg/kg	EPA 6010B	EPA 3050B
272		0.995	mg/kg	EPA 6010B	EPA 3050B
71.2		1.03	mg/kg	EPA 6010B	EPA 3050B
68.2		0.995	mg/kg	EPA 6010B	EPA 3050B
48.9		0.957	mg/kg	EPA 6010B	EPA 3050B
75.1		0.971	mg/kg	EPA 6010B	EPA 3050B
	75.8 84.0 67.4 59.2 272 71.2 68.2 48.9	75.8 84.0 67.4 59.2 272 71.2 68.2 48.9	75.8 1.04 84.0 1.00 67.4 1.00 59.2 0.957 272 0.995 71.2 1.03 68.2 0.995 48.9 0.957	75.8 1.04 mg/kg 84.0 1.00 mg/kg 67.4 1.00 mg/kg 59.2 0.957 mg/kg 272 0.995 mg/kg 71.2 1.03 mg/kg 68.2 0.995 mg/kg 48.9 0.957 mg/kg	75.8 1.04 mg/kg EPA 6010B 84.0 1.00 mg/kg EPA 6010B 67.4 1.00 mg/kg EPA 6010B 59.2 0.957 mg/kg EPA 6010B 272 0.995 mg/kg EPA 6010B 71.2 1.03 mg/kg EPA 6010B 68.2 0.995 mg/kg EPA 6010B 48.9 0.957 mg/kg EPA 6010B

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

09/20/18

Geosyntec Consultants

Zinc

Analytical Report

Date Received:

Ocosynico Oonsulanis			Date No	001104.			00/20/10
595 Market Street, Suite 610			Work O	rder:			18-09-1545
San Francisco, CA 94105-2811			Prepara	ition:			EPA 3050B
Carrianologo, Critorios 2011			Method:				EPA 6010B
				•			
			Units:			_	mg/kg
Project: ESTCP C. Pendleton / W	R2274					Pa	age 1 of 7
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IP02E-1'-38	18-09-1545-1-A	09/17/18 14:20	Solid	ICP 8300	09/24/18	09/27/18 16:25	180924L04
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		53.2		1.01	1.01		
IP02E-1'-41	18-09-1545-2-A	09/17/18 14:25	Solid	ICP 8300	09/24/18	09/27/18 16:34	180924L04
<u>Parameter</u>		Result		RL	DF	Qua	alifiers
Zinc		36.6		0.985	0.985		
IP02E-1'-45	18-09-1545-3-A	09/17/18 14:30	Solid	ICP 8300	09/24/18	09/27/18 16:35	180924L04
<u>Parameter</u>		Result	-	RL	DF	Qua	alifiers
Zinc		42.7		1.01	1.01		
IP02E-3'-36	18-09-1545-4-A	09/17/18 12:30	Solid	ICP 8300	09/24/18	09/27/18 16:36	180924L04
<u>Parameter</u>		Result		RL	DF	Qua	alifiers
Zinc		98.7		1.01	1.01		
IP02E-3'-40	18-09-1545-5-A	09/17/18 12:35	Solid	ICP 8300	09/24/18	09/27/18 16:37	180924L04
<u>Parameter</u>		Result		RL	DF	Qua	alifiers
Zinc		36.4		1.00	1.00		
IP02E-3'-44	18-09-1545-6-A	09/17/18 12:40	Solid	ICP 8300	09/24/18	09/27/18 16:38	180924L04
<u>Parameter</u>		Result	-	RL	DF	Qua	alifiers
Zinc		59.1		1.04	1.04		
IP02E-5'-35	18-09-1545-7-A	09/17/18 09:40	Solid	ICP 8300	09/24/18	09/27/18 16:39	180924L04
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		49.4		0.952	0.952		
IP02E-5'-38	18-09-1545-8-A	09/17/18 09:45	Solid	ICP 8300	09/24/18	09/27/18 16:40	180924L04
<u>Parameter</u>		Result		RL	DF		alifiers

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

0.990

0.990

41.5

Analytical Report

Geosyntec Consultants			Date Re	eceived:			09/20/18
595 Market Street, Suite 610			Work O	rder:			18-09-1545
San Francisco, CA 94105-2811			Prepara	tion:			EPA 3050B
			Method:				EPA 6010B
			Units:				mg/kg
Project: ESTCP C. Pendleton / WR	2274					Pa	ige 2 of 7
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IP02E-5'-42	18-09-1545-9-A	09/17/18 09:50	Solid	ICP 8300	09/24/18	09/27/18 16:41	180924L04
<u>Parameter</u>		Result		<u>RL</u>	DF	Qua	alifiers
Zinc		66.3		0.952	0.952		
IP02W-1'-37	18-09-1545-10-A	09/18/18 09:40	Solid	ICP 8300	09/24/18	09/27/18 16:42	180924L04
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		65.6		0.971	0.971		
IP02W-1'-39	18-09-1545-11-A	09/18/18 09:45	Solid	ICP 8300	09/24/18	09/27/18 16:44	180924L04
<u>Parameter</u>		Result		<u>RL</u>	DF	Qua	alifiers
Zinc		63.4		0.966	0.966		
IP02W-1'-43	18-09-1545-12-A	09/18/18 09:50	Solid	ICP 8300	09/24/18	09/27/18 20:40	180924L04
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		46.6		1.01	1.01		
IP02W-3'-38	18-09-1545-13-A	09/18/18 08:30	Solid	ICP 8300	09/24/18	09/27/18 20:41	180924L04
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		65.0		0.966	0.966		
IP02W-3'-42	18-09-1545-14-A	09/18/18 08:40	Solid	ICP 8300	09/24/18	09/27/18 20:42	180924L04
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		47.4		0.980	0.980		
IP02W-3'-45	18-09-1545-15-A	09/18/18 08:45	Solid	ICP 8300	09/24/18	09/27/18 20:43	180924L04
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Zinc		46.1		0.985	0.985		
IP02W-5'-36	18-09-1545-16-A	09/17/18 16:00	Solid	ICP 8300	09/24/18	09/27/18 20:44	180924L04
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		45.4		1.01	1.01		

Analytical Report

			D / D				00/00/40
Geosyntec Consultants			Date Re				09/20/18
595 Market Street, Suite 610			Work O	rder:			18-09-1545
San Francisco, CA 94105-2811			Prepara	tion:			EPA 3050B
			Method:				EPA 6010B
			Units:				mg/kg
Project: ESTCP C. Pendleton / W	R2274					Pa	age 3 of 7
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IP02W-5'-41	18-09-1545-17-A	09/17/18 16:05	Solid	ICP 8300	09/24/18	09/27/18 20:45	180924L04
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Zinc		45.6		0.990	0.990		
IP02W-5'-45	18-09-1545-18-A	09/17/18 16:10	Solid	ICP 8300	09/24/18	09/27/18 20:46	180924L04
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		41.9		1.01	1.01		
IP08W-1'-35	18-09-1545-19-A	09/18/18 14:15	Solid	ICP 8300	09/24/18	09/27/18 20:47	180924L04
Parameter		Result		RL	DF	Qua	alifiers
Zinc		65.0		1.03	1.03		
IP08W-1'-39	18-09-1545-20-A	09/18/18 14:20	Solid	ICP 8300	09/24/18	09/27/18 20:48	180924L04
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Zinc		117		1.01	1.01		
IP08W-1'-40	18-09-1545-21-A	09/18/18 14:25	Solid	ICP 8300	09/25/18	09/27/18 16:28	180925L02
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		67.3		0.980	0.980		
IP08W-3'-35	18-09-1545-22-A	09/18/18 12:10	Solid	ICP 8300	09/25/18	09/27/18 20:49	180925L02
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Zinc		98.0		0.971	0.971		
IP08W-3'-38	18-09-1545-23-A	09/18/18 12:15	Solid	ICP 8300	09/25/18	09/27/18 20:53	180925L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		70.1		1.01	1.01		
IP08W-3'-40	18-09-1545-24-A	09/18/18 12:20	Solid	ICP 8300	09/25/18	09/27/18 20:54	180925L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Zinc

0.990

0.990

53.4

09/20/18

09/27/18 21:03

180925L02

Qualifiers

Geosyntec Consultants

IP08E-3'-38

<u>Parameter</u>

Zinc

Analytical Report

Date Received:

Goodynico Conduitanto			Date it	, co., ca.			00/20/10
595 Market Street, Suite 610			Work O	rder:			18-09-1545
San Francisco, CA 94105-2811			Prepara	ition:			EPA 3050E
			Method				EPA 6010B
			Units:	•			mg/kg
Project: ESTCP C. Pendleton / W	'R2274		Offics.			Da	ige 4 of 7
Troject. EGTOF C. Feridictoff / W	1\2214					1 6	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IP08W-3'-45	18-09-1545-25-A	09/18/18 12:25	Solid	ICP 8300	09/25/18	09/27/18 20:55	180925L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		57.1		0.990	0.990		
IP08W-5'-35	18-09-1545-26-A	09/18/18 11:00	Solid	ICP 8300	09/25/18	09/27/18 20:56	180925L02
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Zinc		75.4		1.01	1.01		
IP08W-5'-36	18-09-1545-27-A	09/18/18 11:05	Solid	ICP 8300	09/25/18	09/27/18 20:57	180925L02
<u>Parameter</u>		Result	-	RL	<u>DF</u>	Qua	alifiers
Zinc		75.5		0.976	0.976		
IP08W-5'-41	18-09-1545-28-A	09/18/18 11:10	Solid	ICP 8300	09/25/18	09/27/18 20:58	180925L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		51.8		0.976	0.976		
IP08E-1'-35	18-09-1545-29-A	09/19/18 10:00	Solid	ICP 8300	09/25/18	09/27/18 20:59	180925L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		72.2		0.966	0.966		
IP08E-1'-37	18-09-1545-30-A	09/19/18 10:05	Solid	ICP 8300	09/25/18	09/27/18 21:00	180925L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		43.1		0.962	0.962		
IP08E-1'-44	18-09-1545-31-A	09/19/18 10:10	Solid	ICP 8300	09/25/18	09/27/18 21:01	180925L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		44.0		0.990	0.990		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

18-09-1545-32-A

Solid

<u>RL</u>

1.00

ICP 8300

09/25/18

<u>DF</u>

1.00

09/18/18 15:00

Result

159

Analytical Report

Geosyntec Consultants			Date Re	ceived:			09/20/18
595 Market Street, Suite 610			Work O	rder:			18-09-1545
San Francisco, CA 94105-2811			Prepara	tion:			EPA 3050B
			Method:				EPA 6010B
			Units:				mg/kg
Project: ESTCP C. Pendleton / WI	R2274					Pa	age 5 of 7
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IP08E-3'-40	18-09-1545-33-A	09/18/18 15:05	Solid	ICP 8300	09/25/18	09/27/18 21:06	180925L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		72.5		0.980	0.980		
IP08E-3'-42	18-09-1545-34-A	09/18/18 15:10	Solid	ICP 8300	09/25/18	09/27/18 21:07	180925L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		65.2		0.976	0.976		
IP08E-5'-38	18-09-1545-35-A	09/19/18 08:20	Solid	ICP 8300	09/25/18	09/27/18 21:08	180925L02
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		42.6		1.01	1.01		
IP08E-5'-40	18-09-1545-36-A	09/19/18 08:25	Solid	ICP 8300	09/25/18	09/27/18 21:09	180925L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		44.5		0.995	0.995		
IP08E-5'-42	18-09-1545-37-A	09/19/18 08:30	Solid	ICP 8300	09/25/18	09/27/18 21:10	180925L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		43.7		1.00	1.00		
IP08N-1'-34	18-09-1545-38-A	09/19/18 14:00	Solid	ICP 8300	09/25/18	09/27/18 21:11	180925L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		82.2		1.04	1.04		
IP08N-1'-36	18-09-1545-39-A	09/19/18 14:05	Solid	ICP 8300	09/25/18	09/27/18 21:13	180925L02
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		75.8		1.04	1.04		
IP08N-1'-38	18-09-1545-40-A	09/19/18 14:10	Solid	ICP 8300	09/25/18	09/27/18 21:14	180925L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		84.0		1.00	1.00		

Analytical Report

Geosyntec Consultants			Date Re	eceived:			09/20/18
595 Market Street, Suite 610			Work O	rder:			18-09-1545
San Francisco, CA 94105-2811			Prepara	ition:			EPA 3050B
			Method	•			EPA 6010B
			Units:				mg/kg
Project: ESTCP C. Pendleton / WF	R2274					Pa	ige 6 of 7
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IP08N-3'-34	18-09-1545-41-A	09/19/18 12:40	Solid	ICP 8300	09/24/18	09/27/18 21:15	180924L05
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Zinc		67.4		1.00	1.00		
IP08N-3'-35	18-09-1545-42-A	09/19/18 12:45	Solid	ICP 8300	09/24/18	09/27/18 21:16	180924L05
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		59.2		0.957	0.957		
IP08N-3'-38	18-09-1545-43-A	09/19/18 12:50	Solid	ICP 8300	09/24/18	09/27/18 21:19	180924L05
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		272		0.995	0.995		
IP08N-5'-35	18-09-1545-44-A	09/19/18 11:30	Solid	ICP 8300	09/24/18	09/27/18 21:20	180924L05
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Zinc		71.2		1.03	1.03		
IP08N-5'-37	18-09-1545-45-A	09/19/18 11:35	Solid	ICP 8300	09/24/18	09/27/18 21:21	180924L05
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		68.2		0.995	0.995		
IP08N-5'-42	18-09-1545-46-A	09/19/18 11:40	Solid	ICP 8300	09/24/18	09/27/18 21:23	180924L05
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		48.9		0.957	0.957		
IP08N-3'-41	18-09-1545-47-A	09/19/18 12:55	Solid	ICP 8300	09/24/18	09/27/18 21:24	180924L05
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Zinc		75.1		0.971	0.971		
Method Blank	097-01-002-27025	N/A	Solid	ICP 8300	09/24/18	09/27/18 16:20	180924L04
<u>Parameter</u>		Result		<u>RL</u>	DF	Qua	alifiers
Zinc		ND		0.971	0.971		

Page 7 of 7

Analytical Report

Geosyntec ConsultantsDate Received:09/20/18595 Market Street, Suite 610Work Order:18-09-1545San Francisco, CA 94105-2811Preparation:EPA 3050BMethod:EPA 6010B

Units: mg/kg

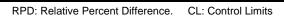
Project: ESTCP C. Pendleton / WR2274

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-27018	N/A	Solid	ICP 8300	09/24/18	09/27/18 11:27	180924L05
<u>Parameter</u>		Result	RI	=	<u>DF</u>	Qua	<u>llifiers</u>
Zinc		ND	0.9	971	0.971		

Method Blank	097-01-002-27026	N/A	Solid	ICP 8300	09/25/18	09/27/18	180925L02
						16:23	
<u>Parameter</u>		Result	<u>RI</u>	=	<u>DF</u>	Qua	alifiers
Zinc		ND	1.	00	1.00		

Quality Control - Spike/Spike Duplicate

 Geosyntec Consultants
 Date Received:
 09/20/18


 595 Market Street, Suite 610
 Work Order:
 18-09-1545

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3050B

 Method:
 EPA 6010B

Project: ESTCP C. Pendleton / WR2274 Page 1 of 3

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
IP02E-1'-38	Sample		Solid	ICP	8300	09/24/18	09/27/18	16:25	180924S04	
IP02E-1'-38	Matrix Spike		Solid	ICP	8300	09/24/18	09/27/18	16:26	180924S04	
IP02E-1'-38	Matrix Spike I	Duplicate	Solid	ICP	8300	09/24/18	09/27/18	16:27	180924S04	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	53.16	25.00	73.81	83	83.15	120	75-125	12	0-20	

Quality Control - Spike/Spike Duplicate

 Geosyntec Consultants
 Date Received:
 09/20/18

 595 Market Street, Suite 610
 Work Order:
 18-09-1545

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3050B

 Method:
 EPA 6010B

Project: ESTCP C. Pendleton / WR2274	Page 2 of 3

Quality Control Sample ID	Туре	Matrix	Inst	rument	Date Prepared	Date Analyz	ed MS/MSD Ba	tch Number
18-09-1485-11	Sample	Solid	ICP	8300	09/24/18	09/27/18 11	:35 180924\$05	
18-09-1485-11	Matrix Spike	Solid	ICP	8300	09/24/18	09/27/18 11	:37 180924S05	
18-09-1485-11	Matrix Spike Duplicate	Solid	ICP	8300	09/24/18	09/27/18 11	:38 180924S05	
Parameter	Sample Spike Conc. Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL R	PD RPD CL	Qualifiers
Zinc	56.45 25.00	83.74	109	86.08	119	75-125 3	0-20	

Quality Control - Spike/Spike Duplicate

 Geosyntec Consultants
 Date Received:
 09/20/18

 595 Market Street, Suite 610
 Work Order:
 18-09-1545

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3050B

 Method:
 EPA 6010B

 Project: ESTCP C. Pendleton / WR2274
 Page 3 of 3

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
IP08W-1'-40	Sample		Solid	ICP	8300	09/25/18	09/27/18	16:28	180925S02	
IP08W-1'-40	Matrix Spike		Solid	ICP	8300	09/25/18	09/27/18	16:29	180925S02	
IP08W-1'-40	Matrix Spike	Duplicate	Solid	ICP	8300	09/25/18	09/27/18	16:30	180925S02	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Zinc	67.26	25.00	98.77	126	89.09	87	75-125	10	0-20	3

Quality Control - LCS

 Geosyntec Consultants
 Date Received:
 09/20/18

 595 Market Street, Suite 610
 Work Order:
 18-09-1545

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3050B

 Method:
 EPA 6010B

 Project: ESTCP C. Pendleton / WR2274
 Page 1 of 3

Quality Control Sample ID	Туре	Matrix	Instrument I	Date Prepared	Date Analyzed	LCS Batch Number
097-01-002-27025	LCS	Solid	ICP 8300	09/24/18	09/27/18 16:22	180924L04
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Zinc		25.00	22.48	90	80-120)

Quality Control - LCS

 Geosyntec Consultants
 Date Received:
 09/20/18

 595 Market Street, Suite 610
 Work Order:
 18-09-1545

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3050B

 Method:
 EPA 6010B

 Project: ESTCP C. Pendleton / WR2274
 Page 2 of 3

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
097-01-002-27018	LCS	Solid	ICP 8300	09/24/18	09/27/18 11:34	180924L05
Parameter		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
Zinc		25.00	26.05	104	80-120	0

Quality Control - LCS

 Geosyntec Consultants
 Date Received:
 09/20/18

 595 Market Street, Suite 610
 Work Order:
 18-09-1545

 San Francisco, CA 94105-2811
 Preparation:
 EPA 3050B

 Method:
 EPA 6010B

 Project: ESTCP C. Pendleton / WR2274
 Page 3 of 3

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
097-01-002-27026	LCS	Solid	ICP 8300	09/25/18	09/27/18 16:24	180925L02
<u>Parameter</u>		Spike Added	Conc. Recovered	ed LCS %Re	ec. %Rec.	CL Qualifiers
Zinc:		25 00	22 40	90	80-120	

Sample Analysis Summary Report

Work Order: 18-09-1545				Page 1 of 1
Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 6010B	EPA 3050B	771	ICP 8300	1

Glossary of Terms and Qualifiers

Work Order: 18-09-1545 Page 1 of 1

<u>Qualifiers</u>	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Document Number:, 11500

Condition of Lab Use Bottles White copy: to accompany samples Only Yellow copy: field copy 18-09-1545 Page | of 3 Comments Analysis Request and Chain of Custody Record **Bottle Type and Volume/Preservative** Number of Containers Required Analyses **NOCs p** Sample Type ¥0. Time グァ 1430 1235 35 2 1240 0440 5460 0440 3460 0950 Carrier/Waybill No. Project Contact Project Number しんととかり ab Phone 81/81/6 SIKILA 81/61/6 Date 2 S 4 60 3 Sample Name ESTEP C. Pentlem IPPLE- 1 - 45 IPOZE-1-38 Je - 3 - 36 IP 0. 6 - 1 - 41 IPULE - 3'- 40 An E - 3' - 44 7h-15-3704 - 39 Irozu-1'-37 POLE - 5'- 35 D.LE-5'-39 amplers Names aboratory Name Colscience Lab Address 1-720

Relinquished by		Date 09/20	20/2	Received by	1
(Signiture/Affiliation)	\leq	Time (X)	9	Signiture/Affiliation)	
3. Relinquished by ^V		Date	3	 Received by 	
(Signiture/Affliation)		Time	3)	Signiture/Affiliation)	

Time Date

Turn-around Time:

Normal

囚

8 1. Received by (Signiture/Affiliation)

Date Time

0220

81/81/6

Special Instructions:

Itozw-1 - 43

Relinquished by

(Signiture/Affiliation)

Time

Date

Time

Date

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674 659 Fax: (858) 674-6586

Geosyntec^o

			Anal	Analysis Request and Chain of Custody Record	nest (and C	hain	of C	ustod	ly Rec	ord	(15.45)	
			,	a.			Requi	ired A	Required Analyses			Page 2 of 3	~
Continued from Document Number:	ant Number.				_		-14- 502						
00511)×2 1	81	ing Sei. I amalg					White conv: to accompany samples	nv samules
Project Name		Project Number	mber		701	109						Edinocapy: or accomp	earlings for
ESTEP C. Pensleton	4	ج ج	WR2274		Motals	SVOCS	לונם ה לר פנו					reliow copy: riela copy	copy
					┪┝	Bottle	Туре аг	no Volu	Bottle Type and Volume/Preservative	ırvative			Lab Use
				Sample		<u> </u>		$\overline{}$	<u> </u>				Only
Sample Name	ne	Date	Time	Type				rofo	Number of Containers	13		Comments	Condition of Bottles
IPO2W-3'-39	13	4/18/18	0\$3¢	50.1		×	×	-					
IP020-3-42	4		0\$40	/ ×									
\$h. 8-1017	15	→	5480										
Jb054-5'-36	<u>ہ</u>	2/17/18	1600										
Dan-5-1-41	7	-	509]										
TP120-5'- 45	18	→	((10										-
	61	2/18/18	7141										
子のこことな	8		92 F.1										
12.80-1 -40	2,1		1425										
#WJ-3'-35	22		1210										
100~3-3	23		11.15										
1 40 mon 3 40	24		271					1					
DAW-3-45	25		1225										
TP40-5'- 35	オ		100										
はるとろしる	2		ا، وح	·									
15-15-75	2%		11:0										Pag
Dug E-1-35	52	9/11/18	000]										e 2
IPUSE-1-37	3		2061										o OI
カカーノーコのは	3												28
IPOS 68-3'- 34	32	81/8/18	1500	→			>						
Occupation O	10875 Ba	ncho Rerna	rdo Road Su	10875 Rancho Bernardo Road Suite 200 San Dies	Diego CA 92127		8581674	6559	(858) 674-6559 Fax: (858) 674-6586	1 674 655	ĭ		

Geosyntec D 10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 consultants

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586

consultants

WORK ORDER NUMBER: 1800090 2545

Calscience SAMPLE RECEIPT CHECKLIST C	OOLER_	<u> </u>	of <u></u>
CLIENT: CREOSYNTEC DATI	E: <u>09 /</u>	201	2018
TEMPERATURE: (Criteria: 0.0°C − 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: -0.5°C); Temperature (w/o CF):	Blank Checked	_ S	Sample
CUSTODY SEAL: Cooler	Checked Checked	by: _ t	JBUK
SAMPLE CONDITION:	Yes	No	N/A
Chain-of-Custody (COC) document(s) received with samples	Z		
COC document(s) received complete			
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers			
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished time			
Sampler's name indicated on COC	_		
Sample container label(s) consistent with COC	. ~ /		
Sample container(s) intact and in good condition			
Proper containers for analyses requested			
Sufficient volume/mass for analyses requested	~ _		
Samples received within holding time			
Aqueous samples for certain analyses received within 15-minute holding time	7		
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen			
Proper preservation chemical(s) noted on COC and/or sample container			
Unpreserved aqueous sample(s) received for certain analyses	_	_	
□ Volatile Organics □ Total Metals □ Dissolved Metals			
Acid/base preserved samples - pH within acceptable range	п		K
Container(s) for certain analysis free of headspace			
	. ⊔	land.	
☐ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 4500)			
□ Carbon Dioxide (SM 4500) □ Ferrous Iron (SM 3500) □ Hydrogen Sulfide (Hach) Tedlar [™] bag(s) free of condensation	П		
\cdot			سم خ
CONTAINER TYPE: (Trip Blank Lot Number 1997)	•		
Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ □ 100PJna₂ □ 125AGB □ 125AGBh □ 125AGBp □ 125P □ 250AGB □ 250CGBs □ 250CGBs (pH_2) □ 250PBn (pH_2) □ 500AGB □ 500AGJ □ 500AGJ □ 500AG □ 1AGB □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve □ □ □ □ □ □	GJs (pH2)	50 	00PB
Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other Matrix (): □			
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Res	ealable Bag)	1450
Preservative: $\mathbf{b} = \text{buffered}$, $\mathbf{f} = \text{filtered}$, $\mathbf{h} = \text{HCI}$, $\mathbf{n} = \text{HNO}_3$, $\mathbf{na} = \text{NaOH}$, $\mathbf{na}_2 = \text{Na}_2\text{S}_2\text{O}_3$, $\mathbf{p} = \text{H}_3\text{PO}_4$, Labelet	d/Checked	by:	<u>"</u>

 $s = H_2SO_4$, u = ultra-pure, $x = Na_2SO_3+NaHSO_4$. H_2O , $znna = Zn (CH_3CO_2)_2 + NaOH$

Reviewed by: WW

Calscience

WORK ORDER NUMBER: 18-09-1545

SAMPLE ANOMALY REPORT

DATE: 09 /20/ 2018

SAMPLES, CONTAINERS, AND LABELS:	Comments
☐ Sample(s) NOT RECEIVED but listed on COC	
☐ Sample(s) received but NOT LISTED on COC	
☐ Holding time expired (list client or ECI sample ID and analysis)	
☐ Insufficient sample amount for requested analysis (list analysis)	
☐ Improper container(s) used (list analysis)	
☐ Improper preservative used (list analysis)	·
☐ pH outside acceptable range (list analysis)	
☐ No preservative noted on COC or label (list analysis and notify lab)	
☐ Sample container(s) not labeled	
☐ Client sample label(s) illegible (list container type and analysis)	
☐ Client sample label(s) do not match COC (comment)	
☐ Project information	
☐ Client sample ID	
☐ Sampling date and/or time	
Number of container(s)	(1)to(-47) Received 1-confainer only.
☐ Requested analysis	
Sample container(s) compromised (comment)	
☐ Broken	
☑ Water present in sample container	(-1), (-5), (12-13), (-17) to (-20), (-22), (-35) to (-37)
☐ Air sample container(s) compromised (comment)	(41-42) * 420 present.
☐ Flat	
☐ Very low in volume	
☐ Leaking (not transferred; duplicate bag submitted)	
☐ Leaking (transferred into ECI Tedlar™ bags*)	
□ Leaking (transferred into client's Tedlar [™] bags*)	
* Transferred at client's request.	
MISCELLANEOUS: (Describe)	Comments
HEADSPACE:	
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis)	(Containers with bubble for other analysis)
ECI ECI Total ECI ECI Total	ECI ECI Total Sample ID Container ID Number** Requested Analysis
Sample ID Container ID Number** Sample ID Container ID Number**	Garipic is Santana is Assessed to Assessed
Comments:	Reported by: UFSO
	Reported by: <u>UFSO</u> Reviewed by: <u>WYU</u>
** Record the total number of containers (i.e., vials or bottles) for the affected sample.	i teviewed by.

APPENDIX E QUALITY ASSURANCE/QUALITY CONTROL REVIEW

16644 West Bernardo Drive, Suite 301 San Diego, California 92127 PH 858.674.6559 FAX 858.674.6586 www.geosyntec.com

Memorandum

Date: 4 October 2017

To: Brian Rockwell/Lea Kane

From: Sherry Watts

Subject: Stage 1 Data Validation Summary

Work Orders: 17-09-0693 17-09-0821 17-09-0822 17-09-0989 17-09-1116

ESTCP - Pendleton

INTRODUCTION

This report summarizes the findings of the Stage 1 data validation for the above listed work orders for groundwater samples and associated quality control samples collected 11 through 14 October 2017 from the ESTCP – Pendleton site located in Oceanside, California (Site). Groundwater samples collected from the site were submitted to Eurofins/Calscience, Inc. of Garden Grove, California for laboratory analysis. The samples were submitted for one or more of the following analytical tests:

- Dissolved Metals by EPA Method 200.7
- Anions by EPA Method 300.0
- Metals by EPA Method 6010B/7470A
- Total Petroleum Hydrocarbons by EPA 8015B(M)
- Volatile Organic Compounds (VOCs) by EPA Method 8260B
- Propene by RSK-175M
- 1,2,3-Trichloropropene by SRL 524M

EXECUTIVE SUMMARY

The samples were handled, prepared, and measured in the same manner under similar prescribed conditions as reported in the laboratory analytical. Data packages were reviewed for chain of custody (COC) discrepancies; adherence to sample holding times; evaluation of matrix spike/matrix spike duplicates (MS/MSD), laboratory control samples/laboratory control sample duplicates (LCS/LCSD), field duplicates; and assessment of equipment, field, trip and method blanks.

The data were reviewed based on the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, August 2014 (USEPA-540-R-014-002) and USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, August 2014 (USEPA-540-R-013-001), as well as by the pertinent methods referenced by the data package and professional judgment.

Error corrections were observed on the COC forms. The proper procedure of a single strike through of the correction was utilized; however, in some instances the initial and/or date of correction was missing. This COC issue did not result in qualification of the data.

Overall, based on this Stage 1 data validation covering the quality control (QC) parameters, the data as qualified are usable for meeting project objectives. Qualified data should be used within the limitations of the qualification. Additional QC issues, other than those discussed in the following sections, were noted; however, these QC issues had no impact on the reported results and are therefore not discussed in further detail.

WORK ORDER 17-09-0693

The laboratory noted headspace in several sample containers on the Sample Anomaly Report included in the laboratory data package. No qualifiers were applied to the data as a result of the noted headspace.

VOCs

The COC listed the trip blank; however, no time of collection was listed and no analyses for the trip blank were marked on the COC. The laboratory used a time of collection of 00:00 and ran the trip blank for VOCs. No qualifications were applied to the data as a result of this COC issue.

WORK ORDER 17-09-0821

The laboratory noted headspace in several sample containers on the Sample Anomaly Report included in the laboratory data package. No qualifiers were applied to the data as a result of the noted headspace.

One field duplicate sample was collected with the groundwater samples. Acceptable precision (Relative Percent Difference (RPD <30%) was demonstrated between the field duplicate sample CP22-DUP1-09122017 and the original sample CP22-HP10-43-45 for all duplicate analyses with the following exceptions.

Sample	Compound	RPD (%)	Laboratory Concentration (mg/L)	Validation Qualifier*	Validation Concentration (mg/L)	Reason Code*
CP22-HP10-43-45		- 1	0.0147	J	0.0147 J	_
CP22-DUP-09122017	Zinc	64	0.0286	J	0.0286 J	7

Sample	Compound	RPD (%)	Laboratory Concentration (ug/L)	Validation Qualifier	Validation Concentration (ug/L)	Reason Code
CP22-HP10-43-45		Noncal-	2.96	J	2.96 J	
CP22-DUP-09122017	Propene	culable >99	ND <1.00	J	1.00 UJ	7

^{*}Validation Qualifier and Reason Code defined in Attachment 1.

Anions

Chloride and nitrite as N were detected in the equipment blank, EB-09122017, above the reporting limit (RL). No qualifiers were applied to the data; however, the discrepancy should be noted.

Metals

Calcium and silicon were detected in the equipment blank, EB-09122017, above the reporting limit (RL). No qualifiers were applied to the data; however, the discrepancy should be noted.

VOCs

The COC listed the trip blank; however, no time of collection was on the COC. The laboratory used a time of collection of 00:00. No qualifications were applied to the data as a result of this COC issue.

WORK ORDER 17-09-0822

The laboratory noted headspace in several sample containers on the Sample Anomaly Report included in the laboratory data package. No qualifiers were applied to the data as a result of the noted headspace.

The COC listed the year of sample collection as 2016. The laboratory used a collection year of 2017 to log in the samples. No qualifications were applied to the data as a result of this COC issue.

One field duplicate sample was collected with the groundwater samples. Acceptable precision (RPD <30%) was demonstrated between the field duplicate sample DUP-GW-091217 and the original sample CP22-PMW04 for all duplicate analyses with the following exceptions.

Sample	Compound	RPD (%)	Laboratory Concentration (mg/L)	Validation Qualifier	Validation Concentration (mg/L)	Reason Code
CP22-PMW04	7ino	167	0.181	J	0.181 J	7
DUP-GW-091217	Zinc	107	0.0164	J	0.0164 J	/

Anions

Chloride and sulfate were detected in the equipment blank, EB-GW-091217, above the reporting limit (RL). No qualifiers were applied to the data; however, the discrepancy should be noted.

Metals

Calcium and silicon were detected in the equipment blank, EB-GW-091217, above the reporting limit (RL). No qualifiers were applied to the data; however, the discrepancy should be noted.

WORK ORDER 17-09-0989

The laboratory noted headspace in several sample containers on the Sample Anomaly Report included in the laboratory data package. No qualifiers were applied to the data as a result of the noted headspace.

Three field duplicate samples were collected with the groundwater samples. Acceptable precision (RPD <30%) was demonstrated between the field duplicate samples CP22-DUP3-091317 and CP22-DUP4-091317 and the original samples CP22-HP12-39-41 and CP22-HP08-43-45, respectively for all duplicate analyses.¹

The RPD for field duplicate pair CP22-HP12-35-37/CP22-DUP2-091317 could not be calculated because the original sample was collected on 9/12/2017 and the duplicate sample on 9/13/2017; therefore, they are not a true field duplicate pair.

Metals

Calcium was detected in the equipment blank, EB3-091317, above the reporting limit (RL). No qualifiers were applied to the data; however, the discrepancy should be noted.

VOCs

The COC listed the trip blank; however, no time of collection was on the COC. The laboratory used a time of collection of 00:00. No qualifications were applied to the data as a result of this COC issue.

WORK ORDER 17-09-1116(S1)

The laboratory reissued the report on 2 October 2017 since the original report did not include the correct results for sample CP22-IDW-091417.

The laboratory noted headspace in several sample containers on the Sample Anomaly Report included in the laboratory data package. No qualifiers were applied to the data as a result of the noted headspace.

¹ The RPD for field duplicate pair CP22-HP08-43-45/CP22-DUP4-091317 could not be calculated because zinc was not detected in one of the sample pairs. The RPD is anticipated to be approximately 28% based on the laboratory reporting limit for zinc $(0.0100 \, \mu g/L)$ and the detected value $(0.0133 \, \mu g/L)$.

Metals

Zinc was detected in the equipment blank, EB4-091417, above the reporting limit (RL). No qualifiers were applied to the data; however, the discrepancy should be noted.

The percent recovery in the MS/MSD, using sample CP22-HP03-35-37, was below the laboratory established control limits for iron. The associated iron result is qualified as follows:

Sample	Compound	Laboratory Concentration (mg/L)	Validation Qualifier	Validation Concentration (mg/L)	Reason Code
CP22-HP03-35-37	Iron	0.594	J	0.594 J	4

VOCs

The COC listed the trip blank; however, no time of collection was on the COC. The laboratory used a time of collection of 00:00. No qualifications were applied to the data as a result of this COC issue.

* * * * *

16644 West Bernardo Drive, Suite 301 San Diego, California 92127 PH 858.674.6559 FAX 858.674.6586 www.geosyntec.com

Memorandum

Date: 11 February 2018

To: Brian Rockwell/Lea Kane

From: Sherry Watts

Subject: Stage 1 Data Validation Summary

Work Orders: 18-01-1215 18-01-1334 18-01-1452

ESTCP - Pendleton

INTRODUCTION

This report summarizes the findings of the Stage 1 data validation for the above listed work orders for soil, groundwater, industrial derived waste samples and associated quality control samples collected 17 through 19 January 2018 from the ESTCP – Pendleton site located in Oceanside, California (Site). Samples collected from the site were submitted to Eurofins/Calscience, Inc. of Garden Grove, California for laboratory analysis. The samples were submitted for one or more of the following analytical tests:

- Metals by EPA Method 6010B/7470A (aqueous)
- Metals by EPA Method 6010B/7471A (solid)
- Total Petroleum Hydrocarbons by EPA 8015B(M) (solid/aqueous)
- Volatile Organic Compounds (VOCs) by EPA Method 8260B (solid/aqueous)
- Propene by RSK-175M (aqueous)
- 1,2,3-Trichloropropene by SRL 524M (aqueous)

EXECUTIVE SUMMARY

The samples were handled, prepared, and measured in the same manner under similar prescribed conditions as reported in the laboratory analytical. Data packages were reviewed for chain of

Stage 1 Data Validation Summary 11 February 2018 Page 2

custody (COC) discrepancies; adherence to sample holding times; evaluation of matrix spike/matrix spike duplicates (MS/MSD), laboratory control samples/laboratory control sample duplicates (LCS/LCSD), field duplicates; and assessment of equipment, field, trip, and method blanks.

The data were reviewed based on the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, August 2014 (USEPA-540-R-014-002) and USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, August 2014 (USEPA-540-R-013-001), as well as by the pertinent methods referenced by the data package and professional judgment.

Error corrections were observed on the COC forms. The proper procedure of a single strike through of the correction was utilized; however, in some instances the initial and/or date of correction was missing. This COC issue did not result in qualification of the data.

Overall, based on this Stage 1 data validation covering the quality control (QC) parameters, the data as qualified are usable for meeting project objectives. Qualified data should be used within the limitations of the qualification. Additional QC issues, other than those discussed in the following sections, were noted; however, these QC issues had no impact on the reported results and are therefore not discussed in further detail.

WORK ORDER 18-01-1215

The laboratory noted headspace in several sample containers on the Sample Anomaly Report included in the laboratory data package. The laboratory made an effort to use containers with no reported headspace when possible; however, in the following instances containers with headspace were utilized for analyses:

• CP22-HP01-35-37: Propene and 1,2,3-Trichloropropane

No qualifiers were applied to the data as a result of the noted headspace; however, the discrepancy should be noted.

1,2,3-Trichloropropene

An equipment, trip, and field blank were reported with the data. 1,2,3-Trichloropropane was not detected in any of the blanks above the laboratory reporting limit (RL).

One field duplicate sample was collected with the groundwater samples. Acceptable precision (Relative Percent Difference (RPD <30%) was demonstrated between the field duplicate sample DUP20180117 and the original sample CP22-HP03-35-37.

Propene

One field duplicate sample was collected with the groundwater samples. Acceptable precision (Relative Percent Difference (RPD <30%) was demonstrated between the field duplicate sample DUP20180117 and the original sample CP22-HP03-35-37.

Zinc

MS/MSDs were run at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One MS/MSD, using sample IP02-1-35, was reported with the soils data. The results for the MS/MSD pair were within the laboratory specified criteria for recovery and RPD with the following exceptions: the recovery for zinc was below the laboratory acceptance criteria. The associated sample result was qualified as follows:

Sample	Compound	Laboratory Result (µg/kg)	Validation Result (µg/kg)	Validation Qualifier*	Reason Code*
IDW-Soil- 20180119	Zinc	82.7	82.7	J	4

^{*}Validation Qualifier and Reason Code defined in Attachment 1

WORK ORDER 18-01-1334

The laboratory noted headspace in several sample containers on the Sample Anomaly Report included in the laboratory data package. The laboratory made an effort to use containers with no reported headspace when possible; however, in the following instances containers with headspace were utilized for analyses:

• CP22-HP08-35-37: 1,2,3-Trichloropropane

No qualifiers were applied to the data as a result of the noted headspace, however the discrepancy should be noted.

1,2,3-Trichloropropene

An equipment, trip, and field blank were reported with the data. 1,2,3-Trichloropropane was not detected in any of the blanks above the laboratory RL.

One field duplicate sample was collected with the groundwater samples. Acceptable precision (RPD <30%) was demonstrated between the field duplicate sample DUP20180118 and the original sample CP22-HP08-39-41.

Propene

One field duplicate sample was collected with the groundwater samples. Acceptable precision (RPD <30%) was not demonstrated between the field duplicate sample DUP20180118 and the original sample CP22-HP08-39-41. The associated sample results were qualified as follows:

Sample	Compound	RPD (%)	Laboratory Result (µg/L)	Validation Result (µg/L)	Validation Qualifier*	Reason Code*
CP22-HP08-39-41	Danasas	07	1.04	1.04	J	7
DUP20180118	Propene	87	2.64	2.64	J	/

WORK ORDER 18-01-1452

The laboratory noted headspace in several sample containers on the Sample Anomaly Report included in the laboratory data package. The laboratory made an effort to use containers with no reported headspace when possible; however, in the following instances containers with headspace were utilized for analyses:

• CP22-HP10-39-41: 1,2,3-Trichloropropane

• CP22-HP05-35-37: 1,2,3-Trichloropropane

• CP22-HP04-39-41: 1,2,3-Trichloropropane

No qualifiers were applied to the data as a result of the noted headspace; however, the discrepancy should be noted.

1,2,3-Trichloropropane

An equipment, trip, and field blank were reported with the data. 1,2,3-Trichloropropane was not detected in any of the blanks above the laboratory RL.

One field duplicate sample was collected with the groundwater samples. Acceptable RPD was demonstrated between the field duplicate sample DUP20180119 and the original sample CP22-HP12-35-37.

Propene

One field duplicate sample was collected with the groundwater samples. Acceptable precision (RPD <30%) was demonstrated between the field duplicate sample DUP20180119 and the original sample CP22-HP12-35-37

VOCs

MS/MSDs were run at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One MS/MSD, using sample IDW-Soil-20180119, was reported with the soils data. The results for the MS/MSD pair were within the laboratory specified criteria for recovery and RPD with the following exceptions: the recovery for acetone and tetrachloroethene were below the laboratory acceptance criteria. The associated sample results were qualified as follows:

Sample	Compound	Laboratory Result (µg/kg)	Validation Result (µg/kg)	Validation Qualifier	Reason Code
IDW-Soil-	Acetone	ND <120	<120	UJ	5
20180119	Tetrachloroethene	ND <5.0	<5.0	UJ	5

LCS/LCSDs were run at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One LCS/LCSD was reported with the soils data. The results for the LCS/LCSD pair were within the laboratory specified criteria for recovery and RPD with the following exceptions: the recovery for acetone and 1,1-dichloroethene were below the laboratory acceptance criteria. The associated sample results were qualified as follows:

Sample	Compound	Laboratory Result (µg/kg)	Validation Result (µg/kg)	Validation Qualifier	Reason Code
IDW-Soil-	Acetone	ND <120	<120	UJ	4
20180119	1,1-Dichloroethene	ND <5.0	<5.0	UJ	4

LCS/LCSDs were run at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One LCS/LCSD was reported with the water data. The results for

the LCS/LCSD pair were within the laboratory specified criteria for recovery and RPD with the following exceptions: the recovery for 2,2-dichloropropane and 1,1-dichloropropane were above the laboratory acceptance criteria. 2,2-Dichloropropane and 1,1-dicloropropane were not detected in the sample associated with this batch above the laboratory RL. No qualifications were applied as a result of the data validation process.

Metals (including mercury)

There were no reported QC issues associated with the metals analyses that impacted the reported results.

Total Petroleum Hydrocarbons

There were no reported QC issues associated with the metals analyses that impacted the reported results.

* * * * *

16644 West Bernardo Drive, Suite 301 San Diego, California 92127 PH 858.674.6559 FAX 858.674.6586 www.geosyntec.com

Memorandum

Date: 10 October 2018

To: Brian Rockwell/Lea Kane

From: Sherry Watts

Subject: Stage 1 Data Validation Summary

Work Orders: 18-09-0814 18-09-0815 18-09-0979 18-09-1119 18-09-1544 18-09-1545

ESTCP - Pendleton

INTRODUCTION

This report summarizes the findings of the Stage 1 data validation for the above listed work orders for soil, groundwater, industrial derived waste samples and associated quality control samples collected 12 through 19 September 2018 from the ESTCP – Pendleton site located in Oceanside, California (Site). Samples collected from the site were submitted to Eurofins/Calscience, Inc. of Garden Grove, California for laboratory analysis. The samples were submitted for one or more of the following analytical tests:

- Zinc by EPA Method 200.7 (aqueous)
- Sulfate by EPA Method 300.0 (aqueous)
- Metals by EPA Method 6010B/7470A (aqueous)
- Metals by EPA Method 6010B/7471A (solid)
- Total Petroleum Hydrocarbons by EPA 8015B(M) (solid/aqueous)
- Volatile Organic Compounds (VOCs) by EPA Method 8260B (solid/aqueous)
- Propene by RSK-175M (aqueous)

• 1,2,3-Trichloropropene by SRL 524M (aqueous)

EXECUTIVE SUMMARY

The samples were handled, prepared, and measured in the same manner under similar prescribed conditions as reported in the laboratory analytical. Data packages were reviewed for chain of custody (COC) discrepancies; adherence to sample holding times; evaluation of matrix spike/matrix spike duplicates (MS/MSD), laboratory control samples/laboratory control sample duplicates (LCS/LCSD), field duplicates; and assessment of equipment, field, trip, and method blanks.

The data were reviewed based on the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, January 2014 (USEPA-540-R-2017-002) and USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, January 2017 (USEPA-540-R-2017-001), as well as by the pertinent methods referenced by the data package and professional judgment.

Error corrections were observed on the COC forms. The proper procedure of a single strike through of the correction was utilized; however, in some instances the initial and/or date of correction was missing. This COC issue did not result in qualification of the data.

Overall, based on this Stage 1 data validation covering the quality control (QC) parameters, the data as qualified are usable for meeting project objectives. Qualified data should be used within the limitations of the qualification. Additional QC issues, other than those discussed in the following sections, were noted; however, these QC issues had no impact on the reported results and are therefore not discussed in further detail.

WORK ORDER 18-09-0814

1,2,3-Trichloropropene

An equipment blank was reported with the data. 1,2,3-Trichloropropane was not detected in the blank above the laboratory reporting limit (RL).

One field duplicate sample was collected with the groundwater samples. Acceptable precision (Relative Percent Difference (RPD <30%) was demonstrated between the field duplicate sample DUP and the original sample CP22-PMW04.

Propene

One field duplicate sample was collected with the groundwater samples. Acceptable precision (RPD <30%) was demonstrated between the field duplicate sample DUP and the original sample CP22-PMW04.

Sulfate

One field duplicate sample was collected with the groundwater samples. Acceptable precision (RPD <30%) was demonstrated between the field duplicate sample DUP and the original sample CP22-PMW04.

Zinc

One field duplicate sample was collected with the groundwater samples. Acceptable precision (RPD <30%) was demonstrated between the field duplicate sample DUP and the original sample CP22-PMW04.

WORK ORDER 18-09-0815

An incomplete sample identification on one container label was noted for CP22-P03-35-37. The laboratory was able to properly identify the sample by the date and time noted on the sample label.

The laboratory noted headspace in several sample containers on the Sample Anomaly Report included in the laboratory data package. The laboratory made an effort to use containers with no reported headspace when possible; however, in the following instances containers with headspace were utilized for analyses:

• CP22-HP02-35-37: Propene

• CP22-HP01-35-37: 1,2,3-Trichloropropene

• CP22-HP03-39-41: 1,2,3-Trichloropropene

No qualifiers were applied to the data as a result of the noted mislabeling and headspace; however, the discrepancies should be noted.

1,2,3-Trichloropropene

An equipment, field and trip blank were reported with the data. 1,2,3-Trichloropropane was not detected in any of the blanks above the laboratory RL.

One field duplicate sample was collected with the water samples. Acceptable precision (Relative Percent Difference (RPD <30%) was demonstrated between the field duplicate sample DUP-20180912 and the original sample CP22-HP01-31-33.

MS/MSDs were run at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two sample set specific MS/MSD pairs, using samples DUP-20180912 and CP22-HP01-39-41, were reported with the groundwater data. The results for the MS/MSD pairs were within the laboratory specified criteria for recovery and RPD with the following exceptions: the recovery for 1,2,3-trichloropropene was above the laboratory acceptance criteria. The associated sample result was qualified as follows:

Sample	Compound	Laboratory Result (µg/L)	Validation Result (µg/L)	Validation Qualifier*	Reason Code*
DUP-20180912	1,2,3- Trichloropropene	0.27	0.27	J	4
CP22-HP01-39- 41	1,2,3- Trichloropropene	0.28	0.28	J	4

^{*}Validation Qualifier and Reason Code defined in Attachment 1

Propene

One field duplicate sample was collected with the water samples. Acceptable precision (RPD <30%) was demonstrated between the field duplicate sample DUP-20180912 and the original sample CP22-HP01-31-33.

Zinc

MS/MSDs were run at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One sample set specific MS/MSD, using sample DUP-20180912, was reported with the groundwater data. The results for the MS/MSD pair were within the laboratory specified criteria for recovery and RPD with the following exceptions: the recovery for zinc was below the laboratory acceptance criteria. The associated sample result was qualified as follows:

Sample	Compound	Laboratory Result (mg/L)	Validation Result (mg/L)	Validation Qualifier	Reason Code
DUP-20180912	Zinc	ND <0.0100	< 0.0100	UJ	4

One field duplicate sample was collected with the groundwater samples. Acceptable precision (RPD <30%) was not demonstrated between the field duplicate sample DUP-20180912 and the original sample CP22-HP01-31-33. The associated sample results were qualified as follows:

Sample	Compound	RPD (%)	Laboratory Result (mg/L)	Validation Result (mg/L)	Validation Qualifier	Reason Code
CP22-HP01-31-33	7ino	Noncalculable	0.122	0.122	J	7
DUP-20180912	Zinc	>170%	ND <0.0100	< 0.0100	UJ	/

WORK ORDER 18-09-0979

1,2,3-Trichloropropene

An equipment, field and trip blank were reported with the data. 1,2,3-Trichloropropane was not detected in any of the blanks above the laboratory RL.

MS/MSDs were run at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One sample set specific MS/MSD pair, using sample CP22-HP06-35-37, was reported with the groundwater data. The results for the MS/MSD pair were within the laboratory specified criteria for recovery and RPD with the following exceptions: the recovery for 1,2,3-trichloropropene was above the laboratory acceptance criteria. The associated sample result was qualified as follows:

Sample	Compound	Laboratory Result (µg/L)	Validation Result (µg/L)	Validation Qualifier	Reason Code
CP22-HP06-35- 37	1,2,3- Trichloropropene	0.32	0.32	J	4

One field duplicate sample was collected with the water samples. Acceptable precision (RPD <30%) was demonstrated between the field duplicate sample DUP-20180912 and the original sample CP22-HP01-31-33.

Propene

One field duplicate sample was collected with the water samples. Acceptable precision (RPD <30%) was demonstrated between the field duplicate sample DUP20180913 and the original sample CP22-HP04-35-37.1

Zinc

One field duplicate sample was collected with the groundwater samples. Acceptable precision (RPD <30%) was demonstrated between the field duplicate sample DUP20180913 and the original sample CP22-HP04-35-37.

WORK ORDER 18-09-1119

The laboratory noted headspace in several sample containers on the Sample Anomaly Report included in the laboratory data package. The laboratory made an effort to use containers with no reported headspace when possible. No samples containers with headspace were utilized for sample analysis.

1,2,3-Trichloropropene

An equipment, trip, and field blank were reported with the data. 1,2,3-Trichloropropane was not detected in any of the blanks above the laboratory RL.

MS/MSDs were run at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two sample set specific MS/MSD pair, using sample CP22-HP11-35-37 and DUP02-20180914, were reported with the groundwater data. The results for the MS/MSD pair were within the laboratory specified criteria for recovery and RPD with the following exceptions: the recovery for 1,2,3-trichloropropene was above the laboratory acceptance criteria. The associated sample result was qualified as follows:

 $^{^{1}}$ The RPD for field duplicate pair CP22-HP04-35-37/DUP-20180913 could not be calculated because propene was not detected in one of the sample pairs. The RPD is anticipated to be approximately 25% based on the laboratory reporting limit for propene (1.00 μ g/L) and the detected value (1.29 μ g/L).

Sample	Compound	Laboratory Result (µg/L)	Validation Result (µg/L)	Validation Qualifier	Reason Code
CP22-HP11-35-37	1,2,3-	0.27	0.27	J	4
DUP02-20180914	Trichloropropene	0.55	0.55	J	4

Two field duplicate samples were collected with the groundwater samples. Acceptable precision (RPD <30%) was demonstrated between the field duplicate samples DUP01-20180914 and DUP02-20180914 and the original samples CP22-HP08-39-41 and CP22-HP08-35-37, respectively.

Propene

Two field duplicate samples were collected with the groundwater samples. Acceptable precision (RPD <30%) was demonstrated between the field duplicate samples DUP01-20180914 and DUP02-20180914 and the original samples CP22-HP08-39-41 and CP22-HP08-35-37, respectively.

Zinc

Two field duplicate samples were collected with the groundwater samples. Acceptable precision (RPD <30%) was demonstrated between the field duplicate samples DUP01-20180914 and DUP02-20180914 and the original samples CP22-HP08-39-41 and CP22-HP08-35-37, respectively.

WORK ORDER 18-09-1944

VOCs

LCS/LCSDs were run at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One LCS/LCSD pair was reported with the soil data. The results for the LCS/LCSD pairs were within the laboratory specified criteria for recovery and RPD with the following exceptions: the recovery for dichlorodifluoromethane was below the laboratory acceptance criteria. The associated sample result was qualified as follows:

Sample	Compound	Laboratory Result (µg/kg)	Validation Result (µg/kg)	Validation Qualifier	Reason Code
IDW-SOIL-20180919	Dichlorodifluoromethane	ND <5.0	< 5.0	UJ	5

Metals (including mercury)

There were no reported QC issues associated with the metals analyses that impacted the reported results.

Total Petroleum Hydrocarbons

There were no reported QC issues associated with the metals analyses that impacted the reported results.

WORK ORDER 18-09-1945

The Sample Anomaly sheet indicated water in 14 samples. The presence of water was a result of the actual sample matrix and not due to storage or transportation issues.

Zinc

MS/MSDs were run at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One sample set specific MS/MSD pair, using sample IP08W-1'-40, was reported with the soil data. The results for the MS/MSD pair were within the laboratory specified criteria for recovery and RPD with the following exceptions: the recovery for zinc was above the laboratory acceptance criteria. The associated sample result was qualified as follows:

Sample	Compound	Laboratory Result (mg/kg)	Validation Result (mg/kg)	Validation Qualifier	Reason Code
IP08W-1"-40	Zinc	67.3	67.3	J	4

* * * * *

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY

Assigned by Geosyntec's Data Validation Team

- B Analyte detected in the method blank
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS recovery outside limits and RPD outside limits (LCS/LCSD)
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other

RPD-relative percent difference