Difference between revisions of "User:Jhurley/sandbox"

From Enviro Wiki
Jump to: navigation, search
(Pyrogenic Carbonaceous Matter (PCM) Enhanced Alkaline Hydrolysis)
(State of the Practice)
 
(320 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Pyrogenic Carbonaceous Matter (PCM) Enhanced Alkaline Hydrolysis==  
+
==PFAS Destruction by Ultraviolet/Sulfite Treatment==  
High concentrations of [[Munitions Constituents | munitions constituents (MC)]] residues, including legacy and [[Wikipedia: Insensitive munition#Insensitive high explosives | insensitive high explosives (IHE)]], are commonly found in soil at Department of Defense (DoD) testing and training ranges, posing a significant risk to personnel and the environment. Many IHE are highly water soluble and can easily migrate from soil to groundwater and surface waters at DoD ranges. Therefore, there is a pressing need to maximize the sorption of legacy explosives and IHE, minimize their transport from DoD sites, and promote their decay whenever possible. The following article reports on a combined experimental and computational strategy to design and optimize pyrogenic carbonaceous matter (PCM, e.g., biochar and activated carbon) in ways that facilitate the retention and/or hydrolysis of legacy explosives and IHE that are of concern at DoD sites. enviro-wiki.mtr.tsa.mybluehost.me,  www.enviro-wiki.mtr.tsa.mybluehost.me
+
The ultraviolet (UV)/sulfite based reductive defluorination process has emerged as an effective and practical option for generating hydrated electrons (''e<sub><small>aq</small></sub><sup><big>'''-'''</big></sup>'' ) which can destroy [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) | PFAS]] in water. It offers significant advantages for PFAS destruction, including significant defluorination, high treatment efficiency for long-, short-, and ultra-short chain PFAS without mass transfer limitations, selective reactivity by hydrated electrons, low energy consumption, low capital and operation costs, and no production of harmful byproducts. A UV/sulfite treatment system designed and developed by Haley and Aldrich (EradiFluor<sup><small>TM</small></sup><ref name="EradiFluor">Haley and Aldrich, Inc. (commercial business), 2024. EradiFluor. [https://www.haleyaldrich.com/about-us/applied-research-program/eradifluor/ Comercial Website]</ref>) has been demonstrated in two field demonstrations in which it achieved near-complete defluorination and greater than 99% destruction of 40 PFAS analytes measured by EPA method 1633.
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
 
'''Related Article(s):'''
 
'''Related Article(s):'''
  
*[[Munitions Constituents]]
+
*[[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]]
*[[Munitions Constituents - Alkaline Degradation]]
+
*[[PFAS Ex Situ Water Treatment]]
 +
*[[PFAS Sources]]
 +
*[[PFAS Treatment by Electrical Discharge Plasma]]
 +
*[[Supercritical Water Oxidation (SCWO)]]
 +
*[[Photoactivated Reductive Defluorination - PFAS Destruction]]
  
'''Contributors:''' Dr. Wenqing Xu
+
'''Contributors:''' John Xiong, Yida Fang, Raul Tenorio, Isobel Li, and Jinyong Liu
  
'''Key Resource(s):'''
+
'''Key Resources:'''
 
+
*Defluorination of Per- and Polyfluoroalkyl Substances (PFAS) with Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and Management<ref name="BentelEtAl2019">Bentel, M.J., Yu, Y., Xu, L., Li, Z., Wong, B.M., Men, Y., Liu, J., 2019. Defluorination of Per- and Polyfluoroalkyl Substances (PFASs) with Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and Management. Environmental Science and Technology, 53(7), pp. 3718-28. [https://doi.org/10.1021/acs.est.8b06648 doi: 10.1021/acs.est.8b06648]&nbsp; [[Media: BentelEtAl2019.pdf | Open Access Article]]</ref>
*Experimental and Computational Study of Pyrogenic Carbonaceous Matter Facilitated Hydrolysis of 2, 4-Dinitroanisole (DNAN)<ref name="SeenthiaEtAl2024">Seenthia, N.I., Bylaska, E.J., Pignatello, J.J., Tratnyek, P.G., Beal, S.A., Xu, W., 2024. Experimental and Computational Study of Pyrogenic Carbonaceous Matter Facilitated Hydrolysis of 2, 4-Dinitroanisole (DNAN). Environmental Science and Technology, 58(21), pp. 9404–9415. [https://doi.org/10.1021/acs.est.4c01069 doi: 10.1021/acs.est.4c01069]&nbsp; [[Media: SeenthiaEtAl2024.pdf | Open Access pdf]]</ref>
+
*Accelerated Degradation of Perfluorosulfonates and Perfluorocarboxylates by UV/Sulfite + Iodide: Reaction Mechanisms and System Efficiencies<ref>Liu, Z., Chen, Z., Gao, J., Yu, Y., Men, Y., Gu, C., Liu, J., 2022. Accelerated Degradation of Perfluorosulfonates and Perfluorocarboxylates by UV/Sulfite + Iodide: Reaction Mechanisms and System Efficiencies. Environmental Science and Technology, 56(6), pp. 3699-3709. [https://doi.org/10.1021/acs.est.1c07608 doi: 10.1021/acs.est.1c07608]&nbsp; [[Media: LiuZEtAl2022.pdf | Open Access Article]]</ref>
 +
*Destruction of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous Film-Forming Foam (AFFF) with UV-Sulfite Photoreductive Treatment<ref>Tenorio, R., Liu, J., Xiao, X., Maizel, A., Higgins, C.P., Schaefer, C.E., Strathmann, T.J., 2020. Destruction of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) with UV-Sulfite Photoreductive Treatment. Environmental Science and Technology, 54(11), pp. 6957-67. [https://doi.org/10.1021/acs.est.0c00961 doi: 10.1021/acs.est.0c00961]</ref>
 +
*EradiFluor<sup>TM</sup><ref name="EradiFluor"/>
  
 
==Introduction==
 
==Introduction==
Historically, pyrogenic carbonaceous matter (PCM) has been used to remove contaminants from the aqueous phase by adsorption and/or complexation, but it was not believed to facilitate their degradation. A recent [https://serdp-estcp.mil/ Strategic Environmental Research and Development Program (SERDP)] project ([https://serdp-estcp.mil/projects/details/047de8e1-0202-40ba-8bf6-cbd89bcc5b46 ER19-1239]) developed evidence that PCM not only adsorbs but also catalyzes the hydrolysis of some munition constituents, thus potentially reducing the need for regeneration or replacement of the adsorbent material and thereby reducing costs associated with management of these contaminants. This project found that PCM can facilitate MC degradation on carbon surfaces and thus free up adsorption sites, allowing PCM to remove a significantly greater mass of some MCs than would be possible by adsorption alone. Any MCs such as [[Wikipedia: Nitrotriazolone | 3-Nitro-1,2,4-triazol-5-one (NTO)]] that are not susceptible to alkaline hydrolysis can be safely sequestered within the carbon amendment, decreasing their bioavailability to the surrounding environment. Furthermore, the tested technology boosts alkaline hydrolysis at near-neutral pH conditions rather than high pH conditions required by current methods (i.e., lime treatment). Bench studies using soils collected from Department of Defense ranges demonstrated enhanced adsorption affinity (over three orders of magnitude) for highly mobile IHEs such as NTO because the PCM amendments maintained their reactivity over consecutive additions of IHE formulations. The findings suggest that PCM has the potential to be developed and deployed as a reactive amendment for environmental remediation of MCs. Future efforts are needed to demonstrate these materials at full scale in the field.
+
The hydrated electron (''e<sub><small>aq</small></sub><sup><big>'''-'''</big></sup>'' ) can be described as an electron in solution surrounded by a small number of water molecules<ref name="BuxtonEtAl1988">Buxton, G.V., Greenstock, C.L., Phillips Helman, W., Ross, A.B., 1988. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (⋅OH/⋅O-) in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(2), pp. 513-886. [https://doi.org/10.1063/1.555805 doi: 10.1063/1.555805]</ref>. Hydrated electrons can be produced by photoirradiation of solutes, including sulfite, iodide, dithionite, and ferrocyanide, and have been reported in literature to effectively decompose per- and polyfluoroalkyl substances (PFAS) in water. The hydrated electron is one of the most reactive reducing species, with a standard reduction potential of about −2.9 volts. Though short-lived, hydrated electrons react rapidly with many species having more positive reduction potentials<ref name="BuxtonEtAl1988"/>.  
 
 
Using a combined experimental and computational modeling approach, the structural features of MCs and PCM that are critical for PCM-facilitated hydrolysis were identified. Employing a polymer synthesis approach, the contribution of various functional groups and pore structures in promoting MC hydrolysis were delineated. The findings of this investigation have broad implications for reactive adsorbent design and remediation. For instance, the formation of [[Wikipedia: Sigma complex | σ complexes]] between -NH2 surface functional groups and nitroaromatics suggests that PCM rich in -NH2 functional groups could be easily poisoned due to the irreversible binding of [[Wikipedia: TNT | TNT]] or [[Wikipedia: 2,4-Dinitroanisole | DNAN]]. By contrast, [[Wikipedia: Quaternary ammonium cation | quaternary ammonium (QA)]] functional groups could accumulate TNT, DNAN and [[Wikipedia: Hydroxide | hydroxide (OH-)]] in the same spatial region, potentially enabling hydrolysis of the MCs. Therefore, efforts can be focused on populating specific functional groups on carbon amendments for groundwater and soil remediation. For example, increasing the abundance of QA groups while decreasing the presence of -NH2 and -OH can reduce the need for PCM regeneration. This is because contaminants will be destroyed on PCM surfaces rather than filling up adsorption sites. Besides functional groups, the pore structures of adsorbents could also be adjusted to favor hydrolysis and specific pathways (see Figure 3).
 
 
 
A novel adsorption mechanism known as charge-assisted hydrogen bond (CAHB) formation was proposed to account for the exceptionally high affinity of PCM for for MCs that do not undergo hydrolysis, such as NTO. The findings contradicted the conventional wisdom that polar organic anions (e.g., NTO) have little affinity for or are even repelled by hydrophobic carbonaceous sorbents. The results call attention to the need for new models or modification of existing models for the sorption of ionizable compounds in order to consider CAHB formation with sorbents. The findings also have potentially important implications for the use of carbons in environmental remediation more generally, particularly for strategies that enhance the retention of anionic contaminants that are otherwise highly mobile, such as nitrite, nitrate, phosphate, or some [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) | per- and polyfluoroalkyl substances (PFAS)]].
 
 
 
==Feasibility of PCM-facilitated Hydrolysis of MCs==
 
[[File:XuFig1.png|thumb|400px|Figure 1. Proposed reaction mechanism for PCM-facilitated DNAN hydrolysis and associated transformation products<ref name="SeenthiaEtAl2024"/>]]
 
Results of this study suggest that hydrolysis of 2,4,6-trinitrotoluene (TNT), 2,4-dinitroanisole (DNAN), and [[Wikipedia: Nitroguanidine | nitroguanidine (NQ)]], can be enhanced by the presence of various PCMs. The transformation of TNT by graphite powder, a model PCM, exhibited first-order decay kinetics, with an observed rate constant (''k<sub>obs</sub>'') of 0.258 ± 0.010 day<sup>-1</sup> and a calculated half-life (''t<sub>1/2</sub>'') of 2.70 ± 0.10 days<ref name="Ding">Ding, K., Byrnes, C., Bridge, J., Grannas, A., Xu, W., 2018. Surface-promoted hydrolysis of 2,4,6-trinitrotoluene and 2,4-dinitroanisole on pyrogenic carbonaceous matter. Chemosphere, 197, pp. 603-610. [https://doi.org/10.1016/j.chemosphere.2018.01.038 doi: 10.1016/j.chemosphere.2018.01.038]</ref>. Slower degradation was observed for DNAN under the same conditions. Increasing the pH and the temperature enhanced the degradation kinetics of DNAN<ref name="SeenthiaEtAl2024"/>. More importantly, results suggest that PCM accelerated DNAN decay by lowering the activation energy of DNAN hydrolysis by 54.3 ± 3.9%. NQ is a monoprotic acid in water with a reported ''pK<sub>a</sub>'' value of 12.8. NQ undergoes significant base hydrolysis at pH values as low as 11.5. This study showed that PCM pre-equilibrated with NQ initially accelerated NQ hydrolysis at three pH conditions (pH 11.0, 11.5, and 12.5) compared to the aqueous reaction. However, after a few hours, hydrolysis in the presence of PCM slowed down, whereas aqueous hydrolysis continued apace, indicating that the physical and chemical properties of PCMs play critical roles in controlling the hydrolysis of MCs.
 
 
 
==State of the Art==
 
[[File:PinkardFig4.png | thumb |400px| Figure 4: HALT field demonstration at Fairbanks International Airport (FAI) in August 2023]]
 
Recently, several field demonstrations of pilot-scale HALT systems were performed by commercial HALT provider Aquagga, Inc. These have focused on treating PFAS-rich liquids, including industrial wastewater at a 3M Company facility (April 2024)<ref name="PinkardEtAl2024b">Pinkard, B.R., Smith, S.M., Bryan, C., 2024. PFAS Degradation and Defluorination of High TDS Wastewater via Continuous Hydrothermal Alkaline Treatment (HALT). In: (Proceedings of the) 85th Annual International Water Conference (IWC 2024), Volume 1, pp. 359-374. Engineers Society of Western Pennsylvania. ISBN: 979-8-3313-1299-2</ref>, foam fractionate from a fire training pit in Fairbanks, AK (August 2023), foam fractionate from groundwater at Beale Air Force Base, CA (May 2024), and AFFF (May 2024). For all field demonstrations, a containerized HALT system was mobilized to the site and operated for up to several weeks. The systems were typically operated at a throughput between 5 and 10 gallons per hour (gph). Since 2019, HALT has progressed from small-scale batch reactors to successful field demonstration of pilot-scale systems. This technology maturation attests to strong technical and regulatory tailwinds. Effort is still needed to demonstrate the technology at full scale and in complex treatment scenarios. Long-term operation of the systems will allow for further optimization of the systems and provide data on the applicability of HALT for the treatment of industrial and environmental PFAS-contaminated waste streams.
 
 
 
Pilot-scale HALT systems are typically continuous flow tubular reactor systems, consisting of a single high-temperature, high-pressure fluid path. In commercial HALT systems offered by Aquagga, Inc., chemical dosing for pH adjustment is achieved via an automated chemical dosing and mixing system. The high pH feedstock is then introduced to the high-pressure reactor via a high-pressure metering pump. Pressure is controlled via a back-pressure device downstream of the high-temperature reactor zone. The pressurized reactants are brought to reaction temperatures via a recuperative heat exchanger followed by electric resistive heaters. The reactor vessel contains the reactants at the necessary temperature and pressure and for a sufficient residence time to facilitate the destruction reactions. The product stream is then cooled through a recuperative heat exchanger, before being throttled to ambient pressure through the back-pressure device. Pressure transducers, flow meters, and thermocouples are used to monitor the reactor operations at various points in the system. All reactor components are typically housed within a shipping container, for ease of system transport and to provide secondary chemical containment.
 
 
 
==Practical Applications==
 
[[File:PinkardFig5.png | thumb |400px| Figure 5: An on-site HALT pilot demonstration at a 3M Company wastewater treatment facility]]
 
The ideal use case for HALT is treating PFAS-rich liquid matrices. PFAS concentrations are high enough for HALT to be directly applicable primarily in the cases of AFFF treatment or industrial process water treatment. In the majority of use cases, it is more practical to apply a separation and concentration technology prior to HALT, to reduce the volume of liquid requiring HALT treatment while increasing PFAS concentrations in that liquid. These concentration technologies may include regenerable sorbents, membranes, or foam fractionation, all of which produce a liquid byproduct amenable for HALT.
 
 
 
===Destruction of PFAS in Ion Exchange Regeneration Brine===
 
One of the most promising applications of HALT is for treating PFAS-rich ion exchange (IX) regeneration brines, either in site remediation applications (e.g., groundwater treatment<ref name="Pinkard2024">Pinkard, B.R., 2024. Hydrothermal Alkaline Treatment for a Closed-Loop, On-Site PFAS Treatment Solution. Project Number ER23-8400, Environmental Security Technology Certification Program (ESTCP).&nbsp; [https://serdp-estcp.mil/projects/details/a4c6918a-fe3b-43d2-95cb-fa3dfa3a50a2 Project Website]</ref>) or industrial wastewater treatment applications<ref name="PinkardEtAl2024a"/>. IX capture and regeneration involve sorbing PFAS to an IX resin, followed by chemical desorption of PFAS from the resin, typically with a solvent and/or salt wash solution. The IX regeneration technology is commercially mature and available from several vendors.
 
 
 
A treatment train of IX followed by HALT shows promise for several reasons. One reason is that the HALT process is highly compatible with the liquid matrix produced through the IX regeneration. Typically, IX regeneration brine (a.k.a. “still bottoms”) contains high levels of dissolved solids such as sodium chloride, which can cause practical processing challenges with other liquid treatment technologies. However, high levels of TDS do not appear to cause processing challenges with HALT<ref name="PinkardEtAl2024a"/>. Another reason is that IX regeneration brines often contain ultra short- and short-chain PFAS, which are amenable to destructive treatment with HALT.
 
  
In 2022, commercial HALT provider Aquagga performed a bench study in partnership with the 3M Company, demonstrating PFAS destruction performance for HALT processing of a synthetic IX regeneration brine<ref name="PinkardEtAl2024a"/>. Seven treatment conditions were tested, and fluorine mass balance closure was demonstrated for most conditions using a range of analytical techniques. In 2024, Aquagga performed an on-site demonstration in partnership with the 3M Company treating IX regeneration brine produced from active wastewater treatment activities<ref name="PinkardEtAl2024b"/>.
+
Among the electron source chemicals, sulfite (SO<sub>3</sub><sup>2−</sup>) has emerged as one of the most effective and practical options for generating hydrated electrons to destroy PFAS in water. The mechanism of hydrated electron production in a sulfite solution under ultraviolet is shown in Equation 1 (UV is denoted as ''hv, SO<sub>3</sub><sup><big>'''•-'''</big></sup>'' is the sulfur trioxide radical anion):
 +
</br>
 +
::<big>'''Equation 1:'''</big>&nbsp;&nbsp; [[File: XiongEq1.png | 200 px]]
  
===Foam Fractionate Treatment===
+
The hydrated electron has demonstrated excellent performance in destroying PFAS such as [[Wikipedia:Perfluorooctanesulfonic acid | perfluorooctanesulfonic acid (PFOS)]], [[Wikipedia:Perfluorooctanoic acid|perfluorooctanoic acid (PFOA)]]<ref>Gu, Y., Liu, T., Wang, H., Han, H., Dong, W., 2017. Hydrated Electron Based Decomposition of Perfluorooctane Sulfonate (PFOS) in the VUV/Sulfite System. Science of The Total Environment, 607-608, pp. 541-48. [https://doi.org/10.1016/j.scitotenv.2017.06.197 doi: 10.1016/j.scitotenv.2017.06.197]</ref> and [[Wikipedia: GenX|GenX]]<ref>Bao, Y., Deng, S., Jiang, X., Qu, Y., He, Y., Liu, L., Chai, Q., Mumtaz, M., Huang, J., Cagnetta, G., Yu, G., 2018. Degradation of PFOA Substitute: GenX (HFPO–DA Ammonium Salt): Oxidation with UV/Persulfate or Reduction with UV/Sulfite? Environmental Science and Technology, 52(20), pp. 11728-34. [https://doi.org/10.1021/acs.est.8b02172 doi: 10.1021/acs.est.8b02172]</ref>. Mechanisms include cleaving carbon-to-fluorine (C-F) bonds (i.e., hydrogen/fluorine atom exchange) and chain shortening (i.e., [[Wikipedia: Decarboxylation | decarboxylation]], [[Wikipedia: Hydroxylation | hydroxylation]], [[Wikipedia: Elimination reaction | elimination]], and [[Wikipedia: Hydrolysis | hydrolysis]])<ref name="BentelEtAl2019"/>.
Foam fractionation is a technology that concentrates PFAS in liquids by taking advantage of the hydrophobic/interface-partitioning behavior exhibited by many types of PFAS. Foam fractionation is seeing broad adoption for challenging liquid matrices such as landfill leachate and groundwater. Long-chain PFAS are known to partition to interfaces much more readily than short-chain PFAS, and foam fractionation is correspondingly much more effective at removing long-chain PFAS from liquids. When coupled with HALT, foam fractionation can remove and destroy a high fraction of PFAS from challenging liquid matrices<ref name="HaoEtAl2023"/>.
 
  
===Destruction of PFAS in AFFF===
+
==Process Description==
Legacy AFFF contains high levels of PFAS (typically 0.1 to 6 wt%) in a liquid matrix. Several studies at lab and pilot scales have demonstrated that HALT can destroy PFAS in AFFF with minimal dilution<ref name="HaoEtAl2021"/>. While the treatment is effective, the wide variety of AFFF formulations make this a challenging application.
+
A commercial UV/sulfite treatment system designed and developed by Haley and Aldrich (EradiFluor<sup><small>TM</small></sup><ref name="EradiFluor"/>) includes an optional pre-oxidation step to transform PFAS precursors (when present) and a main treatment step to break C-F bonds by UV/sulfite reduction. The effluent from the treatment process can be sent back to the influent of a pre-treatment separation system (such as a [[Wikipedia: Foam fractionation | foam fractionation]], [[PFAS Treatment by Anion Exchange | regenerable ion exchange]], or a [[Reverse Osmosis and Nanofiltration Membrane Filtration Systems for PFAS Removal | membrane filtration system]]) for further concentration or sent for off-site disposal in accordance with relevant disposal regulations. A conceptual treatment process diagram is shown in Figure 1. [[File: XiongFig1.png | thumb | left | 600 px | Figure 1: Conceptual Treatment Process for a Concentrated PFAS Stream]]<br clear="left"/>
  
==Advantages and Drawbacks==
+
==Advantages==
===Advantages of HALT include:===
+
A UV/sulfite treatment system offers significant advantages for PFAS destruction compared to other technologies, including high defluorination percentage, high treatment efficiency for short-chain PFAS without mass transfer limitation, selective reactivity by ''e<sub><small>aq</small></sub><sup><big>'''-'''</big></sup>'', low energy consumption, and the production of no harmful byproducts. A summary of these advantages is provided below:
*Ability to achieve >99% destruction of all PFAS chain lengths and subtypes
+
*'''High efficiency for short- and ultrashort-chain PFAS:''' While the degradation efficiency for short-chain PFAS is challenging for some treatment technologies<ref>Singh, R.K., Brown, E., Mededovic Thagard, S., Holson, T.M., 2021. Treatment of PFAS-containing landfill leachate using an enhanced contact plasma reactor. Journal of Hazardous Materials, 408, Article 124452. [https://doi.org/10.1016/j.jhazmat.2020.124452 doi: 10.1016/j.jhazmat.2020.124452]</ref><ref>Singh, R.K., Multari, N., Nau-Hix, C., Woodard, S., Nickelsen, M., Mededovic Thagard, S., Holson, T.M., 2020. Removal of Poly- and Per-Fluorinated Compounds from Ion Exchange Regenerant Still Bottom Samples in a Plasma Reactor. Environmental Science and Technology, 54(21), pp. 13973-80. [https://doi.org/10.1021/acs.est.0c02158 doi: 10.1021/acs.est.0c02158]</ref><ref>Nau-Hix, C., Multari, N., Singh, R.K., Richardson, S., Kulkarni, P., Anderson, R.H., Holsen, T.M., Mededovic Thagard S., 2021. Field Demonstration of a Pilot-Scale Plasma Reactor for the Rapid Removal of Poly- and Perfluoroalkyl Substances in Groundwater. American Chemical Society’s Environmental Science and Technology (ES&T) Water, 1(3), pp. 680-87. [https://doi.org/10.1021/acsestwater.0c00170 doi: 10.1021/acsestwater.0c00170]</ref>, the UV/sulfite process demonstrates excellent defluorination efficiency for both short- and ultrashort-chain PFAS, including [[Wikipedia: Trifluoroacetic acid | trifluoroacetic acid (TFA)]] and [[Wikipedia: Perfluoropropionic acid | perfluoropropionic acid (PFPrA)]]. 
*Ability to fully mineralize or defluorinate PFAS to dissolved inorganic fluoride as an end product
+
*'''High defluorination ratio:''' As shown in Figure 3, the UV/sulfite treatment system has demonstrated near 100% defluorination for various PFAS under both laboratory and field conditions.
*Commercial systems are compact and simple to operate
+
*'''No harmful byproducts:''' While some oxidative technologies, such as electrochemical oxidation, generate toxic byproducts, including perchlorate, bromate, and chlorate, the UV/sulfite system employs a reductive mechanism and does not generate these byproducts.
*Commercial systems do not have an air emission point
+
*'''Ambient pressure and low temperature:''' The system operates under ambient pressure and low temperature (<60°C), as it utilizes UV light and common chemicals to degrade PFAS. 
*Ability to treat wastes with high TDS
+
*'''Low energy consumption:''' The electrical energy per order values for the degradation of [[Wikipedia: Perfluoroalkyl carboxylic acids | perfluorocarboxylic acids (PFCAs)]] by UV/sulfite have been reduced to less than 1.5 kilowatt-hours (kWh) per cubic meter under laboratory conditions. The energy consumption is orders of magnitude lower than that for many other destructive PFAS treatment technologies (e.g., [[Supercritical Water Oxidation (SCWO) | supercritical water oxidation]])<ref>Nzeribe, B.N., Crimi, M., Mededovic Thagard, S., Holsen, T.M., 2019. Physico-Chemical Processes for the Treatment of Per- And Polyfluoroalkyl Substances (PFAS): A Review. Critical Reviews in Environmental Science and Technology, 49(10), pp. 866-915. [https://doi.org/10.1080/10643389.2018.1542916 doi: 10.1080/10643389.2018.1542916]</ref>.
*Ability to treat wastes with high TOC
+
*'''Co-contaminant destruction:''' The UV/sulfite system has also been reported effective in destroying certain co-contaminants in wastewater. For example, UV/sulfite is reported to be effective in reductive dechlorination of chlorinated volatile organic compounds, such as trichloroethene, 1,2-dichloroethane, and vinyl chloride<ref>Jung, B., Farzaneh, H., Khodary, A., Abdel-Wahab, A., 2015. Photochemical degradation of trichloroethylene by sulfite-mediated UV irradiation. Journal of Environmental Chemical Engineering, 3(3), pp. 2194-2202. [https://doi.org/10.1016/j.jece.2015.07.026 doi: 10.1016/j.jece.2015.07.026]</ref><ref>Liu, X., Yoon, S., Batchelor, B., Abdel-Wahab, A., 2013. Photochemical degradation of vinyl chloride with an Advanced Reduction Process (ARP) – Effects of reagents and pH. Chemical Engineering Journal, 215-216, pp. 868-875. [https://doi.org/10.1016/j.cej.2012.11.086 doi: 10.1016/j.cej.2012.11.086]</ref><ref>Li, X., Ma, J., Liu, G., Fang, J., Yue, S., Guan, Y., Chen, L., Liu, X., 2012. Efficient Reductive Dechlorination of Monochloroacetic Acid by Sulfite/UV Process. Environmental Science and Technology, 46(13), pp. 7342-49. [https://doi.org/10.1021/es3008535 doi: 10.1021/es3008535]</ref><ref>Li, X., Fang, J., Liu, G., Zhang, S., Pan, B., Ma, J., 2014. Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process. Water Research, 62, pp. 220-228. [https://doi.org/10.1016/j.watres.2014.05.051 doi: 10.1016/j.watres.2014.05.051]</ref>.
*Low overall energy usage (<0.9 kWh/gal-treated)
 
  
===Drawbacks or challenges associated with HALT include:===
+
==Limitations==
*Not well-suited for directly processing solid materials or slurries
+
Several environmental factors and potential issues have been identified that may impact the performance of the UV/sulfite treatment system, as listed below. Solutions to address these issues are also proposed.
*Treated effluent brine contains high TDS and must be managed accordingly
+
*Environmental factors, such as the presence of elevated concentrations of natural organic matter (NOM), dissolved oxygen, or nitrate, can inhibit the efficacy of UV/sulfite treatment systems by scavenging available hydrated electrons. Those interferences are commonly managed through chemical additions, reaction optimization, and/or dilution, and are therefore not considered likely to hinder treatment success.
*Hard minerals (e.g., Ca<sup>2+</sup>) may precipitate and require periodic cleaning
+
*Coloration in waste streams may also impact the effectiveness of the UV/sulfite treatment system by blocking the transmission of UV light, thus reducing the UV lamp's effective path length. To address this, pre-treatment may be necessary to enable UV/sulfite destruction of PFAS in the waste stream. Pre-treatment may include the use of strong oxidants or coagulants to consume or remove UV-absorbing constituents.
 +
*The degradation efficiency is strongly influenced by PFAS molecular structure, with fluorotelomer sulfonates (FTS) and [[Wikipedia: Perfluorobutanesulfonic acid | perfluorobutanesulfonate (PFBS)]] exhibiting greater resistance to degradation by UV/sulfite treatment compared to other PFAS compounds.
  
===Safety considerations related to HALT include:===
+
==State of the Practice==
*The use of strong bases and conjugate acids require safe chemical handling practices external to the HALT system and appropriate operator precautions
+
[[File: XiongFig2.png | thumb | 500 px | Figure 2. Field demonstration of EradiFluor<sup><small>TM</small></sup><ref name="EradiFluor"/> for PFAS destruction in a concentrated waste stream in a Mid-Atlantic Naval Air Station: a) Target PFAS at each step of the treatment shows that about 99% of PFAS were destroyed; meanwhile, the final degradation product, i.e., fluoride, increased to 15 mg/L in concentration, demonstrating effective PFAS destruction; b) AOF concentrations at each step of the treatment provided additional evidence to show near-complete mineralization of PFAS. Average results from multiple batches of treatment are shown here.]]
*High-pressure, high-temperature, and high-pH operating conditions are harsh and corrosive on processing equipment, and appropriate material selection, metallurgy, and corrosion control methods must be applied to ensure reactor vessel reliability
+
[[File: XiongFig3.png | thumb | 500 px | Figure 3. Field demonstration of a treatment train (SAFF + EradiFluor<sup><small>TM</small></sup><ref name="EradiFluor"/>) for groundwater PFAS separation and destruction at an Air Force base in California: a) Two main components of the treatment train, i.e. SAFF and EradiFluor<sup><small>TM</small></sup><ref name="EradiFluor"/>; b) Results showed the effective destruction of various PFAS in the foam fractionate. The target PFAS at each step of the treatment shows that about 99.9% of PFAS were destroyed. Meanwhile, the final degradation product, i.e., fluoride, increased to 30 mg/L in concentration, demonstrating effective destruction of PFAS in a foam fractionate concentrate. After a polishing treatment step (GAC) via the onsite groundwater extraction and treatment system, all PFAS were removed to concentrations below their MCLs.]] 
 +
The effectiveness of UV/sulfite technology for treating PFAS has been evaluated in two field demonstrations using the EradiFluor<sup><small>TM</small></sup><ref name="EradiFluor"/> system. Aqueous samples collected from the system were analyzed using EPA Method 1633, the [[Wikipedia: TOP Assay | total oxidizable precursor (TOP) assay]], adsorbable organic fluorine (AOF) method, and non-target analysis. A summary of each demonstration and their corresponding PFAS treatment efficiency is provided below.
 +
*Under the [https://serdp-estcp.mil/ Environmental Security Technology Certification Program (ESTCP)] [https://serdp-estcp.mil/projects/details/4c073623-e73e-4f07-a36d-e35c7acc75b6/er21-5152-project-overview Project ER21-5152], a field demonstration of EradiFluor<sup><small>TM</small></sup><ref name="EradiFluor"/> was conducted at a Navy site on the east coast, and results showed that the technology was highly effective in destroying various PFAS in a liquid concentrate produced from an ''in situ'' foam fractionation groundwater treatment system. As shown in Figure 2a, total PFAS concentrations were reduced from 17,366 micrograms per liter (µg/L) to 195 µg/L at the end of the UV/sulfite reaction, representing 99% destruction. After the ion exchange resin polishing step, all residual PFAS had been removed to the non-detect level, except one compound (PFOS) reported as 1.5 nanograms per liter (ng/L), which is below the current Maximum Contaminant Level (MCL) of 4 ng/L. Meanwhile, the fluoride concentration increased up to 15 milligrams per liter (mg/L), confirming near complete defluorination. Figure 2b shows the adsorbable organic fluorine results from the same treatment test, which similarly demonstrates destruction of 99% of PFAS.
 +
*Another field demonstration was completed at an Air Force base in California, where a treatment train combining [https://serdp-estcp.mil/projects/details/263f9b50-8665-4ecc-81bd-d96b74445ca2 Surface Active Foam Fractionation (SAFF)] and EradiFluor<sup><small>TM</small></sup><ref name="EradiFluor"/> was used to treat PFAS in groundwater. As shown in Figure 3, PFAS analytical data and fluoride results demonstrated near-complete destruction of various PFAS. In addition, this demonstration showed: a) high PFAS destruction ratio was achieved in the foam fractionate, even in very high concentration (up to 1,700 mg/L of booster), and b) the effluent from EradiFluor<sup><small>TM</small></sup><ref name="EradiFluor"/> was sent back to the influent of the SAFF system for further concentration and treatment, resulting in a closed-loop treatment system and no waste discharge from EradiFluor<sup><small>TM</small></sup><ref name="EradiFluor"/>. This field demonstration was conducted with the approval of three regulatory agencies (United States Environmental Protection Agency, California Regional Water Quality Control Board, and California Department of Toxic Substances Control).
  
 
==References==
 
==References==
Line 71: Line 58:
  
 
==See Also==
 
==See Also==
*[https://www.aquagga.com/ourtech Aquagga (company) website]
 
*[https://strathmanngroup.com/research/ Strathmann Research Group]
 
*[https://www.youtube.com/watch?v=UANEiMIDcZM&t=2696s SERDP Webinar Series: PFAS Fate, Transport and Treatment]
 
*[https://www.youtube.com/watch?v=KRVJ2S9F9qU&t=3261s SERDP Webinar Series: Developing and Demonstrating Technologies for Destruction of PFAS in Concentrated Liquid Waste Streams]
 

Latest revision as of 11:33, 29 January 2026

PFAS Destruction by Ultraviolet/Sulfite Treatment

The ultraviolet (UV)/sulfite based reductive defluorination process has emerged as an effective and practical option for generating hydrated electrons (eaq- ) which can destroy PFAS in water. It offers significant advantages for PFAS destruction, including significant defluorination, high treatment efficiency for long-, short-, and ultra-short chain PFAS without mass transfer limitations, selective reactivity by hydrated electrons, low energy consumption, low capital and operation costs, and no production of harmful byproducts. A UV/sulfite treatment system designed and developed by Haley and Aldrich (EradiFluorTM[1]) has been demonstrated in two field demonstrations in which it achieved near-complete defluorination and greater than 99% destruction of 40 PFAS analytes measured by EPA method 1633.

Related Article(s):

Contributors: John Xiong, Yida Fang, Raul Tenorio, Isobel Li, and Jinyong Liu

Key Resources:

  • Defluorination of Per- and Polyfluoroalkyl Substances (PFAS) with Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and Management[2]
  • Accelerated Degradation of Perfluorosulfonates and Perfluorocarboxylates by UV/Sulfite + Iodide: Reaction Mechanisms and System Efficiencies[3]
  • Destruction of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous Film-Forming Foam (AFFF) with UV-Sulfite Photoreductive Treatment[4]
  • EradiFluorTM[1]

Introduction

The hydrated electron (eaq- ) can be described as an electron in solution surrounded by a small number of water molecules[5]. Hydrated electrons can be produced by photoirradiation of solutes, including sulfite, iodide, dithionite, and ferrocyanide, and have been reported in literature to effectively decompose per- and polyfluoroalkyl substances (PFAS) in water. The hydrated electron is one of the most reactive reducing species, with a standard reduction potential of about −2.9 volts. Though short-lived, hydrated electrons react rapidly with many species having more positive reduction potentials[5].

Among the electron source chemicals, sulfite (SO32−) has emerged as one of the most effective and practical options for generating hydrated electrons to destroy PFAS in water. The mechanism of hydrated electron production in a sulfite solution under ultraviolet is shown in Equation 1 (UV is denoted as hv, SO3•- is the sulfur trioxide radical anion):

Equation 1:   XiongEq1.png

The hydrated electron has demonstrated excellent performance in destroying PFAS such as perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA)[6] and GenX[7]. Mechanisms include cleaving carbon-to-fluorine (C-F) bonds (i.e., hydrogen/fluorine atom exchange) and chain shortening (i.e., decarboxylation, hydroxylation, elimination, and hydrolysis)[2].

Process Description

A commercial UV/sulfite treatment system designed and developed by Haley and Aldrich (EradiFluorTM[1]) includes an optional pre-oxidation step to transform PFAS precursors (when present) and a main treatment step to break C-F bonds by UV/sulfite reduction. The effluent from the treatment process can be sent back to the influent of a pre-treatment separation system (such as a foam fractionation, regenerable ion exchange, or a membrane filtration system) for further concentration or sent for off-site disposal in accordance with relevant disposal regulations. A conceptual treatment process diagram is shown in Figure 1.

Figure 1: Conceptual Treatment Process for a Concentrated PFAS Stream


Advantages

A UV/sulfite treatment system offers significant advantages for PFAS destruction compared to other technologies, including high defluorination percentage, high treatment efficiency for short-chain PFAS without mass transfer limitation, selective reactivity by eaq-, low energy consumption, and the production of no harmful byproducts. A summary of these advantages is provided below:

  • High efficiency for short- and ultrashort-chain PFAS: While the degradation efficiency for short-chain PFAS is challenging for some treatment technologies[8][9][10], the UV/sulfite process demonstrates excellent defluorination efficiency for both short- and ultrashort-chain PFAS, including trifluoroacetic acid (TFA) and perfluoropropionic acid (PFPrA).
  • High defluorination ratio: As shown in Figure 3, the UV/sulfite treatment system has demonstrated near 100% defluorination for various PFAS under both laboratory and field conditions.
  • No harmful byproducts: While some oxidative technologies, such as electrochemical oxidation, generate toxic byproducts, including perchlorate, bromate, and chlorate, the UV/sulfite system employs a reductive mechanism and does not generate these byproducts.
  • Ambient pressure and low temperature: The system operates under ambient pressure and low temperature (<60°C), as it utilizes UV light and common chemicals to degrade PFAS.
  • Low energy consumption: The electrical energy per order values for the degradation of perfluorocarboxylic acids (PFCAs) by UV/sulfite have been reduced to less than 1.5 kilowatt-hours (kWh) per cubic meter under laboratory conditions. The energy consumption is orders of magnitude lower than that for many other destructive PFAS treatment technologies (e.g., supercritical water oxidation)[11].
  • Co-contaminant destruction: The UV/sulfite system has also been reported effective in destroying certain co-contaminants in wastewater. For example, UV/sulfite is reported to be effective in reductive dechlorination of chlorinated volatile organic compounds, such as trichloroethene, 1,2-dichloroethane, and vinyl chloride[12][13][14][15].

Limitations

Several environmental factors and potential issues have been identified that may impact the performance of the UV/sulfite treatment system, as listed below. Solutions to address these issues are also proposed.

  • Environmental factors, such as the presence of elevated concentrations of natural organic matter (NOM), dissolved oxygen, or nitrate, can inhibit the efficacy of UV/sulfite treatment systems by scavenging available hydrated electrons. Those interferences are commonly managed through chemical additions, reaction optimization, and/or dilution, and are therefore not considered likely to hinder treatment success.
  • Coloration in waste streams may also impact the effectiveness of the UV/sulfite treatment system by blocking the transmission of UV light, thus reducing the UV lamp's effective path length. To address this, pre-treatment may be necessary to enable UV/sulfite destruction of PFAS in the waste stream. Pre-treatment may include the use of strong oxidants or coagulants to consume or remove UV-absorbing constituents.
  • The degradation efficiency is strongly influenced by PFAS molecular structure, with fluorotelomer sulfonates (FTS) and perfluorobutanesulfonate (PFBS) exhibiting greater resistance to degradation by UV/sulfite treatment compared to other PFAS compounds.

State of the Practice

Figure 2. Field demonstration of EradiFluorTM[1] for PFAS destruction in a concentrated waste stream in a Mid-Atlantic Naval Air Station: a) Target PFAS at each step of the treatment shows that about 99% of PFAS were destroyed; meanwhile, the final degradation product, i.e., fluoride, increased to 15 mg/L in concentration, demonstrating effective PFAS destruction; b) AOF concentrations at each step of the treatment provided additional evidence to show near-complete mineralization of PFAS. Average results from multiple batches of treatment are shown here.
Figure 3. Field demonstration of a treatment train (SAFF + EradiFluorTM[1]) for groundwater PFAS separation and destruction at an Air Force base in California: a) Two main components of the treatment train, i.e. SAFF and EradiFluorTM[1]; b) Results showed the effective destruction of various PFAS in the foam fractionate. The target PFAS at each step of the treatment shows that about 99.9% of PFAS were destroyed. Meanwhile, the final degradation product, i.e., fluoride, increased to 30 mg/L in concentration, demonstrating effective destruction of PFAS in a foam fractionate concentrate. After a polishing treatment step (GAC) via the onsite groundwater extraction and treatment system, all PFAS were removed to concentrations below their MCLs.

The effectiveness of UV/sulfite technology for treating PFAS has been evaluated in two field demonstrations using the EradiFluorTM[1] system. Aqueous samples collected from the system were analyzed using EPA Method 1633, the total oxidizable precursor (TOP) assay, adsorbable organic fluorine (AOF) method, and non-target analysis. A summary of each demonstration and their corresponding PFAS treatment efficiency is provided below.

  • Under the Environmental Security Technology Certification Program (ESTCP) Project ER21-5152, a field demonstration of EradiFluorTM[1] was conducted at a Navy site on the east coast, and results showed that the technology was highly effective in destroying various PFAS in a liquid concentrate produced from an in situ foam fractionation groundwater treatment system. As shown in Figure 2a, total PFAS concentrations were reduced from 17,366 micrograms per liter (µg/L) to 195 µg/L at the end of the UV/sulfite reaction, representing 99% destruction. After the ion exchange resin polishing step, all residual PFAS had been removed to the non-detect level, except one compound (PFOS) reported as 1.5 nanograms per liter (ng/L), which is below the current Maximum Contaminant Level (MCL) of 4 ng/L. Meanwhile, the fluoride concentration increased up to 15 milligrams per liter (mg/L), confirming near complete defluorination. Figure 2b shows the adsorbable organic fluorine results from the same treatment test, which similarly demonstrates destruction of 99% of PFAS.
  • Another field demonstration was completed at an Air Force base in California, where a treatment train combining Surface Active Foam Fractionation (SAFF) and EradiFluorTM[1] was used to treat PFAS in groundwater. As shown in Figure 3, PFAS analytical data and fluoride results demonstrated near-complete destruction of various PFAS. In addition, this demonstration showed: a) high PFAS destruction ratio was achieved in the foam fractionate, even in very high concentration (up to 1,700 mg/L of booster), and b) the effluent from EradiFluorTM[1] was sent back to the influent of the SAFF system for further concentration and treatment, resulting in a closed-loop treatment system and no waste discharge from EradiFluorTM[1]. This field demonstration was conducted with the approval of three regulatory agencies (United States Environmental Protection Agency, California Regional Water Quality Control Board, and California Department of Toxic Substances Control).

References

  1. ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 Haley and Aldrich, Inc. (commercial business), 2024. EradiFluor. Comercial Website
  2. ^ 2.0 2.1 Bentel, M.J., Yu, Y., Xu, L., Li, Z., Wong, B.M., Men, Y., Liu, J., 2019. Defluorination of Per- and Polyfluoroalkyl Substances (PFASs) with Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and Management. Environmental Science and Technology, 53(7), pp. 3718-28. doi: 10.1021/acs.est.8b06648  Open Access Article
  3. ^ Liu, Z., Chen, Z., Gao, J., Yu, Y., Men, Y., Gu, C., Liu, J., 2022. Accelerated Degradation of Perfluorosulfonates and Perfluorocarboxylates by UV/Sulfite + Iodide: Reaction Mechanisms and System Efficiencies. Environmental Science and Technology, 56(6), pp. 3699-3709. doi: 10.1021/acs.est.1c07608  Open Access Article
  4. ^ Tenorio, R., Liu, J., Xiao, X., Maizel, A., Higgins, C.P., Schaefer, C.E., Strathmann, T.J., 2020. Destruction of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) with UV-Sulfite Photoreductive Treatment. Environmental Science and Technology, 54(11), pp. 6957-67. doi: 10.1021/acs.est.0c00961
  5. ^ 5.0 5.1 Buxton, G.V., Greenstock, C.L., Phillips Helman, W., Ross, A.B., 1988. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (⋅OH/⋅O-) in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(2), pp. 513-886. doi: 10.1063/1.555805
  6. ^ Gu, Y., Liu, T., Wang, H., Han, H., Dong, W., 2017. Hydrated Electron Based Decomposition of Perfluorooctane Sulfonate (PFOS) in the VUV/Sulfite System. Science of The Total Environment, 607-608, pp. 541-48. doi: 10.1016/j.scitotenv.2017.06.197
  7. ^ Bao, Y., Deng, S., Jiang, X., Qu, Y., He, Y., Liu, L., Chai, Q., Mumtaz, M., Huang, J., Cagnetta, G., Yu, G., 2018. Degradation of PFOA Substitute: GenX (HFPO–DA Ammonium Salt): Oxidation with UV/Persulfate or Reduction with UV/Sulfite? Environmental Science and Technology, 52(20), pp. 11728-34. doi: 10.1021/acs.est.8b02172
  8. ^ Singh, R.K., Brown, E., Mededovic Thagard, S., Holson, T.M., 2021. Treatment of PFAS-containing landfill leachate using an enhanced contact plasma reactor. Journal of Hazardous Materials, 408, Article 124452. doi: 10.1016/j.jhazmat.2020.124452
  9. ^ Singh, R.K., Multari, N., Nau-Hix, C., Woodard, S., Nickelsen, M., Mededovic Thagard, S., Holson, T.M., 2020. Removal of Poly- and Per-Fluorinated Compounds from Ion Exchange Regenerant Still Bottom Samples in a Plasma Reactor. Environmental Science and Technology, 54(21), pp. 13973-80. doi: 10.1021/acs.est.0c02158
  10. ^ Nau-Hix, C., Multari, N., Singh, R.K., Richardson, S., Kulkarni, P., Anderson, R.H., Holsen, T.M., Mededovic Thagard S., 2021. Field Demonstration of a Pilot-Scale Plasma Reactor for the Rapid Removal of Poly- and Perfluoroalkyl Substances in Groundwater. American Chemical Society’s Environmental Science and Technology (ES&T) Water, 1(3), pp. 680-87. doi: 10.1021/acsestwater.0c00170
  11. ^ Nzeribe, B.N., Crimi, M., Mededovic Thagard, S., Holsen, T.M., 2019. Physico-Chemical Processes for the Treatment of Per- And Polyfluoroalkyl Substances (PFAS): A Review. Critical Reviews in Environmental Science and Technology, 49(10), pp. 866-915. doi: 10.1080/10643389.2018.1542916
  12. ^ Jung, B., Farzaneh, H., Khodary, A., Abdel-Wahab, A., 2015. Photochemical degradation of trichloroethylene by sulfite-mediated UV irradiation. Journal of Environmental Chemical Engineering, 3(3), pp. 2194-2202. doi: 10.1016/j.jece.2015.07.026
  13. ^ Liu, X., Yoon, S., Batchelor, B., Abdel-Wahab, A., 2013. Photochemical degradation of vinyl chloride with an Advanced Reduction Process (ARP) – Effects of reagents and pH. Chemical Engineering Journal, 215-216, pp. 868-875. doi: 10.1016/j.cej.2012.11.086
  14. ^ Li, X., Ma, J., Liu, G., Fang, J., Yue, S., Guan, Y., Chen, L., Liu, X., 2012. Efficient Reductive Dechlorination of Monochloroacetic Acid by Sulfite/UV Process. Environmental Science and Technology, 46(13), pp. 7342-49. doi: 10.1021/es3008535
  15. ^ Li, X., Fang, J., Liu, G., Zhang, S., Pan, B., Ma, J., 2014. Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process. Water Research, 62, pp. 220-228. doi: 10.1016/j.watres.2014.05.051

See Also