Difference between revisions of "User:Jhurley/sandbox"

From Enviro Wiki
Jump to: navigation, search
(Transformation Processes)
(Selection of Replacement PFAS-Free Firefighting Formulations)
(307 intermediate revisions by the same user not shown)
Line 1: Line 1:
==1,2,3-Trichloropropane (TCP)==   
+
==Transition of Aqueous Film Forming Foam (AFFF) Fire Suppression Infrastructure Impacted by Per and Polyfluoroalkyl Substances (PFAS)==   
[[Wikipedia: 1,2,3-Trichloropropane | 1,2,3-Trichloropropane (TCP)]] is a chlorinated volatile organic compound (CVOC) that has been used in chemical production processes, in agriculture, and as a solvent, resulting in point and non-point source contamination of soil and groundwater.  TCP is mobile and highly persistent in soil and groundwater. TCP is not currently regulated at the national level in the United States, but [[Wikipedia: Maximum contaminant level | maximum contaminant levels (MCLs)]] have been developed by some states. Current treatment methods for TCP are limited and can be cost prohibitive. However, some treatment approaches, particularly [[Chemical Reduction (In Situ - ISCR) | ''in situ'' chemical reduction (ISCR)]] with [[Wikipedia: In_situ_chemical_reduction#Zero_valent_metals_%28ZVMs%29 | zero valent zinc (ZVZ)]] and [[Bioremediation - Anaerobic | ''in situ'' bioremediation (ISB)]], have recently been shown to have potential as practical remedies for TCP contamination of groundwater.
+
[[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)|Per and polyfluoroalkyl substances (PFAS)]] contained in [[wikipedia:Firefighting foam |Class B aqueous film-forming foams (AFFFs)]] are known to accumulate on wetted surfaces of many fire suppression systems after decades of exposure<ref name="LangEtAl2022">Lang, J.R., McDonough, J., Guillette, T.C., Storch, P., Anderson, J., Liles, D., Prigge, R., Miles, J.A.L., Divine, C., 2022. Characterization of per- and polyfluoroalkyl substances on fire suppression system piping and optimization of removal methods. Chemosphere, 308(Part 2), 136254. [https://doi.org/10.1016/j.chemosphere.2022.136254 doi: 10.1016/j.chemosphere.2022.136254]&nbsp;&nbsp;[[Media:LangEtAl2022.pdf | Open Access Article]]</ref>. When replacement PFAS-free firefighting formulations are added to existing infrastructure, PFAS can rebound from the wetted surfaces into the new formulations at high concentrations<ref name="RossStorch2020">Ross, I., and Storch, P., 2020. Foam Transition: Is It as Simple as "Foam Out / Foam In?". The Catalyst (Journal of JOIFF, The International Organization for Industrial Emergency Services Management), Q2 Supplement, 20 pages. [[Media:Catalyst_2020_Q2_Sup.pdf | Industry Newsletter]]</ref><ref>Kappetijn, K., 2023. Replacement of fluorinated extinguishing foam: When is clean clean enough? The Catalyst (Journal of JOIFF, The International Organization for Industrial Emergency Services Management), Q1 2023, pp. 31-33. [[Media:Catalyst_2023_Q1.pdf | Industry Newsletter]]</ref>. Effective methods are needed to properly transition to PFAS-free firefighting formulations in existing fire suppression infrastructure. Considerations in the transition process may include but are not limited to locating, identifying, and evaluating existing systems and AFFF, fire engineering evaluations, system prioritization, cost/downtime analyses, sampling and analysis, evaluation of risks and hazards to human health and the environment, transportation, and disposal.
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
 
'''Related Article(s):'''
 
'''Related Article(s):'''
*[[Bioremediation - Anaerobic | Anaerobic Bioremediation]]
+
*[[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]]
*[[Chemical Reduction (In Situ - ISCR) | ''In Situ'' Chemical Reduction (ISCR)]]
+
*[[PFAS Sources]]
*[[Chemical Oxidation (In Situ - ISCO) | ''In Situ'' Chemical Oxidation (ISCO)]]
+
*[[PFAS Ex Situ Water Treatment]]
 +
*[[Supercritical Water Oxidation (SCWO)]]
 +
*[[PFAS Treatment by Electrical Discharge Plasma]]
  
 
'''Contributor(s):'''  
 
'''Contributor(s):'''  
*[[Dr. Alexandra Salter-Blanc | Alexandra J. Salter-Blanc]]
+
*Dr. Johnsie Ray Lang
*[[Dr. Paul Tratnyek | Paul G. Tratnyek]]
+
*Dr. Jonathan Miles
*John Merrill
+
*John Anderson
*Alyssa Saito
+
*Dr. Theresa Guillette
*Lea Kane
+
*[[Craig E. Divine, Ph.D., PG|Dr. Craig Divine]]
*Eric Suchomel
+
*[[Dr. Stephen Richardson]]
*[[Dr. Rula Deeb | Rula Deeb]]
 
  
 
'''Key Resource(s):'''
 
'''Key Resource(s):'''
*Prospects for Remediation of 1,2,3-Trichloropropane by Natural and Engineered Abiotic Degradation Reactions. Strategic Environmental Research and Development Program (SERDP), Project ER-1457.<ref name="Tratnyek2010">Tratnyek, P.G., Sarathy, V., Salter, A.J., Nurmi, J.T., O’Brien Johnson, G., DeVoe, T., and Lee, P., 2010. Prospects for Remediation of 1,2,3-Trichloropropane by Natural and Engineered Abiotic Degradation Reactions. Strategic Environmental Research and Development Program (SERDP), Project ER-1457. [https://serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Emerging-Issues/ER-1457/ER-1457/(language)/eng-US  Website]&nbsp;&nbsp; [[Media: ER-1457-FR.pdf | Report.pdf]]</ref>
+
*Department of Defense (DoD) performance standard for PFAS-free firefighting formulation:  [https://media.defense.gov/2023/Jan/12/2003144157/-1/-1/1/MILITARY-SPECIFICATION-FOR-FIRE-EXTINGUISHING-AGENT-FLUORINE-FREE-FOAM-F3-LIQUID-CONCENTRATE-FOR-LAND-BASED-FRESH-WATER-APPLICATIONS.PDF Military Specification MIL-PRF-32725]<ref name="DoD2023">US Department of Defense, 2023. Performance Specification for Fire Extinguishing Agent, Fluorine-Free Foam (F3) Liquid Concentrate for Land-Based, Fresh Water Applications. Mil-Spec MIL-PRF-32725, 18 pages. [[Media: MilSpec32725.pdf | Military Specification Document]]</ref>
 
+
*[[Media:LangEtAl2022.pdf | Characterization of per- and polyfluoroalkyl substances on fire suppression system piping and optimization of removal methods]]<ref name="LangEtAl2022"/>
*Verification Monitoring for In Situ Chemical Reduction Using Zero-Valent Zinc, A Novel Technology for Remediation of Chlorinated Alkanes. Strategic Environmental Research and Development Program (SERDP), Project ER-201628.<ref name="Kane2020">Kane, L.Z., Suchomel, E.J., and Deeb, R.A., 2020. Verification Monitoring for In Situ Chemical Reduction Using Zero-Valent Zinc, A Novel Technology for Remediation of Chlorinated Alkanes. Strategic Environmental Research and Development Program (SERDP), Project ER-201628. [https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-201628  Website]&nbsp;&nbsp; [[Media: ER-201628.pdf | Report.pdf]]</ref>
 
  
 
==Introduction==
 
==Introduction==
[[File:123TCPFig1.png|thumb|left|Figure 1. Ball and stick representation of the molecular structure of TCP (Salter-Blanc and Tratnyek, unpublished)]]
+
[[File:LangFig1.png | thumb |400px|Figure 1. (A) Schematic of a typical PFAS molecule demonstrating the hydrophobic fluorinated tail in green and the hydrophilic charged functional group in blue, (B) a PFAS bilayer formed with the hydrophobic tails facing inward and the charged functional groups on the outside, and (C) multiple bilayers of PFAS assembled on the wetted surfaces of fire suppression piping.]]PFAS are a class of synthetic fluorinated compounds which are highly mobile and persistent within the environment<ref>Giesy, J.P., Kannan, K., 2001. Global Distribution of Perfluorooctane Sulfonate in Wildlife. Environmental Science and Technology 35(7), pp. 1339-1342. [https://doi.org/10.1021/es001834k doi: 10.1021/es001834k]</ref>. Due to the surfactant properties of PFAS, these compounds self-assemble at any solid-liquid interface forming resilient bilayers during prolonged exposure<ref>Krafft, M.P., Riess, J.G., 2015. Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability-Part one. Chemosphere, 129, pp. 4-19. [https://doi.org/10.1016/j.chemosphere.2014.08.039 doi: 10.1016/j.chemosphere.2014.08.039]</ref>. Solid phase accumulation of PFAS has been proposed to be influenced by both [[wikipedia: Hydrophobic effect|hydrophobic]] and electrostatic interactions with fluorinated carbon chain length as the dominant feature influencing sorption<ref>Higgins, C.P., Luthy, R.G., 2006. Sorption of Perfluorinated Surfactants on Sediments. Environmental Science and Technology, 40(23), pp. 7251-7256. [https://doi.org/10.1021/es061000n doi: 10.1021/es061000n]</ref>. While the majority of previous research into solid phase sorption typically focused on water treatment applications or subsurface porous media<ref>Brusseau, M.L., 2018. Assessing the Potential Contributions of Additional Retention Processes to PFAS Retardation in the Subsurface. Science of the Total Environment, 613-614, pp. 176-185. [https://doi.org/10.1016/j.scitotenv.2017.09.065 doi: 10.1016/j.scitotenv.2017.09.065]&nbsp;&nbsp;[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5693257Open Access Manuscript]</ref>, recently PFAS accumulations have been identified on the wetted surfaces of fire suppression infrastructure exposed to aqueous film forming foam (AFFF)<ref name="LangEtAl2022"/> (see Figure 1).
1,2,3-Trichloropropane (TCP) (Figure 1) is a man-made chemical that was used in the past primarily as a solvent and extractive agent, as a paint and varnish remover, and as a cleaning and degreasing agent.<ref name="ATSDR2021"> Agency for Toxic Substances and Disease Registry (ATSDR), 2021. Toxicological Profile for 1,2,3-Trichloropropane. Free download from: [https://www.atsdr.cdc.gov/toxprofiles/tp57.pdf ATSDR]&nbsp;&nbsp; [[Media: TCP2021ATSDR.pdf | Report.pdf]]</ref>. Currently, TCP is primarily used in chemical synthesis of compounds such as [[Wikipedia: Polysulfone | polysulfone]] liquid polymers used in the aerospace and automotive industries; [[Wikipedia: Hexafluoropropylene | hexafluoropropylene]] used in the agricultural, electronic, and pharmaceutical industries; [[Wikipedia: Polysulfide | polysulfide]] polymers used as sealants in manufacturing and construction; and [[Wikipedia: 1,3-Dichloropropene | 1,3-dichloropropene]] used in agriculture as a soil fumigant. TCP may also be present in products containing these chemicals as an impurity<ref name="ATSDR2021"/><ref name="CH2M2005">CH2M HILL, 2005. Interim Guidance for Investigating Potential 1,2,3-Trichloropropane Sources in San Gabriel Valley Area 3. [[Media: INTERIM_GUIDANCE_FOR_INVESTIGATING_POTENTIAL_1%2C2%2C3-TRICHLOROPROPANE_SOURCES.pdf | Report.pdf]]&nbsp;&nbsp;  [https://cumulis.epa.gov/supercpad/cursites/csitinfo.cfm?id=0902093  Website]</ref>. For example, the 1,2-dichlropropane/1,3-dichloropropene soil fumigant mixture (trade name D-D), which is no longer sold in the United States, contained TCP as an impurity and has been linked to TCP contamination in groundwater<ref name="OkiGiambelluca1987">Oki, D.S. and Giambelluca, T.W., 1987. DBCP, EDB, and TCP Contamination of Ground Water in Hawaii. Groundwater, 25(6), pp. 693-702. [https://doi.org/10.1111/j.1745-6584.1987.tb02210.x DOI: 10.1111/j.1745-6584.1987.tb02210.x]</ref><ref name="CH2M2005"/>. Soil fumigants currently in use which are composed primarily of 1,3-dichloropropene may also contain TCP as an impurity, for instance Telone II has been reported to contain up to 0.17 percent TCP by weight<ref name="Kielhorn2003">Kielhorn, J., Könnecker, G., Pohlenz-Michel, C., Schmidt, S. and Mangelsdorf, I., 2003. Concise International Chemical Assessment Document 56: 1,2,3-Trichloropropane. World Health Organization, Geneva. [http://www.who.int/ipcs/publications/cicad/en/cicad56.pdf Website]&nbsp;&nbsp; [[Media: WHOcicad56TCP.pdf | Report.pdf]]</ref>.
+
     
 
+
Fire suppression systems with potential PFAS impacts include fire fighting vehicles that carried AFFF and fixed suppression systems in buildings containing large amounts of flammable materials such as aircraft hangars (Figure 2). PFAS residue on the wetted surfaces of existing infrastructure can rebound into replacement PFAS-free firefighting formulations if not removed during the transition process<ref name="RossStorch2020"/>. Simple surface rinsing with water and low-pressure washing has been proven to be inefficient for removal of surface bound PFAS from piping and tanks that contained fluorinated AFFF<ref name="RossStorch2020"/>
TCP contamination is problematic because it is “reasonably anticipated to be a human carcinogen” based on evidence of carcinogenicity to animals<ref name="NTP2016"> National Toxicology Program, 2016. Report on Carcinogens, 14th ed. U.S. Department of Health and Human Services, Public Health Service. Free download from: [https://ntp.niehs.nih.gov/ntp/roc/content/profiles/trichloropropane.pdf  NIH]&nbsp;&nbsp; [[Media: NTP2016trichloropropane.pdf | Report.pdf]]</ref>. Toxicity to humans appears to be high relative to other chlorinated solvents<ref name="Kielhorn2003"/>, suggesting that even low-level exposure to TCP could pose a significant human health risk.
+
[[File:LangFig2.png | thumb|left|600px|Figure 2. Fixed fire suppression system for an aircraft hangar, with storage tank on left and distribution piping on right.]]
 
 
==Environmental Fate==
 
TCP’s fate in the environment is governed by its physical and chemical properties (Table 1). TCP does not adsorb strongly to soil, making it likely to leach into groundwater and exhibit high mobility. In addition, TCP is moderately volatile and can partition from surface water and moist soil into the atmosphere. Because TCP is only slightly soluble and denser than water, it can form a [[Wikipedia: Dense non-aqueous phase liquid | dense non-aqueous phase liquid (DNAPL)]] as observed at the Tyson’s Dump Superfund Site<ref name="USEPA2019"> United States Environmental Protection Agency (USEPA), 2019. Fifth Five-year Review Report, Tyson’s Dump Superfund Site, Upper Merion Township, Montgomery County, Pennsylvania. Free download from: [https://semspub.epa.gov/work/03/2282817.pdf USEPA]&nbsp;&nbsp; [[Media: USEPA2019.pdf | Report.pdf]]</ref>. TCP is generally resistant to aerobic biodegradation, hydrolysis, oxidation, and reduction under naturally occurring conditions making it persistent in the environment<ref name="Tratnyek2010"/>.
 
 
 
{| class="wikitable" style="float:right; margin-left:10px;text-align:center;"
 
|+Table 1.  Physical and chemical properties of TCP<ref name="USEPA2017">United States Environmental Protection Agency (USEPA), 2017. Technical Fact Sheet—1,2,3-Trichloropropane (TCP). EPA Project 505-F-17-007. 6 pp.  Free download from: [https://www.epa.gov/sites/production/files/2017-10/documents/ffrrofactsheet_contaminants_tcp_9-15-17_508.pdf  USEPA]&nbsp;&nbsp; [[Media: epa_tcp_2017.pdf | Report.pdf]]</ref>
 
|-
 
!Property
 
!Value
 
|-
 
| Chemical Abstracts Service (CAS) Number || 96-18-4
 
|-
 
| Physical Description</br>(at room temperature) || Colorless to straw-colored liquid
 
|-
 
| Molecular weight  (g/mol) || 147.43
 
|-
 
| Water solubility at 25°C  (mg/L)|| 1,750 (slightly soluble)
 
|-
 
| Melting point  (°C)|| -14.7
 
|-
 
| Boiling point  (°C) || 156.8
 
|-
 
| Vapor pressure at 25°C  (mm Hg) || 3.10 to 3.69
 
|-
 
| Density at 20°C (g/cm<sup>3</sup>) || 1.3889
 
|-
 
| Octanol-water partition coefficient</br>(log''K<sub>ow</sub>'') || 1.98 to 2.27</br>(temperature dependent)
 
|-
 
| Organic carbon-water partition coefficient</br>(log''K<sub>oc</sub>'') || 1.70 to 1.99</br>(temperature dependent)
 
|-
 
| Henry’s Law constant at 25°C</br>(atm-m<sup>3</sup>/mol) || 3.17x10<sup>-4</sup><ref name="ATSDR2021"/> to 3.43x10<sup>-4</sup><ref name="LeightonCalo1981">Leighton Jr, D.T. and Calo, J.M., 1981. Distribution Coefficients of Chlorinated Hydrocarbons in Dilute Air-Water Systems for Groundwater Contamination Applications. Journal of Chemical and Engineering Data, 26(4), pp. 382-385. [https://doi.org/10.1021/je00026a010 DOI: 10.1021/je00026a010]</ref>
 
|}
 
 
 
==Occurrence==
 
TCP has been detected in approximately 1% of public water supply and domestic well samples tested by the United States Geological Survey. More specifically, TCP was detected in 1.2% of public supply well samples collected between 1993 and 2007 by Toccalino and Hopple<ref name="ToccalinoHopple2010">Toccalino, P.L., Norman, J.E., Hitt, K.J., 2010. Quality of Source Water from Public-Supply Wells in the United States, 1993–2007. Scientific Investigations Report 2010-5024. U.S. Geological Survey. [https://doi.org/10.3133/sir20105024 DOI: 10.3133/sir20105024]  Free download from: [https://pubs.er.usgs.gov/publication/sir20105024 USGS]&nbsp;&nbsp; [[Media: Quality_of_source_water_from_public-supply_wells_in_the_United_States%2C_1993-2007.pdf | Report.pdf]]</ref> and 0.66% of domestic supply well samples collected between 1991 and 2004 by DeSimone<ref name="DeSimone2009">DeSimone, L.A., 2009. Quality of Water from Domestic Wells in Principal Aquifers of the United States, 1991–2004. U.S. Geological Survey, Scientific Investigations Report 2008–5227. 139 pp. Free download from: [http://pubs.usgs.gov/sir/2008/5227 USGS]&nbsp;&nbsp; [[Media: DeSimone2009.pdf | Report.pdf]]</ref>. TCP was detected at a higher rate in domestic supply well samples associated with agricultural land-use studies than samples associated with studies comparing primary aquifers (3.5% versus 0.2%)<ref name="DeSimone2009"/>.
 
 
 
==Regulation==
 
The United States Environmental Protection Agency (USEPA) has not established an MCL for TCP, although guidelines and health standards are in place<ref name="USEPA2017"/>. TCP was included in the Contaminant Candidate List 3<ref name="USEPA2009">United States Environmental Protection Agency (US EPA), 2009. Drinking Water Contaminant Candidate List 3-Final. Federal Register 74(194), pp. 51850–51862, Document E9-24287. [https://www.federalregister.gov/documents/2009/10/08/E9-24287/drinking-water-contaminant-candidate-list-3-final Website]&nbsp;&nbsp; [[Media: FR74-194DWCCL3.pdf | Report.pdf]]</ref> and the Unregulated Contaminant Monitoring Rule 3 (UCMR 3)<ref name="USEPA2012">United States Environmental Protection Agency (US EPA), 2012. Revisions to the Unregulated Contaminant Mentoring Regulation (UCMR 3) for Public Water Systems. Federal Register 77(85) pp. 26072-26101. [https://www.federalregister.gov/documents/2012/05/02/2012-9978/revisions-to-the-unregulated-contaminant-monitoring-regulation-ucmr-3-for-public-water-systems Website]&nbsp;&nbsp; [[Media: FR77-85UCMR3.pdf | Report.pdf]]</ref>. The UCMR 3 specified that data be collected on TCP occurrence in public water systems over the period of January 2013 through December 2015 against a reference concentration range of 0.0004 to 0.04 μg/L<ref name="USEPA2017a">United States Environmental Protection Agency (USEPA), 2017. The Third Unregulated Contaminant Monitoring Rule (UCMR 3): Data Summary. EPA 815-S-17-001. [https://www.epa.gov/dwucmr/data-summary-third-unregulated-contaminant-monitoring-rule  Website]&nbsp;&nbsp; [[Media: ucmr3-data-summary-january-2017.pdf | Report.pdf]]</ref>. The reference concentration range was determined based on a cancer risk of 10-6 to 10-4 and derived from an oral slope factor of 30 mg/kg-day, which was determined by the EPA’s Integrated Risk Information System<ref name="IRIS2009">USEPA Integrated Risk Information System (IRIS), 2009. 1,2,3-Trichloropropane (CASRN 96-18-4). [https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=200 Website]&nbsp;&nbsp; [[Media: TCPsummaryIRIS.pdf | Summary.pdf]]</ref>. Of 36,848 samples collected during UCMR 3, 0.67% exceeded the minimum reporting level of 0.03 µg/L. 1.4% of public water systems had at least one detection over the minimum reporting level, corresponding to 2.5% of the population<ref name="USEPA2017a"/>. While these occurrence percentages are relatively low, the minimum reporting level of 0.03 µg/L is more than 75 times the USEPA-calculated Health Reference Level of 0.0004 µg/L. Because of this, TCP may occur in public water systems at concentrations that exceed the Health Reference Level but are below the minimum reporting level used during UCMR 3 data collection. These analytical limitations and lack of lower-level occurrence data have prevented the USEPA from making a preliminary regulatory determination for TCP<ref name="USEPA2021">USEPA, 2021. Announcement of Final Regulatory Determinations for Contaminants on the Fourth Drinking Water Contaminant Candidate List. Free download from: [https://www.epa.gov/sites/default/files/2021-01/documents/10019.70.ow_ccl_reg_det_4.final_web.pdf USEPA]&nbsp;&nbsp; [[Media: CCL4.pdf | Report.pdf]]</ref>.
 
 
 
Some US states have established their own standards including Hawaii which has established an MCL of 0.6 μg/L<ref name="HDOH2013">Hawaii Department of Health, 2013. Amendment and Compilation of Chapter 11-20 Hawaii Administrative Rules. Free download from: [http://health.hawaii.gov/sdwb/files/2016/06/combodOPPPD.pdf Hawaii Department of Health]&nbsp;&nbsp; [[Media: Amendment_and_Compilation_of_Chapter_11-20_Hawaii_Administrative_Rules.pdf | Report.pdf]]</ref>. California has established an MCL of 0.005 μg/L<ref name="CCR2021">California Code of Regulations, 2021. Section 64444 Maximum Contaminant Levels – Organic Chemicals (22 CA ADC § 64444). [https://govt.westlaw.com/calregs/Document/IA7B3800D18654ABD9E2D24A445A66CB9 Website]</ref>,  a notification level of 0.005 μg/L, and a public health goal of 0.0007 μg/L<ref name="OEHHA2009">Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, 2009. Final Public Health Goal for 1,2,3-Trichloropropane in Drinking Water. [https://oehha.ca.gov/water/public-health-goal/final-public-health-goal-123-trichloropropane-drinking-water Website]</ref>, and New Jersey has established an MCL of 0.03 μg/L<ref name="NJAC2020">New Jersey Administrative Code 7:10, 2020. Safe Drinking Water Act Rules. Free download from: [https://www.nj.gov/dep/rules/rules/njac7_10.pdf  New Jersey Department of Environmental Protection]</ref>.
 
 
 
==Transformation Processes==
 
[[File:123TCPFig2.png|thumb|500px|left|Figure 2. Figure 2. Summary of anticipated primary reaction pathways for degradation of TCP. Oxidation, hydrolysis, and hydrogenolysis are represented by the horizontal arrows. Elimination (dehydrochlorination) and reductive elimination are shown with vertical arrows. [O] represents oxygenation (by oxidation or hydrolysis), [H] represents reduction. Gray indicates products that appear to be of lesser significance<ref name="Tratnyek2010"/>.]]
 
Potential TCP degradation pathways include hydrolysis, oxidation, and reduction (Figure 2). These pathways are expected to be similar overall for abiotic and biotic reactions<ref name="Sarathy2010">Sarathy, V., Salter, A.J., Nurmi, J.T., O’Brien Johnson, G., Johnson, R.L., and Tratnyek, P.G., 2010. Degradation of 1, 2, 3-Trichloropropane (TCP): Hydrolysis, Elimination, and Reduction by Iron and Zinc. Environmental Science and Technology, 44(2), pp.787-793.  [https://doi.org/10.1021/es902595j DOI: 10.1021/es902595j]</ref>, but the rates of the reactions (and their resulting significance for remediation) depend on natural and engineered conditions.
 
 
 
The rate of hydrolysis of TCP is negligible under typical ambient pH and temperature conditions but is favorable at high pH and/or temperature<ref name="Tratnyek2010"/><ref name="Sarathy2010"/>. For example, ammonia gas can be used to raise soil pH and stimulate alkaline hydrolysis of chlorinated propanes including TCP<ref name="Medina2016">Medina, V.F., Waisner, S.A., Griggs, C.S., Coyle, C., and Maxwell, M., 2016. Laboratory-Scale Demonstration Using Dilute Ammonia Gas-Induced Alkaline Hydrolysis of Soil Contaminants (Chlorinated Propanes and Explosives). US Army Engineer Research and Development Center, Environmental Laboratory (ERDC/EL), Report TR-16-10. [http://hdl.handle.net/11681/20312 Website]&nbsp;&nbsp; [[Media: ERDC_EL_TR_16_10.pdf  | Report.pdf]]</ref>. [[Thermal Conduction Heating (TCH)]] may also produce favorable conditions for TCP hydrolysis<ref name="Tratnyek2010"/><ref name="Sarathy2010"/>.
 
 
 
==Treatment Approaches==
 
Compared to more frequently encountered CVOCs such as [[Wikipedia: Trichloroethylene | trichloroethene (TCE)]] and [[Wikipedia: Tetrachloroethylene | tetrachloroethene (PCE)]], TCP is relatively recalcitrant<ref name="Merrill2019">Merrill, J.P., Suchomel, E.J., Varadhan, S., Asher, M., Kane, L.Z., Hawley, E.L., and Deeb, R.A., 2019. Development and Validation of Technologies for Remediation of 1,2,3-Trichloropropane in Groundwater. Current Pollution Reports, 5(4), pp. 228–237.  [https://doi.org/10.1007/s40726-019-00122-7 | DOI: 10.1007/s40726-019-00122-7]</ref><ref name="Tratnyek2010"/>. TCP is generally resistant to hydrolysis, bioremediation, oxidation, and reduction under natural conditions<ref name="Tratnyek2010"/>.  The moderate volatility of TCP makes air stripping, air sparging, and soil vapor extraction (SVE) less effective compared to other VOCs<ref name="Merrill2019"/>. Despite these challenges, both ''ex situ'' and ''in situ'' treatment technologies exist. ''Ex situ'' treatment processes are relatively well established and understood but can be cost prohibitive. ''In situ'' treatment methods are comparatively limited and less-well developed, though promising field-scale demonstrations of some ''in situ'' treatment technologies have been conducted.
 
 
 
===''Ex Situ'' Treatment===
 
The most common ''ex situ'' treatment technology for groundwater contaminated with TCP is groundwater extraction and treatment<ref name="SaminJanssen2012">Samin, G. and Janssen, D.B., 2012. Transformation and biodegradation of 1,2,3-trichloropropane (TCP). Environmental Science and Pollution Research International, 19(8), pp. 3067-3078. [https://doi.org/10.1007/s11356-012-0859-3 DOI: 10.1007/s11356-012-0859-3]&nbsp;&nbsp; [[Media:  SaminJanssen2012.pdf | Report.pdf]]</ref>. Extraction of TCP is generally effective given its relatively high solubility in water and low degree of partitioning to soil. After extraction, TCP is typically removed by adsorption to granular activated carbon (GAC)<ref name="Merrill2019"/><ref name="CalEPA2017">California Environmental Protection Agency, 2017. Groundwater Information Sheet, 1,2,3-Trichloropropane (TCP). State Water Resources Control Board, Division of Water Quality, Groundwater Ambient Monitoring and Assessment (GAMA) Program, 8 pp. Free download from: [http://www.waterboards.ca.gov/gama/docs/coc_tcp123.pdf California Waterboards]&nbsp;&nbsp; [[Media: CalEPA2017tcp123.pdf | Report.pdf]]</ref>.
 
 
 
TCP contamination in drinking water sources is typically treated using granular activated carbon (GAC)<ref name="Hooker2012">Hooker, E.P., Fulcher, K.G. and Gibb, H.J., 2012. Report to the Hawaii Department of Health, Safe Drinking Water Branch, Regarding the Human Health Risks of 1, 2, 3-Trichloropropane in Tap Water. [https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.269.2485&rep=rep1&type=pdf Free Download]&nbsp;&nbsp; [[Media: Hooker2012.pdf | Report.pdf]]</ref>.
 
 
 
In California, GAC is considered the best available technology (BAT) for treating TCP, and as of 2017 seven full-scale treatment facilities were using GAC to treat groundwater contaminated with TCP<ref name="CalEPA2017a">California Environmental Protection Agency, 2017.  Initial Statement of Reasons 1,2,3-Trichloropropane Maximum Contaminant Level Regulations. Water Resources Control Board, Title 22, California Code of Regulations (SBDDW-17-001). 36 pp.  [https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/123-tcp/sbddw17_001/isor.pdf  Free download]</ref>. Additionally, GAC has been used for over 30 years to treat 60 million gallons per day of TCP-contaminated groundwater in Hawaii<ref name="Babcock2018">Babcock Jr, R.W., Harada, B.K., Lamichhane, K.M., and Tsubota, K.T., 2018. Adsorption of 1, 2, 3-Trichloropropane (TCP) to meet a MCL of 5 ppt. Environmental Pollution, 233, 910-915. [https://doi.org/10.1016/j.envpol.2017.09.085  DOI: 10.1016/j.envpol.2017.09.085]</ref>.
 
  
GAC has a low to moderate adsorption capacity for TCP, which can necessitate larger treatment systems and result in higher treatment costs relative to other organic contaminants<ref name="USEPA2017"/>.  Published Freundlich adsorption isotherm parameters<ref name="SnoeyinkSummers1999">Snoeyink, V.L. and Summers, R.S, 1999. Adsorption of Organic Compounds (Chapter 13), In: Water Quality and Treatment, 5th ed., Letterman, R.D., editor.  McGraw-Hill, New York, NY. ISBN 0-07-001659-3</ref> indicate that less TCP mass is adsorbed per gram of carbon compared to other volatile organic compounds (VOCs), resulting in increased carbon usage rate and treatment cost.  Recent bench-scale studies indicate that subbituminous coal-based GAC and coconut shell-based GAC are the most effective types of GAC for treatment of TCP in groundwater<ref name="Babcock2018"/><ref name="Knappe2017">Knappe, D.R.U., Ingham, R.S., Moreno-Barbosa, J.J., Sun, M., Summers, R.S., and Dougherty, T., 2017. Evaluation of Henry’s Law Constants and Freundlich Adsorption Constants for VOCs. Water Research Foundation Project 4462 Final Report. [https://www.waterrf.org/research/projects/evaluation-henrys-law -constant-and-freundlich-adsorption-constant-vocs  Website]</ref>. To develop more economical and effective treatment approaches, further treatability studies with site groundwater (e.g., rapid small-scale column tests) may be needed.  
+
In&nbsp;addition&nbsp;to&nbsp;proper methods for system cleaning to remove residual PFAS, transition to PFAS-free foam may also include consideration of compliance with state and federal regulations, selection of the replacement PFAS-free firefighting formulation, a cost benefit analysis for replacement of the system components versus cleaning, and PFAS verification testing. Foam transition should be completed in a manner which minimizes the volume of waste generated as well as preventing any PFAS release into the environment.
  
===''In Situ'' Treatment===
+
==PFAS Assembly on Solid Surfaces==
''In situ'' treatment of TCP to concentrations below current regulatory or advisory levels is difficult to achieve in both natural and engineered systems. However, several ''in situ'' treatment technologies have demonstrated promise for TCP remediation, including chemical reduction by zero-valent metals (ZVMs), chemical oxidation with strong oxidizers, and anaerobic bioremediation<ref name="Merrill2019"/><ref name="Tratnyek2010"/>.
+
The self-assembly of [[Wikipedia: Amphiphile | amphiphilic]] molecules into supramolecular bilayers is a result of their structure and how it interacts with the bulk water of a solution. Single chain hydrocarbon based amphiphiles can form [[Wikipedia: Micelle | micelles]] under relatively dilute aqueous concentrations, however for hydrocarbon based surfactants the formation of more complex organized system such as [[Wikipedia: Vesicle (biology and chemistry) | vesicles]] is rarely seen, requiring double chain amphiphiles such as [[wikipedia: Phospholipid|phospholipids]]. Associations of single chain [[wikipedia: Ion#Anions_and_cations|cationic and anionic]] hydrocarbon based amphiphiles into stable supramolecular structures such as vesicles has however been demonstrated<ref>Fukuda, H., Kawata, K., Okuda, H., 1990. Bilayer-Forming Ion-Pair Amphiphiles from Single-Chain Surfactants. Journal of the American Chemical Society, 112(4), pp. 1635-1637. [https://doi.org/10.1021/ja00160a057 doi: 10.1021/ja00160a057]</ref>, with the ion pairing of the polar head groups mimicking the a double tail situation. The behavior of single chain [[wikipedia: Per-_and_polyfluoroalkyl_substances#Fluorosurfactants|fluorosurfactant]] amphiphiles has been demonstrated to be significantly different from similar hydrocarbon based analogues. Not only are [[Wikipedia: Critical micelle concentration | critical micelle concentrations (CMC)]] of fluorosurfactants typically two orders of magnitude lower than corresponding hydrocarbon surfactants but self-assembly can occur even when fluorosurfactants are dispersed at low concentrations significantly below the CMC in water and other solvents<ref name="Krafft2006">Krafft, M.P., 2006. Highly fluorinated compounds induce phase separation in, and nanostructuration of liquid media. Possible impact on, and use in chemical reactivity control. Journal of Polymer Science Part A: Polymer Chemistry, 44(14), pp. 4251-4258. [https://doi.org/10.1002/pola.21508 doi: 10.1002/pola.21508]&nbsp;&nbsp;[[Media:Krafft2006.pdf | Open Access Article]]</ref>. The assembly of fluorinated amphiphiles structurally similar to those found in AFFF have been shown to readily form stable, complex structures including vesicles, fibers, and globules at concentrations as low as 0.5% w/v in contrast to their hydrocarbon analogues which remained fluid at 30% w/v<ref>Krafft, M.P., Guilieri, F., Riess, J.G., 1993. Can Single-Chain Perfluoroalkylated Amphiphiles Alone form Vesicles and Other Organized Supramolecular Systems? Angewandte Chemie International Edition in English, 32(5), pp. 741-743. [https://doi.org/10.1002/anie.199307411 doi: 10.1002/anie.199307411]</ref><ref name="KrafftEtAl_1994">Krafft, M.P., Guilieri, F., Riess, J.G., 1994. Supramolecular assemblies from single chain perfluoroalkylated phosphorylated amphiphiles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 84(1), pp. 113-119. [https://doi.org/10.1016/0927-7757(93)02681-4 doi: 10.1016/0927-7757(93)02681-4]</ref>.  
  
===''In Situ'' Chemical Reduction (ISCR)===
+
Krafft found that fluorinated amphiphiles formed bilayer membranes with phospholipids, and that the resulting vesicles were more stable than those made of phospholipids alone<ref name="KrafftEtAl_1998">Krafft, M.P., Riess, J.G., 1998. Highly Fluorinated Amphiphiles and Collodial Systems, and their Applications in the Biomedical Field. A Contribution. Biochimie, 80(5-6), pp. 489-514. [https://doi.org/10.1016/S0300-9084(00)80016-4 doi: 10.1016/S0300-9084(00)80016-4]</ref>. The similarities in amphiphilic properties between phospholipids and the hydrocarbon-based surfactants in AFFF suggests that bilayer vesicles may form between these and the fluorosurfactants also present in the concentrate. Krafft demonstrated that both the permeability of resulting mixed vesicles and their propensity to fuse with each other at increasing ionic strength was reduced as a result of the creation of an inert hydrophobic and [[wikipedia: Lipophobicity|lipophobic]] film within the membrane, and also suggested that the fluorinated amphiphiles increased [[Wikipedia: van der Waals force | van der Waals interactions]] in the hydrocarbon region<ref name="KrafftEtAl_1998"/>. Thus this low permeability may allow vesicles formed by the surfactants present in AFFF to act as long term repositories of PFAS not only as part of the bilayer itself but also solvated within the vesicle. This prediction is supported by the observation that supramolecular structures formed from single chain fluorinated amphiphiles have been demonstrated to be stable at elevated temperature (15 min at 121&deg;C) and have been shown to be stable over periods of months, even increasing in size over time when stored at environmentally relevant temperatures<ref name="KrafftEtAl_1994"/>.
Reduction of TCP under conditions relevant to natural attenuation has been observed to be negligible. Achieving significant degradation rates of TCP requires the addition of a chemical reductant to the contaminated zone<ref name="Merrill2019"/><ref name="Tratnyek2010"/>.  Under reducing environmental conditions, some ZVMs have demonstrated the ability to reduce TCP all the way to [[wikipedia:Propene | propene]]. As shown in Figure 2, the desirable pathway for reduction of TCP is the formation of [[Wikipedia: Allyl_chloride | 3-chloro-1-propene (also known as allyl chloride)]] via [[Biodegradation_-_Reductive_Processes#Dihaloelimination | dihaloelimination]], which is then rapidly reduced to propene through [[Wikipedia:Hydrogenolysis |  hydrogenolysis]] <ref name="Merrill2019"/><ref name="Tratnyek2010"/><ref name="Torralba-Sanchez2020">Torralba-Sanchez, T.L., Bylaska, E.J., Salter-Blanc, A.J., Meisenheimer, D.E., Lyon, M.A., and Tratnyek, P.G., 2020. Reduction of 1, 2, 3-trichloropropane (TCP): pathways and mechanisms from computational chemistry calculations. Environmental Science: Processes and Impacts, 22(3), 606-616. [https://doi.org/10.1039/C9EM00557A DOI: 10.1039/C9EM00557A]&nbsp;&nbsp [[Media: Torralba-Sanchez2020.pdf | Open Access Article]]</ref>. ZVMs including granular zero-valent iron (ZVI), nano ZVI, [[wikipedia: In_situ_chemical_reduction#Bimetallic%20materials | palladized nano ZVI]], and [[wikipedia: In_situ_chemical_reduction#Zero_valent_metals_%28ZVMs%29 | zero-valent zinc (ZVZ)]] have been evaluated by researchers<ref name="Merrill2019"/><ref name="Tratnyek2010"/>.
 
  
ZVI is a common reductant used for ISCR and, depending on the form used, has shown variable levels of success for TCP treatment. The Strategic Environmental Research and Development Program (SERDP) Project ER-1457 measured the TCP degradation rates for various forms of ZVI and ZVZ. Nano-scale ZVI and palladized ZVI increased the TCP reduction rate over that of natural attenuation, but the reaction is not anticipated to be fast enough to be useful in typical remediation applications<ref name="Sarathy2010"/>.
+
Formation of complex structures at relatively low solute concentrations requires the monomer molecules to be well ordered to maintain tight packing in the supramolecular structure<ref>Ringsdorf, H., Schlarb, B., Venzmer, J., 1988. Molecular Architecture and Function of Polymeric Oriented Systems: Models for the Study of Organization, Surface Recognition, and Dynamics of Biomembranes. Angewandte Chemie International Edition in English, 27(1), pp. 113-158. [https://doi.org/10.1002/anie.198801131 doi: 10.1002/anie.198801131]</ref>. This order results from electrostatic forces, [[wikipedia: Hydrogen bond|hydrogen bonding]], and in the case of fluorinated amphiphiles, hydrophobic interactions. The geometry of the amphiphile also potentially contributes to the type of supramolecular aggregation<ref>Israelachvili, J.N., Mitchell, D.J., Ninham, B.W., 1976. Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 72, pp. 1525-1568. [https://doi.org/10.1039/F29767201525 doi: 10.1039/F29767201525]</ref>. Surfactants which adopt a conical shape (such as a typical hydrocarbon based surfactant with a large polar head group and a single alkyl chain as a tail) tend to form micelles more easily. Increasing the bulk of the tail makes the surfactant more cylindrically shaped which makes assembly into bilayers more likely.  
  
Commercial-grade zerovalent zinc (ZVZ) on the other hand is a strong reductant that reduces TCP relatively quickly under a range of laboratory and field conditions to produce propene without significant accumulation of intermediates<ref name="Sarathy2010"/><ref name="Salter-BlancTratnyek2011">Salter-Blanc, A.J. and Tratnyek, P.G., 2011. Effects of Solution Chemistry on the Dechlorination of 1,2,3-Trichloropropane by Zero-Valent Zinc. Environmental Science and Technology, 45(9), pp 4073–4079. [https://doi.org/10.1021/es104081p DOI: 10.1021/es104081p]&nbsp;&nbsp; [[Media: Salter-BlancTratnyek2011.pdf | Open access article]]</ref><ref name="Salter-Blanc2012">Salter-Blanc, A.J., Suchomel, E.J., Fortuna, J.H., Nurmi, J.T., Walker, C., Krug, T., O'Hara, S., Ruiz, N., Morley, T. and Tratnyek, P.G., 2012. Evaluation of Zerovalent Zinc for Treatment of 1,2,3-Trichloropropane‐Contaminated Groundwater: Laboratory and Field Assessment. Groundwater Monitoring and Remediation, 32(4), pp.42-52. [https://doi.org/10.1111/j.1745-6592.2012.01402.x DOI: 10.1111/j.1745-6592.2012.01402.x]</ref><ref name="Merrill2019"/>. Of the ZVMs tested as part of SERDP Project ER-1457, ZVZ had the fastest degradation rates for TCP<ref name="Tratnyek2010"/>. In bench-scale studies, TCP was reduced by ZVZ to propene with 3-chloro-1-propene as the only detectable chlorinated intermediate, which was short-lived and detected only at trace concentrations<ref name="Torralba-Sanchez2020"/>.
+
Perfluoroalkyl chains are significantly more bulky than their hydrocarbon based analogues both in cross sectional area (28-30 Å<sup>2</sup> versus 20 Å<sup>2</sup>, respectively) and mean volume (CF<sub>2</sub> and CF<sub>3</sub> estimated as 38 Å<sup>3</sup> and 92 Å<sup>3</sup> compared to 27 Å<sup>3</sup> and 54 Å<sup>3</sup> for CH<sub>2</sub> and CH<sub>3</sub>)<ref name="KrafftEtAl_1998"/><ref name="Krafft2006"/>. Structural studies on linear PFOS have shown that the molecule adopts an unusual helical structure<ref>Erkoç, Ş., Erkoç, F., 2001. Structural and electronic properties of PFOS and LiPFOS. Journal of Molecular Structure: THEOCHEM, 549(3), pp. 289-293. [https://doi.org/10.1016/S0166-1280(01)00553-X doi:10.1016/S0166-1280(01)00553-X]</ref><ref name="TorresEtAl2009">Torres, F.J., Ochoa-Herrera, V., Blowers, P., Sierra-Alvarez, R., 2009. Ab initio study of the structural, electronic, and thermodynamic properties of linear perfluorooctane sulfonate (PFOS) and its branched isomers. Chemosphere 76(8), pp. 1143-1149. [https://doi.org/10.1016/j.chemosphere.2009.04.009 doi: 10.1016/j.chemosphere.2009.04.009]</ref> in aqueous and solvent phases to alleviate [[wikipedia: Steric_effects#Steric_hindrance|steric hindrance]]. This arrangement results from the carbon chain starting in the planar all anti [[wikipedia:Conformational isomerism|conformation]] and then successively twisting all the CC-CC dihedrals by 15&deg;-20&deg; in the same direction<ref>Abbandonato, G., Catalano, D., Marini, A., 2010. Aggregation of Perfluoroctanoate Salts Studied by <sup>19</sup>F NMR and DFT Calculations: Counterion Complexation, Poly(ethylene glycol) Addition, and Conformational Effects. Langmuir 26(22), pp. 16762-16770. [https://doi.org/10.1021/la102578k  doi: 10.1021/la102578k].</ref>. The conformation also minimizes the electrostatic repulsion between fluorine atoms bonded to the same side of the carbon backbone by maximizing the interatomic distances between them<ref name="TorresEtAl2009"/>.
  
Navy Environmental Sustainability Development to Integration (NESDI) Project 434 conducted bench-scale testing which demonstrated that commercially available ZVZ was effective for treating TCP. Additionally, this project evaluated field-scale ZVZ column treatment of groundwater impacted with TCP at Marine Corps Base Camp Pendleton (MCBCP) in Oceanside, California. This study reported reductions of TCP concentrations by up to 95% which was maintained for at least twelve weeks with influent concentrations ranging from 3.5 to 10 µg/L, without any significant secondary water quality impacts detected<ref name="Salter-Blanc2012"/>.
+
A consequence of the helical structure is that there is limited carbon-carbon bond rotation within the perfluoroalkyl chain giving them increased rigidity compared to alkyl chains<ref>Barton, S.W., Goudot, A., Bouloussa, O., Rondelez, F., Lin, B., Novak, F., Acero, A., Rice, S., 1992. Structural transitions in a monolayer of fluorinated amphiphile molecules. The Journal of Chemical Physics, 96(2), pp. 1343-1351. [https://doi.org/10.1063/1.462170 doi: 10.1063/1.462170]</ref>. The bulkiness of the perfluoroalkyl chain confers a cylindrical shape on the fluorosurfactant amphiphile and therefore favors the formation of bilayers and vesicles the aggregation of which is further assisted by the rigidity of the molecules which allow close packing in the supramolecular structure. Fluorosurfactants therefore cannot be regarded as more hydrophobic analogues of hydrogenated surfactants. Their self-assembly behavior is characterized by a strong tendency to form vesicles and lamellar phases rather than micelles, due to the bulkiness and rigidity of the perfluoroalkyl chain that tends to decrease the curvature of the aggregates they form in solution<ref>Barton, C.A., Butler, L.E., Zarzecki, C.J., Flaherty, J., Kaiser, M., 2006. Characterizing Perfluorooctanoate in Ambient Air near the Fence Line of a Manufacturing Facility: Comparing Modeled and Monitored Values. Journal of the Air and Waste Management Association, 56, pp. 48-55. [https://doi.org/10.1080/10473289.2006.10464429 doi: 10.1080/10473289.2006.10464429]&nbsp;&nbsp;[https://www.tandfonline.com/doi/epdf/10.1080/10473289.2006.10464429?needAccess=true Open Access Article]</ref>. The larger tail cross section of fluorinated compared to hydrogenated amphiphiles tends to favor the formation of aggregates with lesser surface curvature, therefore rather than micelles they form bilayer membranes, vesicles, tubules and fibers<ref>Krafft, M.P., Guilieri, F., Riess, J.G., 1993. Can Single-Chain Perfluoroalkylated Amphiphiles Alone form Vesicles and Other Organized Supramolecular Systems? Angewandte Chemie International Edition in English, 32(5), pp. 741-743. [https://doi.org/10.1002/anie.199307411 doi: 10.1002/anie.199307411]</ref><ref>Furuya, H., Moroi, Y., Kaibara, K., 1996. Solid and Solution Properties of Alkylammonium Perfluorocarboxylates. The Journal of Physical Chemistry, 100(43), pp. 17249-17254.  [https://doi.org/10.1021/jp9612801 doi: 10.1021/jp9612801]</ref><ref>Giulieri, F., Krafft, M.P., 1996. Self-organization of single-chain fluorinated amphiphiles with fluorinated alcohols. Thin Solid Films, 284-285, pp. 195-199. [https://doi.org/10.1016/S0040-6090(95)08304-9 doi: 10.1016/S0040-6090(95)08304-9]</ref><ref>Gladysz, J.A., Curran, D.P., Horvath, I.T., 2004. Handbook of Fluorous Chemistry. WILEY-VCH Verlag GmbH & Co. KGaA,, Weinheim, Germany. ISBN: 3-527-30617-X</ref>. Rojas ''et al.'' (2002) demonstrated that perfluorooctyl sulphonamide formed a contiguous bilayer at 50 mg/L with self-assembled aggregates present at concentrations as low as 10 mg/L<ref name="RojasEtAl2002">Rojas, O.J., Macakova, L., Blomberg, E., Emmer, A., and Claesson, P.M., 2002. Fluorosurfactant Self-Assembly at Solid/Liquid Interfaces. Langmuir, 18(21), pp. 8085-8095. [https://doi.org/10.1021/la025989c doi: 10.1021/la025989c]</ref>.
  
Following the column study, a 2014 pilot study at MCBCP evaluated direct injection of ZVZ with subsequent monitoring. Direct injection of ZVZ was reportedly effective for TCP treatment, with TCP reductions ranging from 90% to 99% in the injection area. Concentration reduction downgradient of the injection area ranged from 50 to 80%. TCP concentrations have continued to decrease, and reducing conditions have been maintained in the aquifer since injection, demonstrating the long-term efficacy of ZVZ for TCP reduction<ref name="Kane2020"/>.
+
==Thermodynamics of PFAS Accumulations on Solid Surfaces==
 +
The thermodynamics of formation of amphiphiles into supramolecular species requires consideration of both hydrophobic and hydrophilic interactions resulting from the amphoteric nature of the molecule. The hydrophilic portions of the molecule are driven to maximize their solvation interaction with as many water molecules as possible, whereas the hydrophobic portions of the molecule are driven to aggregate together thus minimizing interaction with the bulk water. Both of these processes change the [[wikipedia:Enthalpy|enthalpy]] and [[wikipedia: Entropy|entropy]] of the system.
  
Potential ''in situ'' applications of ZVZ include direct injection, as demonstrated by the MCBCP pilot study, and permeable reactive barriers (PRBs). Additionally, ZVZ could potentially be deployed in an ''ex situ'' flow-through reactor, but the economic feasibility of this approach would depend in part on the permeability of the aquifer and in part on the cost of the reactor volumes of ZVZ media necessary for complete treatment.  
+
In aqueous solution, the hydrophilic portions of an amphiphile form hydrogen bonds (4 - 120 kJ/mol) and van der Waals interactions (<5 kJ/mol) with water molecules and surfaces, and electrostatic interactions (5 – 300 kJ/mol) can also occur where the amphiphile is ionic<ref name="LombardoEtAl2015">Lombardo, D., Kiselev, M.A., Magazù, S., Calandra, P., 2015. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Advances in Condensed Matter Physics, vol. 2015, article ID 151683, 22 pages. [https://doi.org/10.1155/2015/151683 doi: 10.1155/2015/151683]&nbsp;&nbsp;[[Media: LombardoEtAl2015.pdf | Open Access Article]]</ref>. These interactions, although weak compared to intramolecular covalent bonds within a molecule are energetically favorable and increase the enthalpy of the combined solute-solvent system. Thus, the hydrophilic portion of an amphiphile will look to maximize enthalpic gain through hydrogen bond interactions with the bulk water.
  
===''In Situ'' Chemical Oxidation (ISCO)===
+
The hydrophobic portion of an amphiphile cannot form hydrogen bonds with the bulk solution, and its presence disrupts the hydrogen bond interactions between individual water molecules within the bulk water matrix. This disruption lowers the entropy of the system by reducing the degrees of translational rotational freedom available to the bulk water. The [[wikipedia:Second law of thermodynamics|second law of thermodynamics]] dictates that a system will arrange itself to maximize its entropy. With hydrophobic species this can be achieved by their spontaneous aggregation, as the reduction in solution entropy of the aggregated system is less than that which would occur if the component parts were solvated individually. These hydrophobic and hydrophilic interactions are weak, and the individual entropy gain per amphiphile upon aggregation is very small. However, taken together the overall effect on the entropy of the aggregate is sufficient to maintain it in solution, and moreover these interactions make the aggregates resistant to minor perturbations while retaining the reversibility of the self-assembled structure<ref name="LombardoEtAl2015"/>.
Chemical oxidation of TCP with mild oxidants such as permanganate or ozone is ineffective. However, stronger oxidants (e.g. activated peroxide and persulfate) can effectively treat TCP, although the rates are slower than observed for most other organic contaminants<ref name="Tratnyek2010"/><ref name="CalEPA2017"/>. [[Wikipedia: Fenton's reagent | Fenton-like chemistry]] (i.e., Fe(II) activated hydrogen peroxide) has been shown to degrade TCP in the laboratory with half-lives ranging from 5 to 10 hours<ref name="Tratnyek2010"/>, but field-scale demonstrations of this process have not been reported. Treatment of TCP with heat-activated or base-activated persulfate is effective but secondary water quality impacts from high sulfate may be a concern at some locations.
 
  
===Aerobic Bioremediation===
+
==Regulatory Drivers for Transition to PFAS-Free Firefighting Formulations==
No naturally occurring microorganisms have been identified that degrade TCP under aerobic conditions<ref name="SaminJanssen2012"/>. Relatively slow aerobic cometabolism by the ammonia oxidizing bacterium [[Wikipedia: Nitrosomonas europaea | Nitrosomonas europaea]] and other populations has been reported<ref name="Vanelli1990">Vannelli, T., Logan, M., Arciero, D.M., and Hooper, A.B., 1990. Degradation of Halogenated Aliphatic Compounds by the Ammonia-Oxidizing Bacterium Nitrosomonas europaea. Applied and Environmental Microbiology, 56(4), pp. 1169–1171. [https://doi.org/10.1128/aem.56.4.1169-1171.1990 DOI: 10.1128/aem.56.4.1169-1171.1990] Free download from: [https://journals.asm.org/doi/epdf/10.1128/aem.56.4.1169-1171.1990 American Society of Microbiology]&nbsp;&nbsp; [[Media: Vannelli1990.pdf | Report.pdf]]</ref><ref name="SaminJanssen2012"/>, and genetic engineering has been used to develop organisms capable of utilizing TCP as a sole carbon source under aerobic conditions<ref name="Bosma2002">Bosma, T., Damborsky, J., Stucki, G., and Janssen, D.B., 2002. Biodegradation of 1,2,3-Trichloropropane through Directed Evolution and Heterologous Expression of a Haloalkane Dehalogenase Gene. Applied and Environmental Microbiology, 68(7), pp. 3582–3587. [https://doi.org/10.1128/AEM.68.7.3582-3587.2002 DOI: 10.1128/AEM.68.7.3582-3587.2002] Free download from: [https://journals.asm.org/doi/epub/10.1128/AEM.68.7.3582-3587.2002 American Society for Microbiology]&nbsp;&nbsp; [[Media: Bosma2002.pdf | Report.pdf]]</ref><ref name="SaminJanssen2012"/><ref name="JanssenStucki2020">Janssen, D. B., and Stucki, G., 2020. Perspectives of genetically engineered microbes for groundwater bioremediation. Environmental Science: Processes and Impacts, 22(3), pp. 487-499. [https://doi.org/10.1039/C9EM00601J DOI: 10.1039/C9EM00601J] Open access article from: [https://pubs.rsc.org/en/content/articlehtml/2020/em/c9em00601j Royal Society of Chemistry]&nbsp;&nbsp; [[Media: JanssenStucki2020.pdf | Report.pdf]]</ref>.  
+
Regulations restricting the use and release of PFAS are being proposed and promulgated worldwide, with several enacted regulations addressing the use of aqueous film forming foams (AFFF) containing PFAS<ref name="Queensland2016">Queensland (Australia) Department of Environment and Heritage Protection, 2016. Operational Policy - Environmental Management of Firefighting Foam. 16 pages. [https://environment.des.qld.gov.au/assets/documents/regulation/firefighting-foam-policy.pdf Free Download]</ref><ref>U.S. Congress, 2019. S.1790 - National Defense Authorization Act for Fiscal Year 2020. United States Library of Congress.&nbsp;&nbsp;[https://www.congress.gov/bill/116th-congress/senate-bill/1790 Text and History of Law].</ref><ref>Arizona State Legislature, 2019. Title 36, Section 1696. Firefighting foam; prohibited uses; exception; definitions. [https://www.azleg.gov/viewdocument/?docName=https://www.azleg.gov/ars/36/01696.htm Text of Law]</ref><ref>California Legislature, 2020. Senate Bill No. 1044, Chapter 308, Firefighting equipment and foam: PFAS chemicals. [https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200SB1044 Text and History of Law]</ref><ref>Arkansas General Assembly, 2021. An Act Concerning the Use of Certain Chemicals in Firefighting Foam; and for Other Purposes. Act 315, State of Arkansas. [https://trackbill.com/bill/arkansas-house-bill-1351-concerning-the-use-of-certain-chemicals-in-firefighting-foam/2008913/ Text and History of Law].</ref><ref>Espinosa, Summers, Kelly, J., Statler, Hansen, Young, 2021. Amendment to Fire Prevention and Control Act. House Bill 2722. West Virginia Legislature. [https://trackbill.com/bill/west-virginia-house-bill-2722-prohibiting-the-use-of-class-b-fire-fighting-foam-for-testing-purposes-if-the-foam-contains-a-certain-class-of-fluorinated-organic-chemicals/2047674/ Text and History of Law]</ref><ref>Louisiana Legislature, 2021. Act No. 232. [https://trackbill.com/bill/louisiana-house-bill-389-fire-protect-fire-marshal-provides-relative-to-the-discharge-or-use-of-class-b-fire-fighting-foam-containing-fluorinated-organic-chemicals/2092535/ Text and History of Law]</ref><ref>Vermont Legislature, 2021b. Act No. 36, PFAS in Class B Firefighting Foam. [https://trackbill.com/bill/vermont-senate-bill-20-an-act-relating-to-restrictions-on-perfluoroalkyl-and-polyfluoroalkyl-substances-and-other-chemicals-of-concern-in-consumer-products/1978963/  History and Text of Law]</ref>. In addition to regulated usage, firefighting formulation users are transitioning to PFAS-free firefighting formulations to reduce environmental liability in the event of a release, to reduce the cost of expensive containment systems and management of generated waste streams, and to avoid reputational damage. In 2016, Queensland, Australia was one of the first governments to ban PFAS use in firefighting foam<ref name="Queensland2016"/>. The US 2020 National Defense Authorization Act specified immediate prohibition of controlled releases of AFFF containing PFAS and required the Secretary of the Navy to publish a specification for PFAS-free firefighting formulation use and ensure it is available for use by the Department of Defense (DoD) by October 1, 2023<ref>U.S. Congress, 2021. S.2792 - National Defense Authorization Act for Fiscal Year 2021. United States Library of Congress.&nbsp;&nbsp;[https://www.congress.gov/bill/117th-congress/senate-bill/2792/ Text and History of Law].</ref>. The National Fire Protection Association (NFPA) recently removed the requirement for AFFF containing PFAS from their Standard on Aircraft Hangars and added two new chapters to allow users to determine if AFFF containing PFAS is needed at their facility<ref name="NFPA2022">National Fire Protection Association (NFPA), 2022. Codes and Standards, 409: Standard on Aircraft Hangars. [https://www.nfpa.org/codes-and-standards/4/0/9/409?l=42 NFPA Website]</ref>.
  
===Anaerobic Bioremediation===
+
==Selection of Replacement PFAS-Free Firefighting Formulations==        
Like other CVOCs, TCP has been shown to undergo biodegradation under anaerobic conditions via reductive dechlorination by [[Wikipedia:Dehalogenimonas | Dehalogenimonas (Dhg)]] species<ref name="Merrill2019"/><ref name="Yan2009">Yan, J., B.A. Rash, F.A. Rainey, and W.M. Moe, 2009. Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane. Environmental Microbiology, 11(4), pp. 833–843. [https://doi.org/10.1111/j.1462-2920.2008.01804.x DOI: 10.1111/j.1462-2920.2008.01804.x]</ref><ref name="Bowman2013">Bowman, K.S., Nobre, M.F., da Costa, M.S., Rainey, F.A., and Moe, W.M., 2013. Dehalogenimonas alkenigignens sp. nov., a chlorinated-alkane-dehalogenating bacterium isolated from groundwater. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_4), pp. 1492-1498. [https://doi.org/10.1099/ijs.0.045054-0 DOI: 10.1099/ijs.0.045054-0]  Free access article from: [https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.045054-0?crawler=true Microbiology Society]&nbsp;&nbsp; [[Media: Bowman2013.pdf | Report.pdf]]</ref><ref name="Loffler1997">Loffler, F.E., Champine, J.E., Ritalahti, K.M., Sprague, S.J. and Tiedje, J.M., 1997. Complete Reductive Dechlorination of 1, 2-Dichloropropane by Anaerobic Bacteria. Applied and Environmental Microbiology, 63(7), pp.2870-2875. Free download from: [https://journals.asm.org/doi/pdf/10.1128/aem.63.7.2870-2875.1997 American Society for Micrebiology]&nbsp;&nbsp; [[Medeia: Loffler1997.pdf | Report.pdf]]</ref><ref name="Moe2019">Moe, W.M., Yan, J., Nobre, M.F., da Costa, M.S. and Rainey, F.A., 2009. Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. International Journal of Systematic and Evolutionary Microbiology, 59(11), pp.2692-2697. [https://doi.org/10.1099/ijs.0.011502-0 DOI: 10.1099/ijs.0.011502-0] Free download from: [https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.011502-0?crawler=true Microbiology Society]&nbsp;&nbsp; [[Media: Moe2009.pdf | Report.pdf]]</ref><ref name="SaminJanssen2012"/>. However, the kinetics are slower than for other CVOCs.  Bioaugmentation cultures containing Dehalogenimonas (KB-1 Plus, SiREM) are commercially available and have been implemented for remediation of TCP-contaminated groundwater<ref name="Schmitt2017">Schmitt, M., Varadhan, S., Dworatzek, S., Webb, J. and Suchomel, E., 2017. Optimization and validation of enhanced biological reduction of 1,2,3-trichloropropane in groundwater. Remediation Journal, 28(1), pp.17-25. [https://doi.org/10.1002/rem.21539 DOI: 10.1002/rem.21539]</ref>. One laboratory study examined the effect of pH on biotransformation of TCP over a wide range of TCP concentrations (10 to 10,000 µg/L) and demonstrated that successful reduction occurred from a pH of 5 to 9, though optimal conditions were from pH 7 to 9<ref name="Schmitt2017"/>.
+
Since they first entered the market in the 2000s, the operational capabilities of PFAS-free firefighting formulations have grown<ref>Allcorn, M., Bluteau, T., Corfield, J., Day, G., Cornelsen, M., Holmes, N.J.C., Klein, R.A., McDowall, J.G., Olsen, K.T., Ramsden, N., Ross, I., Schaefer, T.H., Weber, R., Whitehead, K., 2018. Fluorine-Free Firefighting Foams (3F) – Viable Alternatives to Fluorinated Aqueous Film-Forming Foams (AFFF). White Paper prepared for the IPEN by members of the IPEN F3 Panel and associates, POPRC-14, Rome. [https://ipen.org/sites/default/files/documents/IPEN_F3_Position_Paper_POPRC-14_12September2018d.pdf Free Download].</ref> and numerous companies are now manufacturing and delivering PFAS-free firefighting formulations for fixed systems and AFFF vehicles<ref>Ansul (Company), Ansul NFF-331 3%x3% Non-Fluorinated Foam Concentrate (Commercial Product). [https://docs.johnsoncontrols.com/specialhazards/api/khub/documents/1nbeVfynU1IW~eJcCOA0Bg/content Product Data Sheet].</ref><ref>BioEx (Company), Ecopol A+ (Commercial Product). [https://www.bio-ex.com/en/our-products/product/ecopol-aplus/ Website]</ref><ref>National Foam (Company), 2020. Avio F3 Green KHC 3%, Fluorine Free Foam Concentrate (Commercial Product). [https://nationalfoam.com/wp-content/uploads/sites/4/NMS515-Avio-Green-KHC-3-FF.pdf Safety Data Sheet]</ref>. Key factors in the selection of a PFAS-free firefighting formulation product are compatibility of the new formulation with the existing system (as confirmed by a fire protection engineer) and environmental certifications (i.e., verifying the absence of organic fluorine or PFAS or the absence of other non-fluorine environmental contaminants).
  
As with other microbial cultures capable of reductive dechlorination, coordinated amendment with a fermentable organic substrate (e.g. lactate or vegetable oil), also known as biostimulation, creates reducing conditions in the aquifer and provides a source of hydrogen which is required as the primary electron donor for reductive dechlorination.  
+
In January 2023, the US Department of Defense (DoD) published the [https://media.defense.gov/2023/Jan/12/2003144157/-1/-1/1/MILITARY-SPECIFICATION-FOR-FIRE-EXTINGUISHING-AGENT-FLUORINE-FREE-FOAM-F3-LIQUID-CONCENTRATE-FOR-LAND-BASED-FRESH-WATER-APPLICATIONS.PDF Performance Specification for Fire Extinguishing Agent, Fluorine-Free Foam (F3) Liquid Concentrate for Land-Based, Fresh Water Applications]<ref name="DoD2023"/>. This Military Performance Specification (Mil-Spec) allows PFAS-free firefighting formulations to be certified as meeting certain standardized operational goals for use in military settings. In addition to Mil-Spec requirements, PFAS-free firefighting formulations can also be certified through Underwriters Laboratories Standard for Safety, Foam Equipment and Liquid Concentrates, UL 162, which requires the new firefighting formulations be investigated for suitability and compatibility with the specific equipment with which they are intended to be used<ref>Underwriters Laboratories Inc., 2018. UL162, UL Standard for Safety, Foam Equipment and Liquid Concentrates, 8th Edition, Revised 2022. 40 pages. [https://global.ihs.com/doc_detail.cfm?document_name=UL%20162&item_s_key=00096960 Website]</ref>. Several PFAS-free foams have been certified under various parts of EN1568, the European Standard which specifies the necessary foam properties and performance requirements<ref>European Standards, 2018. CSN EN 1568-1 ed. 2: Fire extinguishing media - Foam concentrates - Part 1: Specification for medium expansion foam concentrates for surface application to water-immiscible liquids. 48 pages. [https://www.en-standard.eu/csn-en-1568-1-ed-2-fire-extinguishing-media-foam-concentrates-part-1-specification-for-medium-expansion-foam-concentrates-for-surface-application-to-water-immiscible-liquids/ European Standards Website.]</ref>. Both [https://serdp-estcp.mil/ ESTCP and SERDP] have supported (and continue to support) the development and field validation of PFAS-free firefighting formulations (e.g. [https://serdp-estcp.mil/projects/details/baa72637-e3c8-40ee-a007-f295311c72ad WP22-7456], [https://serdp-estcp.mil/projects/details/1bed98f7-dbe6-4bdd-98d2-1f9cfeb5f3d9/wp21-3465-project-overview WP21-3465], [https://serdp-estcp.mil/projects/details/bc932800-cfc8-4e86-a212-5f8c9d27f17c WP20-1535]). Both the US Federal Aviation Administration (FAA) and National Fire Protection Association (NFPA) have performed a variety of foam certification tests on numerous PFAS-free firefighting formulations<ref>Back, G.G., Farley, J.P., 2020. Evaluation of the Fire Protection Effectiveness of Fluorine Free Firefighting Foams. National Fire Protection Association, Fire Protection Research Foundation. [https://www.iafc.org/docs/default-source/1safehealthshs/effectivenessofflourinefreefoam.pdf Free Download].</ref><ref>Casey, J., Trazzi, D., 2022. Fluorine-Free Foam Testing. Federal Aviation Administration (FAA) Final Report. [https://www.airporttech.tc.faa.gov/DesktopModules/EasyDNNNews/DocumentDownload.ashx?portalid=0&moduleid=3682&articleid=2882&documentid=3054  Open Access Article]</ref>.
  
A 2016 field demonstration of ''in situ'' bioremediation (ISB) was performed in California’s Central Valley at a former agricultural chemical site with relatively low TCP concentrations (2 µg/L). The site was first biostimulated by injecting amendments of emulsified vegetable oil (EVO) and lactate, which was followed by bioaugmentation with a microbial consortium containing Dhg. After an initial lag period of six months, TCP concentrations decreased to below laboratory detection limits (<0.005 µg/L)<ref name="Schmitt2017"/>.
+
==Selection of Flushing Agent==
 +
General industry guidance has typically recommended several rinses with water to remove PFAS from impacted equipment. Owing to the unique physical and chemical properties of PFAS, the use of room temperature water to remove PFAS from impacted equipment has not been very effective. To address these recalcitrant accumulations, companies are developing new methods to remove self-assembled PFAS bilayers from existing fire-fighting infrastructure so that it can be successfully transitioned to PFAS-free formulations. Arcadis developed a non-toxic cleaning agent, Fluoro Fighter<sup>TM</sup>, which has been demonstrated to be effective for removal of PFAS from equipment by disrupting the accumulated layers of PFAS coating the AFFF-wetted surfaces.  
  
The 2016 field demonstration was expanded to full-scale treatment in 2018 with biostimulation and bioaugmentation occurring over several months. The initial TCP concentration in performance monitoring wells ranged from 0.008 to 1.7 µg/L. As with the field demonstration, a lag period of approximately 6 to 8 months was observed before TCP was degraded, after which concentrations declined over fifteen months to non-detectable levels (less than 0.005 µg/L). TCP degradation was associated with increases in Dhg population and propene concentration. Long term monitoring showed that TCP remained at non-detectable levels for at least three years following treatment implementation<ref name="Merrill2019"/>.
+
Laboratory studies have supported the optimization of this PFAS removal method in fire suppression system piping obtained from a commercial airport hangar in Sydney, Australia<ref name="LangEtAl2022"/>. Prior to removal from the hangar, the stainless-steel pipe held PFAS-containing AFFF for more than three decades. Results indicated that Fluoro Fighter<sup>TM</sup>, as well as flushing at elevated temperatures, removed more surface associated PFAS in comparison to equivalent extractions using methanol or water at room temperature. ESTCP has supported (and continues to support) the development and field validation of best practices for methodologies to clean foam delivery systems (e.g. [https://serdp-estcp.mil/projects/details/1521652f-a8b2-4c52-9232-c1018989a6b1 ER20-5364], [https://serdp-estcp.mil/projects/details/6d0750be-f20b-4765-bdfa-872adccaf37a ER20-5361], [https://serdp-estcp.mil/projects/details/0aa2fb20-b851-4b5b-ac64-e72795986b8a ER20-5369], [https://serdp-estcp.mil/projects/details/4fd2e4ab-ddb7-40f8-835e-e1d637c0d650 ER21-7229]).
  
==Treatment Comparisons and Considerations==  
+
==PFAS Verification Testing==
When selecting a technology for TCP treatment, considerations include technical feasibility, ability to treat to regulated levels, potential secondary water quality impacts and relative costs. A comparison of some TCP treatment technologies is provided in Table 2.  
+
In general, PFAS sampling techniques used to support firefighting formulation transition activities are consistent with conventional sampling techniques used in the environmental industry, but special consideration is made regarding high concentration PFAS materials, elevated detection levels, cross-contamination potential, precursor content, and matrix interferences. The analytical method selected should be appropriate for the regulatory requirements in the site area.
  
{| class="wikitable" style="float:right; margin-left:10px;text-align:center;"
+
==Rinsate Treatment==
|+Table 2.  Advantages and limitations of TCP treatment technologies<ref name="Kane2020"/>
+
Numerous technologies for treatment of PFAS-impacted water sources, including rinsates, have been and are currently being developed. These include separation technologies such as [[PFAS Ex Situ Water Treatment|foam fractionation, nanofiltration, sorbents/flocculants, ion exchange resins, reverse osmosis, and destructive technologies such as sonolysis, electrochemical oxidation, hydrothermal alkaline treatment]], [[PFAS Treatment by Electrical Discharge Plasma |enhanced contact plasma]], and [[Supercritical Water Oxidation (SCWO) |supercritical water oxidation (SCWO)]]. Many of these technologies have rapidly developed from bench-scale (e.g., microcosms, columns, single reactors) to commercially available field-scale units capable of managing PFAS-impacted waters of varying waste volumes and PFAS compositions and concentrations. Ongoing field research continues to improve the treatment efficiency, reliability, and versatility of these technologies, both individually and as coupled treatment solutions (e.g., treatment train). ESTCP has supported (and continues to support) the development and field validation of separation and destructive technologies for treatment of PFAS-impacted water sources, including rinsates (e.g. [https://serdp-estcp.mil/projects/details/0c7af048-3a00-471f-9480-292aa78ecd4f ER20-5370], [https://serdp-estcp.mil/projects/details/0aa2fb20-b851-4b5b-ac64-e72795986b8a ER20-5369], [https://serdp-estcp.mil/projects/details/0d7c91a8-d755-4876-a8bb-c3e896feee0d ER20-5350], [https://serdp-estcp.mil/projects/details/790e2dda-1f7b-4ff5-b77e-08ed10a456b1 ER20-5355]).
|-
 
! Technology
 
! Advantages
 
! Limitations
 
|-
 
| ZVZ
 
| style="text-align:left;" |
 
* Can degrade TCP at relatively high and low concentrations
 
* Faster reaction rates than ZVI
 
* Material is commercially available
 
| style="text-align:left;" |
 
* Higher cost than ZVI
 
* Difficult to distribute in subsurface ''in situ'' applications
 
|-
 
| Groundwater</br>Extraction and</br>Treatment
 
| style="text-align:left;" |
 
* Can cost-effectively capture and treat larger, more dilute</br>groundwater plumes than ''in situ'' technologies
 
* Well understood and widely applied technology
 
| style="text-align:left;" |
 
* Requires construction, operation and maintenance of</br>aboveground treatment infrastructure
 
* Typical technologies (e.g. GAC) may be expensive due</br>to treatment inefficiencies
 
|-
 
| ZVI
 
| style="text-align:left;" |
 
* Can degrade TCP at relatively high and low concentrations
 
* Lower cost than ZVZ
 
* Material is commercially available
 
| style="text-align:left;" |
 
* Lower reactivity than ZVZ, therefore may require higher</br>ZVI volumes or thicker PRBs
 
* Difficult to distribute in subsurface ''in situ'' applications
 
|-
 
| ISCO
 
| style="text-align:left;" |
 
* Can degrade TCP at relatively high and low concentrations
 
* Strategies to distribute amendments ''in situ'' are well established
 
* Material is commercially available
 
| style="text-align:left;" |
 
* Most effective oxidants (e.g., base-activated or heat-activated</br>persulfate) are complex to implement
 
* Secondary water quality impacts (e.g., high pH, sulfate, </br>hexavalent chromium) may limit ability to implement
 
|-
 
| ''In Situ''</br>Bioremediation
 
| style="text-align:left;" |
 
* Can degrade TCP at moderate to high concentrations
 
* Strategies to distribute amendments ''in situ'' are well established
 
* Materials are commercially available and inexpensive
 
| style="text-align:left;" |
 
* Slower reaction rates than ZVZ or ISCO
 
|}
 
  
==Summary==
+
Remedy selection for treatment of rinsates involves several key factors. It is critical that environmental practitioners have up-to-date technical and practical knowledge on the suitability of these remedial options for different site conditions, treatment volumes, PFAS composition (e.g., presence of precursors, co-contaminants), PFAS concentrations, safety considerations, potential for undesired byproducts (e.g., perchlorate, disinfection byproducts), and treatment costs (e.g., energy demand, capital costs, operational labor).
The relatively high toxicity of TCP has led to the development of health-based drinking water concentration values that are very low. TCP is sometimes present in groundwater and in public water systems at concentrations that exceed these health-based goals. While a handful of states have established MCLs for TCP, US federal regulatory determination is hindered by the lack of low-concentration occurrence data. Because TCP is persistent in groundwater and resistant to typical remediation methods (or costly to treat), specialized strategies may be needed to meet drinking-water-based treatment goals. ''In situ'' chemical reduction (ISCR) with zero valent zinc (ZVZ) and ''in situ'' bioremediation have been demonstrated to be effective for TCP remediation.
 
  
 
==References==
 
==References==
Line 178: Line 73:
  
 
==See Also==
 
==See Also==
ATSDR Toxicological Profile: https://www.atsdr.cdc.gov/ToxProfiles/TP.asp?id=912&tid=186
+
[https://portal.ct.gov/-/media/CFPC/KO/2022/Latest-News/DESPP-DEEP-AFFF-MuniFDupdate-2022-05-26.pdf  Connecticut Take-Back Program for municipal fire departments using AFFF containing PFAS]
  
EPA Technical Fact Sheet: https://www.epa.gov/sites/production/files/2014-03/documents/ffrrofactsheet_contaminant_tcp_january2014_final.pdf
+
[https://www.arcadis.com/en-us/knowledge-hub/blog/united-states/johnsie-lang/2021/transitioning-to-pfas-free-firefighting  Arcadis blog on Fluoro Fighter<sup>TM</sup>]
  
Cal/EPA State Water Resources Control Board Groundwater Information Sheet: http://www.waterboards.ca.gov/gama/docs/coc_tcp123.pdf
+
[https://serdp-estcp.mil/projects/details/1521652f-a8b2-4c52-9232-c1018989a6b1  Project Summary ESTCP ER20-5634: Demonstration and Validation of Environmentally Sustainable Methods to Effectively Remove PFAS from Fire Suppression Systems]
  
California Water Boards Fact Sheet: http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/123-tcp/123tcp_factsheet.pdf
+
[https://serdp-estcp.org/projects/details/0d7c91a8-d755-4876-a8bb-c3e896feee0d  Project Summary ESTCP ER20-5350: Supercritical Water Oxidation (SCWO) for Complete PFAS Destruction]

Revision as of 14:04, 29 March 2024

Transition of Aqueous Film Forming Foam (AFFF) Fire Suppression Infrastructure Impacted by Per and Polyfluoroalkyl Substances (PFAS)

Per and polyfluoroalkyl substances (PFAS) contained in Class B aqueous film-forming foams (AFFFs) are known to accumulate on wetted surfaces of many fire suppression systems after decades of exposure[1]. When replacement PFAS-free firefighting formulations are added to existing infrastructure, PFAS can rebound from the wetted surfaces into the new formulations at high concentrations[2][3]. Effective methods are needed to properly transition to PFAS-free firefighting formulations in existing fire suppression infrastructure. Considerations in the transition process may include but are not limited to locating, identifying, and evaluating existing systems and AFFF, fire engineering evaluations, system prioritization, cost/downtime analyses, sampling and analysis, evaluation of risks and hazards to human health and the environment, transportation, and disposal.

Related Article(s):

Contributor(s):

Key Resource(s):

Introduction

Figure 1. (A) Schematic of a typical PFAS molecule demonstrating the hydrophobic fluorinated tail in green and the hydrophilic charged functional group in blue, (B) a PFAS bilayer formed with the hydrophobic tails facing inward and the charged functional groups on the outside, and (C) multiple bilayers of PFAS assembled on the wetted surfaces of fire suppression piping.

PFAS are a class of synthetic fluorinated compounds which are highly mobile and persistent within the environment[5]. Due to the surfactant properties of PFAS, these compounds self-assemble at any solid-liquid interface forming resilient bilayers during prolonged exposure[6]. Solid phase accumulation of PFAS has been proposed to be influenced by both hydrophobic and electrostatic interactions with fluorinated carbon chain length as the dominant feature influencing sorption[7]. While the majority of previous research into solid phase sorption typically focused on water treatment applications or subsurface porous media[8], recently PFAS accumulations have been identified on the wetted surfaces of fire suppression infrastructure exposed to aqueous film forming foam (AFFF)[1] (see Figure 1).

Fire suppression systems with potential PFAS impacts include fire fighting vehicles that carried AFFF and fixed suppression systems in buildings containing large amounts of flammable materials such as aircraft hangars (Figure 2). PFAS residue on the wetted surfaces of existing infrastructure can rebound into replacement PFAS-free firefighting formulations if not removed during the transition process[2]. Simple surface rinsing with water and low-pressure washing has been proven to be inefficient for removal of surface bound PFAS from piping and tanks that contained fluorinated AFFF[2]

Figure 2. Fixed fire suppression system for an aircraft hangar, with storage tank on left and distribution piping on right.

In addition to proper methods for system cleaning to remove residual PFAS, transition to PFAS-free foam may also include consideration of compliance with state and federal regulations, selection of the replacement PFAS-free firefighting formulation, a cost benefit analysis for replacement of the system components versus cleaning, and PFAS verification testing. Foam transition should be completed in a manner which minimizes the volume of waste generated as well as preventing any PFAS release into the environment.

PFAS Assembly on Solid Surfaces

The self-assembly of amphiphilic molecules into supramolecular bilayers is a result of their structure and how it interacts with the bulk water of a solution. Single chain hydrocarbon based amphiphiles can form micelles under relatively dilute aqueous concentrations, however for hydrocarbon based surfactants the formation of more complex organized system such as vesicles is rarely seen, requiring double chain amphiphiles such as phospholipids. Associations of single chain cationic and anionic hydrocarbon based amphiphiles into stable supramolecular structures such as vesicles has however been demonstrated[9], with the ion pairing of the polar head groups mimicking the a double tail situation. The behavior of single chain fluorosurfactant amphiphiles has been demonstrated to be significantly different from similar hydrocarbon based analogues. Not only are critical micelle concentrations (CMC) of fluorosurfactants typically two orders of magnitude lower than corresponding hydrocarbon surfactants but self-assembly can occur even when fluorosurfactants are dispersed at low concentrations significantly below the CMC in water and other solvents[10]. The assembly of fluorinated amphiphiles structurally similar to those found in AFFF have been shown to readily form stable, complex structures including vesicles, fibers, and globules at concentrations as low as 0.5% w/v in contrast to their hydrocarbon analogues which remained fluid at 30% w/v[11][12].

Krafft found that fluorinated amphiphiles formed bilayer membranes with phospholipids, and that the resulting vesicles were more stable than those made of phospholipids alone[13]. The similarities in amphiphilic properties between phospholipids and the hydrocarbon-based surfactants in AFFF suggests that bilayer vesicles may form between these and the fluorosurfactants also present in the concentrate. Krafft demonstrated that both the permeability of resulting mixed vesicles and their propensity to fuse with each other at increasing ionic strength was reduced as a result of the creation of an inert hydrophobic and lipophobic film within the membrane, and also suggested that the fluorinated amphiphiles increased van der Waals interactions in the hydrocarbon region[13]. Thus this low permeability may allow vesicles formed by the surfactants present in AFFF to act as long term repositories of PFAS not only as part of the bilayer itself but also solvated within the vesicle. This prediction is supported by the observation that supramolecular structures formed from single chain fluorinated amphiphiles have been demonstrated to be stable at elevated temperature (15 min at 121°C) and have been shown to be stable over periods of months, even increasing in size over time when stored at environmentally relevant temperatures[12].

Formation of complex structures at relatively low solute concentrations requires the monomer molecules to be well ordered to maintain tight packing in the supramolecular structure[14]. This order results from electrostatic forces, hydrogen bonding, and in the case of fluorinated amphiphiles, hydrophobic interactions. The geometry of the amphiphile also potentially contributes to the type of supramolecular aggregation[15]. Surfactants which adopt a conical shape (such as a typical hydrocarbon based surfactant with a large polar head group and a single alkyl chain as a tail) tend to form micelles more easily. Increasing the bulk of the tail makes the surfactant more cylindrically shaped which makes assembly into bilayers more likely.

Perfluoroalkyl chains are significantly more bulky than their hydrocarbon based analogues both in cross sectional area (28-30 Å2 versus 20 Å2, respectively) and mean volume (CF2 and CF3 estimated as 38 Å3 and 92 Å3 compared to 27 Å3 and 54 Å3 for CH2 and CH3)[13][10]. Structural studies on linear PFOS have shown that the molecule adopts an unusual helical structure[16][17] in aqueous and solvent phases to alleviate steric hindrance. This arrangement results from the carbon chain starting in the planar all anti conformation and then successively twisting all the CC-CC dihedrals by 15°-20° in the same direction[18]. The conformation also minimizes the electrostatic repulsion between fluorine atoms bonded to the same side of the carbon backbone by maximizing the interatomic distances between them[17].

A consequence of the helical structure is that there is limited carbon-carbon bond rotation within the perfluoroalkyl chain giving them increased rigidity compared to alkyl chains[19]. The bulkiness of the perfluoroalkyl chain confers a cylindrical shape on the fluorosurfactant amphiphile and therefore favors the formation of bilayers and vesicles the aggregation of which is further assisted by the rigidity of the molecules which allow close packing in the supramolecular structure. Fluorosurfactants therefore cannot be regarded as more hydrophobic analogues of hydrogenated surfactants. Their self-assembly behavior is characterized by a strong tendency to form vesicles and lamellar phases rather than micelles, due to the bulkiness and rigidity of the perfluoroalkyl chain that tends to decrease the curvature of the aggregates they form in solution[20]. The larger tail cross section of fluorinated compared to hydrogenated amphiphiles tends to favor the formation of aggregates with lesser surface curvature, therefore rather than micelles they form bilayer membranes, vesicles, tubules and fibers[21][22][23][24]. Rojas et al. (2002) demonstrated that perfluorooctyl sulphonamide formed a contiguous bilayer at 50 mg/L with self-assembled aggregates present at concentrations as low as 10 mg/L[25].

Thermodynamics of PFAS Accumulations on Solid Surfaces

The thermodynamics of formation of amphiphiles into supramolecular species requires consideration of both hydrophobic and hydrophilic interactions resulting from the amphoteric nature of the molecule. The hydrophilic portions of the molecule are driven to maximize their solvation interaction with as many water molecules as possible, whereas the hydrophobic portions of the molecule are driven to aggregate together thus minimizing interaction with the bulk water. Both of these processes change the enthalpy and entropy of the system.

In aqueous solution, the hydrophilic portions of an amphiphile form hydrogen bonds (4 - 120 kJ/mol) and van der Waals interactions (<5 kJ/mol) with water molecules and surfaces, and electrostatic interactions (5 – 300 kJ/mol) can also occur where the amphiphile is ionic[26]. These interactions, although weak compared to intramolecular covalent bonds within a molecule are energetically favorable and increase the enthalpy of the combined solute-solvent system. Thus, the hydrophilic portion of an amphiphile will look to maximize enthalpic gain through hydrogen bond interactions with the bulk water.

The hydrophobic portion of an amphiphile cannot form hydrogen bonds with the bulk solution, and its presence disrupts the hydrogen bond interactions between individual water molecules within the bulk water matrix. This disruption lowers the entropy of the system by reducing the degrees of translational rotational freedom available to the bulk water. The second law of thermodynamics dictates that a system will arrange itself to maximize its entropy. With hydrophobic species this can be achieved by their spontaneous aggregation, as the reduction in solution entropy of the aggregated system is less than that which would occur if the component parts were solvated individually. These hydrophobic and hydrophilic interactions are weak, and the individual entropy gain per amphiphile upon aggregation is very small. However, taken together the overall effect on the entropy of the aggregate is sufficient to maintain it in solution, and moreover these interactions make the aggregates resistant to minor perturbations while retaining the reversibility of the self-assembled structure[26].

Regulatory Drivers for Transition to PFAS-Free Firefighting Formulations

Regulations restricting the use and release of PFAS are being proposed and promulgated worldwide, with several enacted regulations addressing the use of aqueous film forming foams (AFFF) containing PFAS[27][28][29][30][31][32][33][34]. In addition to regulated usage, firefighting formulation users are transitioning to PFAS-free firefighting formulations to reduce environmental liability in the event of a release, to reduce the cost of expensive containment systems and management of generated waste streams, and to avoid reputational damage. In 2016, Queensland, Australia was one of the first governments to ban PFAS use in firefighting foam[27]. The US 2020 National Defense Authorization Act specified immediate prohibition of controlled releases of AFFF containing PFAS and required the Secretary of the Navy to publish a specification for PFAS-free firefighting formulation use and ensure it is available for use by the Department of Defense (DoD) by October 1, 2023[35]. The National Fire Protection Association (NFPA) recently removed the requirement for AFFF containing PFAS from their Standard on Aircraft Hangars and added two new chapters to allow users to determine if AFFF containing PFAS is needed at their facility[36].

Selection of Replacement PFAS-Free Firefighting Formulations

Since they first entered the market in the 2000s, the operational capabilities of PFAS-free firefighting formulations have grown[37] and numerous companies are now manufacturing and delivering PFAS-free firefighting formulations for fixed systems and AFFF vehicles[38][39][40]. Key factors in the selection of a PFAS-free firefighting formulation product are compatibility of the new formulation with the existing system (as confirmed by a fire protection engineer) and environmental certifications (i.e., verifying the absence of organic fluorine or PFAS or the absence of other non-fluorine environmental contaminants).

In January 2023, the US Department of Defense (DoD) published the Performance Specification for Fire Extinguishing Agent, Fluorine-Free Foam (F3) Liquid Concentrate for Land-Based, Fresh Water Applications[4]. This Military Performance Specification (Mil-Spec) allows PFAS-free firefighting formulations to be certified as meeting certain standardized operational goals for use in military settings. In addition to Mil-Spec requirements, PFAS-free firefighting formulations can also be certified through Underwriters Laboratories Standard for Safety, Foam Equipment and Liquid Concentrates, UL 162, which requires the new firefighting formulations be investigated for suitability and compatibility with the specific equipment with which they are intended to be used[41]. Several PFAS-free foams have been certified under various parts of EN1568, the European Standard which specifies the necessary foam properties and performance requirements[42]. Both ESTCP and SERDP have supported (and continue to support) the development and field validation of PFAS-free firefighting formulations (e.g. WP22-7456, WP21-3465, WP20-1535). Both the US Federal Aviation Administration (FAA) and National Fire Protection Association (NFPA) have performed a variety of foam certification tests on numerous PFAS-free firefighting formulations[43][44].

Selection of Flushing Agent

General industry guidance has typically recommended several rinses with water to remove PFAS from impacted equipment. Owing to the unique physical and chemical properties of PFAS, the use of room temperature water to remove PFAS from impacted equipment has not been very effective. To address these recalcitrant accumulations, companies are developing new methods to remove self-assembled PFAS bilayers from existing fire-fighting infrastructure so that it can be successfully transitioned to PFAS-free formulations. Arcadis developed a non-toxic cleaning agent, Fluoro FighterTM, which has been demonstrated to be effective for removal of PFAS from equipment by disrupting the accumulated layers of PFAS coating the AFFF-wetted surfaces.

Laboratory studies have supported the optimization of this PFAS removal method in fire suppression system piping obtained from a commercial airport hangar in Sydney, Australia[1]. Prior to removal from the hangar, the stainless-steel pipe held PFAS-containing AFFF for more than three decades. Results indicated that Fluoro FighterTM, as well as flushing at elevated temperatures, removed more surface associated PFAS in comparison to equivalent extractions using methanol or water at room temperature. ESTCP has supported (and continues to support) the development and field validation of best practices for methodologies to clean foam delivery systems (e.g. ER20-5364, ER20-5361, ER20-5369, ER21-7229).

PFAS Verification Testing

In general, PFAS sampling techniques used to support firefighting formulation transition activities are consistent with conventional sampling techniques used in the environmental industry, but special consideration is made regarding high concentration PFAS materials, elevated detection levels, cross-contamination potential, precursor content, and matrix interferences. The analytical method selected should be appropriate for the regulatory requirements in the site area.

Rinsate Treatment

Numerous technologies for treatment of PFAS-impacted water sources, including rinsates, have been and are currently being developed. These include separation technologies such as foam fractionation, nanofiltration, sorbents/flocculants, ion exchange resins, reverse osmosis, and destructive technologies such as sonolysis, electrochemical oxidation, hydrothermal alkaline treatment, enhanced contact plasma, and supercritical water oxidation (SCWO). Many of these technologies have rapidly developed from bench-scale (e.g., microcosms, columns, single reactors) to commercially available field-scale units capable of managing PFAS-impacted waters of varying waste volumes and PFAS compositions and concentrations. Ongoing field research continues to improve the treatment efficiency, reliability, and versatility of these technologies, both individually and as coupled treatment solutions (e.g., treatment train). ESTCP has supported (and continues to support) the development and field validation of separation and destructive technologies for treatment of PFAS-impacted water sources, including rinsates (e.g. ER20-5370, ER20-5369, ER20-5350, ER20-5355).

Remedy selection for treatment of rinsates involves several key factors. It is critical that environmental practitioners have up-to-date technical and practical knowledge on the suitability of these remedial options for different site conditions, treatment volumes, PFAS composition (e.g., presence of precursors, co-contaminants), PFAS concentrations, safety considerations, potential for undesired byproducts (e.g., perchlorate, disinfection byproducts), and treatment costs (e.g., energy demand, capital costs, operational labor).

References

  1. ^ 1.0 1.1 1.2 1.3 Lang, J.R., McDonough, J., Guillette, T.C., Storch, P., Anderson, J., Liles, D., Prigge, R., Miles, J.A.L., Divine, C., 2022. Characterization of per- and polyfluoroalkyl substances on fire suppression system piping and optimization of removal methods. Chemosphere, 308(Part 2), 136254. doi: 10.1016/j.chemosphere.2022.136254   Open Access Article
  2. ^ 2.0 2.1 2.2 Ross, I., and Storch, P., 2020. Foam Transition: Is It as Simple as "Foam Out / Foam In?". The Catalyst (Journal of JOIFF, The International Organization for Industrial Emergency Services Management), Q2 Supplement, 20 pages. Industry Newsletter
  3. ^ Kappetijn, K., 2023. Replacement of fluorinated extinguishing foam: When is clean clean enough? The Catalyst (Journal of JOIFF, The International Organization for Industrial Emergency Services Management), Q1 2023, pp. 31-33. Industry Newsletter
  4. ^ 4.0 4.1 US Department of Defense, 2023. Performance Specification for Fire Extinguishing Agent, Fluorine-Free Foam (F3) Liquid Concentrate for Land-Based, Fresh Water Applications. Mil-Spec MIL-PRF-32725, 18 pages. Military Specification Document
  5. ^ Giesy, J.P., Kannan, K., 2001. Global Distribution of Perfluorooctane Sulfonate in Wildlife. Environmental Science and Technology 35(7), pp. 1339-1342. doi: 10.1021/es001834k
  6. ^ Krafft, M.P., Riess, J.G., 2015. Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability-Part one. Chemosphere, 129, pp. 4-19. doi: 10.1016/j.chemosphere.2014.08.039
  7. ^ Higgins, C.P., Luthy, R.G., 2006. Sorption of Perfluorinated Surfactants on Sediments. Environmental Science and Technology, 40(23), pp. 7251-7256. doi: 10.1021/es061000n
  8. ^ Brusseau, M.L., 2018. Assessing the Potential Contributions of Additional Retention Processes to PFAS Retardation in the Subsurface. Science of the Total Environment, 613-614, pp. 176-185. doi: 10.1016/j.scitotenv.2017.09.065  Open Access Manuscript
  9. ^ Fukuda, H., Kawata, K., Okuda, H., 1990. Bilayer-Forming Ion-Pair Amphiphiles from Single-Chain Surfactants. Journal of the American Chemical Society, 112(4), pp. 1635-1637. doi: 10.1021/ja00160a057
  10. ^ 10.0 10.1 Krafft, M.P., 2006. Highly fluorinated compounds induce phase separation in, and nanostructuration of liquid media. Possible impact on, and use in chemical reactivity control. Journal of Polymer Science Part A: Polymer Chemistry, 44(14), pp. 4251-4258. doi: 10.1002/pola.21508   Open Access Article
  11. ^ Krafft, M.P., Guilieri, F., Riess, J.G., 1993. Can Single-Chain Perfluoroalkylated Amphiphiles Alone form Vesicles and Other Organized Supramolecular Systems? Angewandte Chemie International Edition in English, 32(5), pp. 741-743. doi: 10.1002/anie.199307411
  12. ^ 12.0 12.1 Krafft, M.P., Guilieri, F., Riess, J.G., 1994. Supramolecular assemblies from single chain perfluoroalkylated phosphorylated amphiphiles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 84(1), pp. 113-119. doi: 10.1016/0927-7757(93)02681-4
  13. ^ 13.0 13.1 13.2 Krafft, M.P., Riess, J.G., 1998. Highly Fluorinated Amphiphiles and Collodial Systems, and their Applications in the Biomedical Field. A Contribution. Biochimie, 80(5-6), pp. 489-514. doi: 10.1016/S0300-9084(00)80016-4
  14. ^ Ringsdorf, H., Schlarb, B., Venzmer, J., 1988. Molecular Architecture and Function of Polymeric Oriented Systems: Models for the Study of Organization, Surface Recognition, and Dynamics of Biomembranes. Angewandte Chemie International Edition in English, 27(1), pp. 113-158. doi: 10.1002/anie.198801131
  15. ^ Israelachvili, J.N., Mitchell, D.J., Ninham, B.W., 1976. Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 72, pp. 1525-1568. doi: 10.1039/F29767201525
  16. ^ Erkoç, Ş., Erkoç, F., 2001. Structural and electronic properties of PFOS and LiPFOS. Journal of Molecular Structure: THEOCHEM, 549(3), pp. 289-293. doi:10.1016/S0166-1280(01)00553-X
  17. ^ 17.0 17.1 Torres, F.J., Ochoa-Herrera, V., Blowers, P., Sierra-Alvarez, R., 2009. Ab initio study of the structural, electronic, and thermodynamic properties of linear perfluorooctane sulfonate (PFOS) and its branched isomers. Chemosphere 76(8), pp. 1143-1149. doi: 10.1016/j.chemosphere.2009.04.009
  18. ^ Abbandonato, G., Catalano, D., Marini, A., 2010. Aggregation of Perfluoroctanoate Salts Studied by 19F NMR and DFT Calculations: Counterion Complexation, Poly(ethylene glycol) Addition, and Conformational Effects. Langmuir 26(22), pp. 16762-16770. doi: 10.1021/la102578k.
  19. ^ Barton, S.W., Goudot, A., Bouloussa, O., Rondelez, F., Lin, B., Novak, F., Acero, A., Rice, S., 1992. Structural transitions in a monolayer of fluorinated amphiphile molecules. The Journal of Chemical Physics, 96(2), pp. 1343-1351. doi: 10.1063/1.462170
  20. ^ Barton, C.A., Butler, L.E., Zarzecki, C.J., Flaherty, J., Kaiser, M., 2006. Characterizing Perfluorooctanoate in Ambient Air near the Fence Line of a Manufacturing Facility: Comparing Modeled and Monitored Values. Journal of the Air and Waste Management Association, 56, pp. 48-55. doi: 10.1080/10473289.2006.10464429  Open Access Article
  21. ^ Krafft, M.P., Guilieri, F., Riess, J.G., 1993. Can Single-Chain Perfluoroalkylated Amphiphiles Alone form Vesicles and Other Organized Supramolecular Systems? Angewandte Chemie International Edition in English, 32(5), pp. 741-743. doi: 10.1002/anie.199307411
  22. ^ Furuya, H., Moroi, Y., Kaibara, K., 1996. Solid and Solution Properties of Alkylammonium Perfluorocarboxylates. The Journal of Physical Chemistry, 100(43), pp. 17249-17254. doi: 10.1021/jp9612801
  23. ^ Giulieri, F., Krafft, M.P., 1996. Self-organization of single-chain fluorinated amphiphiles with fluorinated alcohols. Thin Solid Films, 284-285, pp. 195-199. doi: 10.1016/S0040-6090(95)08304-9
  24. ^ Gladysz, J.A., Curran, D.P., Horvath, I.T., 2004. Handbook of Fluorous Chemistry. WILEY-VCH Verlag GmbH & Co. KGaA,, Weinheim, Germany. ISBN: 3-527-30617-X
  25. ^ Rojas, O.J., Macakova, L., Blomberg, E., Emmer, A., and Claesson, P.M., 2002. Fluorosurfactant Self-Assembly at Solid/Liquid Interfaces. Langmuir, 18(21), pp. 8085-8095. doi: 10.1021/la025989c
  26. ^ 26.0 26.1 Lombardo, D., Kiselev, M.A., Magazù, S., Calandra, P., 2015. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Advances in Condensed Matter Physics, vol. 2015, article ID 151683, 22 pages. doi: 10.1155/2015/151683   Open Access Article
  27. ^ 27.0 27.1 Queensland (Australia) Department of Environment and Heritage Protection, 2016. Operational Policy - Environmental Management of Firefighting Foam. 16 pages. Free Download
  28. ^ U.S. Congress, 2019. S.1790 - National Defense Authorization Act for Fiscal Year 2020. United States Library of Congress.  Text and History of Law.
  29. ^ Arizona State Legislature, 2019. Title 36, Section 1696. Firefighting foam; prohibited uses; exception; definitions. Text of Law
  30. ^ California Legislature, 2020. Senate Bill No. 1044, Chapter 308, Firefighting equipment and foam: PFAS chemicals. Text and History of Law
  31. ^ Arkansas General Assembly, 2021. An Act Concerning the Use of Certain Chemicals in Firefighting Foam; and for Other Purposes. Act 315, State of Arkansas. Text and History of Law.
  32. ^ Espinosa, Summers, Kelly, J., Statler, Hansen, Young, 2021. Amendment to Fire Prevention and Control Act. House Bill 2722. West Virginia Legislature. Text and History of Law
  33. ^ Louisiana Legislature, 2021. Act No. 232. Text and History of Law
  34. ^ Vermont Legislature, 2021b. Act No. 36, PFAS in Class B Firefighting Foam. History and Text of Law
  35. ^ U.S. Congress, 2021. S.2792 - National Defense Authorization Act for Fiscal Year 2021. United States Library of Congress.  Text and History of Law.
  36. ^ National Fire Protection Association (NFPA), 2022. Codes and Standards, 409: Standard on Aircraft Hangars. NFPA Website
  37. ^ Allcorn, M., Bluteau, T., Corfield, J., Day, G., Cornelsen, M., Holmes, N.J.C., Klein, R.A., McDowall, J.G., Olsen, K.T., Ramsden, N., Ross, I., Schaefer, T.H., Weber, R., Whitehead, K., 2018. Fluorine-Free Firefighting Foams (3F) – Viable Alternatives to Fluorinated Aqueous Film-Forming Foams (AFFF). White Paper prepared for the IPEN by members of the IPEN F3 Panel and associates, POPRC-14, Rome. Free Download.
  38. ^ Ansul (Company), Ansul NFF-331 3%x3% Non-Fluorinated Foam Concentrate (Commercial Product). Product Data Sheet.
  39. ^ BioEx (Company), Ecopol A+ (Commercial Product). Website
  40. ^ National Foam (Company), 2020. Avio F3 Green KHC 3%, Fluorine Free Foam Concentrate (Commercial Product). Safety Data Sheet
  41. ^ Underwriters Laboratories Inc., 2018. UL162, UL Standard for Safety, Foam Equipment and Liquid Concentrates, 8th Edition, Revised 2022. 40 pages. Website
  42. ^ European Standards, 2018. CSN EN 1568-1 ed. 2: Fire extinguishing media - Foam concentrates - Part 1: Specification for medium expansion foam concentrates for surface application to water-immiscible liquids. 48 pages. European Standards Website.
  43. ^ Back, G.G., Farley, J.P., 2020. Evaluation of the Fire Protection Effectiveness of Fluorine Free Firefighting Foams. National Fire Protection Association, Fire Protection Research Foundation. Free Download.
  44. ^ Casey, J., Trazzi, D., 2022. Fluorine-Free Foam Testing. Federal Aviation Administration (FAA) Final Report. Open Access Article

See Also

Connecticut Take-Back Program for municipal fire departments using AFFF containing PFAS

Arcadis blog on Fluoro FighterTM

Project Summary ESTCP ER20-5634: Demonstration and Validation of Environmentally Sustainable Methods to Effectively Remove PFAS from Fire Suppression Systems

Project Summary ESTCP ER20-5350: Supercritical Water Oxidation (SCWO) for Complete PFAS Destruction