Difference between revisions of "User:Jhurley/sandbox"

From Enviro Wiki
Jump to: navigation, search
(Darcy Velocity and Seepage Velocity)
(Technical Performance)
 
(680 intermediate revisions by the same user not shown)
Line 1: Line 1:
Groundwater migrates from areas of higher [[wikipedia: Hydraulic head | hydraulic head]] toward lower hydraulic head, transporting dissolved solutes through the combined processes of [[wikipedia: Advection | advection]] and [[wikipedia: Dispersion | dispersion]]. Advection refers to the bulk movement of solutes carried by flowing groundwater.  Dispersion refers to the spreading of the contaminant plume from highly concentrated areas to less concentrated areas.  In many groundwater transport models, solute transport is described by the advection-dispersion-reaction equation in which dispersion coefficients can be calculated as the sum of molecular diffusion, mechanical dispersion, and macrodispersion.
+
==Photoactivated Reductive Defluorination PFAS Destruction==
 
+
Photoactivated Reductive Defluorination (PRD) is a [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) | PFAS]] destruction technology predicated on [[Wikipedia: Ultraviolet | ultraviolet (UV)]] light-activated photochemical reactions. The destruction efficiency of this process is enhanced by the use of a [[Wikipedia: Surfactant | surfactant]] to confine PFAS molecules in self-assembled [[Wikipedia: Micelle | micelles]]. The photochemical reaction produces [[Wikipedia: Solvated electron | hydrated electrons]] from an electron donor that associates with the micelle. The hydrated electrons have sufficient energy to rapidly cleave fluorine-carbon and other molecular bonds of PFAS molecules due to the association of the electron donor with the micelle. Micelle-accelerated PRD is a highly efficient method to destroy PFAS in a wide variety of water matrices.
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
 
'''Related Article(s):'''
 
'''Related Article(s):'''
 +
*[[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]]
 +
*[[PFAS Sources]]
 +
*[[PFAS Transport and Fate]]
 +
*[[PFAS Ex Situ Water Treatment]]
 +
*[[Supercritical Water Oxidation (SCWO)]]
 +
*[[PFAS Treatment by Electrical Discharge Plasma]]
  
*[[Dispersion and Diffusion]]
+
'''Contributor(s):'''  
*[[Sorption of Organic Contaminants]]
+
*Dr. Suzanne Witt
*[[Plume Response Modeling]]
+
*Dr. Meng Wang
*[[Matrix Diffusion]]
+
*Dr. Denise Kay
 
 
'''CONTRIBUTOR(S):''' [[Dr. Charles Newell, P.E.|Dr. Charles Newell]] and  [[Dr. Robert Borden, P.E.|Dr. Robert Borden]]
 
  
 
'''Key Resource(s):'''
 
'''Key Resource(s):'''
 +
*Efficient Reductive Destruction of Perfluoroalkyl Substances under Self-Assembled Micelle Confinement<ref name="ChenEtAl2020">Chen, Z., Li, C., Gao, J., Dong, H., Chen, Y., Wu, B., Gu, C., 2020. Efficient Reductive Destruction of Perfluoroalkyl Substances under Self-Assembled Micelle Confinement. Environmental Science and Technology, 54(8), pp. 5178–5185. [https://doi.org/10.1021/acs.est.9b06599 doi: 10.1021/acs.est.9b06599]</ref>
 +
*Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-Acetic-Acid in Organomodified Montmorillonite<ref name="TianEtAl2016">Tian, H., Gao, J., Li, H., Boyd, S.A., Gu, C., 2016. Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-Acetic-Acid in Organomodified Montmorillonite. Scientific Reports, 6(1), Article 32949. [https://doi.org/10.1038/srep32949 doi: 10.1038/srep32949]&nbsp;&nbsp; [[Media: TianEtAl2016.pdf | Open Access Article]]</ref>
 +
*Application of Surfactant Modified Montmorillonite with Different Conformation for Photo-Treatment of Perfluorooctanoic Acid by Hydrated Electrons<ref name="ChenEtAl2019">Chen, Z., Tian, H., Li, H., Li, J. S., Hong, R., Sheng, F., Wang, C., Gu, C., 2019.  Application of Surfactant Modified Montmorillonite with Different Conformation for Photo-Treatment of Perfluorooctanoic Acid by Hydrated Electrons. Chemosphere, 235, pp. 1180–1188. [https://doi.org/10.1016/j.chemosphere.2019.07.032 doi: 10.1016/j.chemosphere.2019.07.032]</ref>
 +
*[https://serdp-estcp.mil/projects/details/c4e21fa2-c7e2-4699-83a9-3427dd484a1a ER21-7569: Photoactivated Reductive Defluorination PFAS Destruction]<ref name="WittEtAl2023">Kay, D., Witt, S., Wang, M., 2023. Photoactivated Reductive Defluorination PFAS Destruction: Final Report. ESTCP Project ER21-7569. [https://serdp-estcp.mil/projects/details/c4e21fa2-c7e2-4699-83a9-3427dd484a1a Project Website]&nbsp;&nbsp; [[Media: ER21-7569_Final_Report.pdf | Final Report.pdf]]</ref>
  
*[http://hydrogeologistswithoutborders.org/wordpress/1979-english/ Groundwater]<ref name="FandC1979">Freeze, A., and Cherry, J., 1979. Groundwater, Prentice-Hall, Englewood Cliffs, New Jersey, 604 pages. Free download from [http://hydrogeologistswithoutborders.org/wordpress/1979-english/ Hydrogeologists Without Borders].</ref>, Freeze and Cherry, 1979.
+
==Introduction==
*[https://gw-project.org/books/hydrogeologic-properties-of-earth-materials-and-principles-of-groundwater-flow/ Hydrogeologic Properties of Earth Materials and Principals of Groundwater Flow]<ref name="Woessner2020">Woessner, W.W., and Poeter, E.P., 2020. Properties of Earth Materials and Principals of Groundwater Flow, The Groundwater Project, Guelph, Ontario, 207 pages. Free download from [https://gw-project.org/books/hydrogeologic-properties-of-earth-materials-and-principles-of-groundwater-flow/ The Groundwater Project].</ref>, Woessner and Poeter, 2020.
+
[[File:WittFig1.png | thumb |600px|Figure 1. Schematic of PRD mechanism<ref name="WittEtAl2023"/>]]
 +
The&nbsp;Photoactivated&nbsp;Reductive Defluorination (PRD) process is based on a patented chemical reaction that breaks fluorine-carbon bonds and disassembles PFAS molecules in a linear fashion beginning with the [[Wikipedia: Hydrophile | hydrophilic]] functional groups and proceeding through shorter molecules to complete mineralization. Figure 1 shows how PRD is facilitated by adding [[Wikipedia: Cetrimonium bromide | cetyltrimethylammonium bromide (CTAB)]] to form a surfactant micelle cage that traps PFAS. A non-toxic proprietary chemical is added to solution to associate with the micelle surface and produce hydrated electrons via stimulation with UV light. These highly reactive hydrated electrons have the energy required to cleave fluorine-carbon and other molecular bonds resulting in the final products of fluoride, water, and simple carbon molecules (e.g., formic acid and acetic acid). The methods, mechanisms, theory, and reactions described herein have been published in peer reviewed literature<ref name="ChenEtAl2020"/><ref name="TianEtAl2016"/><ref name="ChenEtAl2019"/><ref name="WittEtAl2023"/>.
  
==Groundwater Flow==
+
==Advantages and Disadvantages==
[[File:Newell-Article 1-Fig1r.JPG|thumbnail|left|400px|Figure 1. Hydraulic gradient (typically described in units of m/m or ft/ft) is the difference in hydraulic head from Point A to Point B (ΔH) divided by the distance between them (ΔL). In unconfined aquifers, the hydraulic gradient can also be described as the slope of the water table (Adapted from course notes developed by Dr. R.J. Mitchell, Western Washington University).]]
 
Groundwater flows from areas of higher [[wikipedia: Hydraulic head | hydraulic head]] (a measure of pressure and gravitational energy) toward areas of lower hydraulic head (Figure 1). The rate of change (slope) of the hydraulic head is known as the hydraulic gradient. If groundwater is flowing and contains dissolved contaminants it can transport the contaminants by advection from areas with high hydraulic head toward lower hydraulic head zones, or “downgradient”.
 
  
===Darcy's Law===
+
===Advantages===
{| class="wikitable" style="float:right; margin-left:10px;text-align:center;"
+
In comparison to other reported PFAS destruction techniques, PRD offers several advantages:  
|+Table 1. Representative values of total porosity (''n''), effective porosity (''n<sub>e</sub>''), and hydraulic conductivity (''K'') for different aquifer materials<ref name="D&S1997">Domenico, P.A. and Schwartz, F.W., 1997. Physical and Chemical Hydrogeology, 2nd Ed. John Wiley & Sons, 528 pgs. ISBN 978-0-471-59762-9.  Available from: [https://www.wiley.com/en-us/Physical+and+Chemical+Hydrogeology%2C+2nd+Edition-p-9780471597629 Wiley]</ref><ref>McWhorter, D.B. and Sunada, D.K., 1977. Ground-water hydrology and hydraulics. Water Resources Publications, LLC, Highlands Ranch, Colorado, 304 pgs. ISBN-13: 978-1-887201-61-2 Available from: [https://www.wrpllc.com/books/gwhh.html Water Resources Publications]</ref><ref name="FandC1979" />
+
*Relative to UV/sodium sulfite and UV/sodium iodide systems, the fitted degradation rates in the micelle-accelerated PRD reaction system were ~18 and ~36 times higher, indicating the key role of the self-assembled micelle in creating a confined space for rapid PFAS destruction<ref name="ChenEtAl2020"/>. The negatively charged hydrated electron associated with the positively charged cetyltrimethylammonium ion (CTA<sup>+</sup>) forms the surfactant micelle to trap molecules with similar structures, selectively mineralizing compounds with both hydrophobic and hydrophilic groups (e.g., PFAS).
|-
+
*The PRD reaction does not require solid catalysts or electrodes, which can be expensive to acquire and difficult to regenerate or dispose.  
!Aquifer Material
+
*The aqueous solution is not heated or pressurized, and the UV wavelength used does not cause direct water [[Wikipedia: Photodissociation | photolysis]], therefore the energy input to the system is more directly employed to destroy PFAS, resulting in greater energy efficiency.  
!Total Porosity<br /><small>(dimensionless)</small>
+
*Since the reaction is performed at ambient temperature and pressure, there are limited concerns regarding environmental health and safety or volatilization of PFAS compared to heated and pressurized systems.  
!Effective Porosity<br /><small>(dimensionless)</small>
+
*Due to the reductive nature of the reaction, there is no formation of unwanted byproducts resulting from oxidative processes, such as [[Wikipedia: Perchlorate | perchlorate]] generation during electrochemical oxidation<ref>Veciana, M., Bräunig, J., Farhat, A., Pype, M. L., Freguia, S., Carvalho, G., Keller, J., Ledezma, P., 2022. Electrochemical Oxidation Processes for PFAS Removal from Contaminated Water and Wastewater: Fundamentals, Gaps and Opportunities towards Practical Implementation. Journal of Hazardous Materials, 434, Article 128886. [https://doi.org/10.1016/j.jhazmat.2022.128886 doi: 10.1016/j.jhazmat.2022.128886]</ref><ref>Trojanowicz, M., Bojanowska-Czajka, A., Bartosiewicz, I., Kulisa, K., 2018. Advanced Oxidation/Reduction Processes Treatment for Aqueous Perfluorooctanoate (PFOA) and Perfluorooctanesulfonate (PFOS) – A Review of Recent Advances. Chemical Engineering Journal, 336, pp. 170–199. [https://doi.org/10.1016/j.cej.2017.10.153 doi: 10.1016/j.cej.2017.10.153]</ref><ref>Wanninayake, D.M., 2021. Comparison of Currently Available PFAS Remediation Technologies in Water: A Review. Journal of Environmental Management, 283, Article 111977. [https://doi.org/10.1016/j.jenvman.2021.111977 doi: 10.1016/j.jenvman.2021.111977]</ref>.
!Hydraulic Conductivity<br /><small>(meters/second)</small>
+
*Aqueous fluoride ions are the primary end products of PRD, enabling real-time reaction monitoring with a fluoride [[Wikipedia: Ion-selective electrode | ion selective electrode (ISE)]], which is far less expensive and faster than relying on PFAS analytical data alone to monitor system performance.
|-
 
| colspan="4" style="text-align: left; background-color:white;" |'''Unconsolidated'''
 
|-
 
|Gravel||0.25 - 0.44||0.13 - 0.44||3×10<sup>-4</sup> - 3×10<sup>-2</sup>
 
|-
 
|Coarse Sand||0.31 - 0.46||0.18 - 0.43||9×10<sup>-7</sup> - 6×10<sup>-3</sup>
 
|-
 
|Medium Sand||—||0.16 - 0.46||9×10<sup>-7</sup> - 5×10<sup>-4</sup>
 
|-
 
|Fine Sand||0.25 - 0.53||0.01 - 0.46||2×10<sup>-7</sup> - 2×10<sup>-4</sup>
 
|-
 
|Silt, Loess||0.35 - 0.50||0.01 - 0.39||1×10<sup>-9</sup> - 2×10<sup>-5</sup>
 
|-
 
|Clay||0.40 - 0.70||0.01 - 0.18||1×10<sup>-11</sup> - 4.7×10<sup>-9</sup>
 
|-
 
| colspan="4" style="text-align: left; background-color:white;" |'''Sedimentary and Crystalline Rocks'''
 
|-
 
|Karst and Reef Limestone||0.05 - 0.50||—||1×10<sup>-6</sup> - 2×10<sup>-2</sup>
 
|-
 
|Limestone, Dolomite||0.00 - 0.20||0.01 - 0.24||1×10<sup>-9</sup> - 6×10<sup>-6</sup>
 
|-
 
|Sandstone||0.05 - 0.30||0.10 - 0.30||3×10<sup>-10</sup> - 6×10<sup>-6</sup>
 
|-
 
|Siltstone||—||0.21 - 0.41||1×10<sup>-11</sup> - 1.4×10<sup>-8</sup>
 
|-
 
|Basalt||0.05 - 0.50||—||2×10<sup>-11</sup> - 2×10<sup>-2</sup>
 
|-
 
|Fractured Crystalline Rock||0.00 - 0.10||—||8×10<sup>-9</sup> - 3×10<sup>-4</sup>
 
|-
 
|Weathered Granite||0.34 - 0.57||—||3.3×10<sup>-6</sup> - 5.2×10<sup>-5</sup>
 
|-
 
|Unfractured Crystalline Rock||0.00 - 0.05||—||3×10<sup>-14</sup> - 2×10<sup>-10</sup>
 
|}
 
In&nbsp;unconsolidated&nbsp;geologic settings (gravel, sand, silt, and clay) and highly fractured systems, the rate of groundwater movement can be expressed using [[wikipedia: Darcy's law | Darcy’s Law]]. This law is a fundamental mathematical relationship in the groundwater field and can be expressed this way:
 
  
[[File:Newell-Article 1-Equation 1rr.jpg|center|500px]]
+
===Disadvantages===
 +
*The CTAB additive is only partially consumed during the reaction, and although CTAB is not problematic when discharged to downstream treatment processes that incorporate aerobic digestors, CTAB can be toxic to surface waters and anaerobic digestors. Therefore, disposal options for treated solutions will need to be evaluated on a site-specific basis. Possible options include removal of CTAB from solution for reuse in subsequent PRD treatments, or implementation of an oxidation reaction to degrade CTAB.
 +
*The PRD reaction rate decreases in water matrices with high levels of total dissolved solids (TDS). It is hypothesized that in high TDS solutions (e.g., ion exchange still bottoms with TDS of 200,000 ppm), the presence of ionic species inhibits the association of the electron donor with the micelle, thus decreasing the reaction rate.
 +
*The PRD reaction rate decreases in water matrices with very low UV transmissivity. Low UV transmissivity (i.e., < 1 %) prevents the penetration of UV light into the solution, such that the utilization efficiency of UV light decreases.  
  
::Where:
+
==State of the Art==
:::''Q'' = Flow rate (Volume of groundwater flow per time, such as m<sup>3</sup>/yr)
 
:::''A'' = Cross sectional area perpendicular to groundwater flow (length<sup>2</sup>, such as m<sup>2</sup>)
 
:::''V<sub>D</sub>'' = “Darcy Velocity”; describes groundwater flow as the volume of flow through a unit of cross-sectional area (units of length per time, such as ft/yr)
 
:::''K'' = Hydraulic Conductivity (sometimes called “permeability”) (length per time)
 
:::''ΔH'' = Difference in hydraulic head between two lateral points (length)
 
:::''ΔL'' = Distance between two lateral points (length)
 
  
[https://en.wikipedia.org/wiki/Hydraulic_conductivity Hydraulic conductivity] (Table 1 and Figure 2) is a measure of how easily groundwater flows through a porous medium, or alternatively, how much energy it takes to force water through a porous medium. For example, fine sand has smaller pores with more frictional resistance to flow, and therefore lower hydraulic conductivity compared to coarse sand, which has larger pores with less resistance to flow (Figure 2).  
+
===Technical Performance===
 +
[[File:WittFig2.png | thumb |400px| Figure 2. Enspired Solutions<small><sup>TM</sup></small> commercial PRD PFAS destruction equipment, the PFASigator<small><sup>TM</sup></small>. Dimensions are 8 feet long by 4 feet wide by 9 feet tall.]]
  
[[File:AdvectionFig2.PNG|400px|thumbnail|left|Figure 2. Hydraulic conductivity of selected rocks<ref>Heath, R.C., 1983. Basic ground-water hydrology, U.S. Geological Survey Water-Supply Paper 2220, 86 pgs. [//www.enviro.wiki/images/c/c4/Heath-1983-Basic_groundwater_hydrology_water_supply_paper.pdf Report pdf]</ref>.]]
+
{| class="wikitable mw-collapsible" style="float:left; margin-right:20px; text-align:center;"
Darcy’s Law was first described by Henry Darcy (1856)<ref>Brown, G.O., 2002. Henry Darcy and the making of a law. Water Resources Research, 38(7), p. 1106. [https://doi.org/10.1029/2001wr000727 DOI: 10.1029/2001WR000727] [//www.enviro.wiki/images/4/40/Darcy2002.pdf Report.pdf]</ref> in a report regarding a water supply system he designed for the city of Dijon, France. Based on his experiments, he concluded that the amount of water flowing through a closed tube of sand (Figure 3) depends on (a) the change in the hydraulic head between the inlet and outlet of the tube, and (b) the hydraulic conductivity of the sand in the tube. Groundwater flows rapidly in the case of higher pressure (ΔH) or more permeable materials such as gravel or coarse sand, but flows slowly when the pressure difference is lower or the material is less permeable, such as fine sand or silt.
+
|+Table 1. Percent decreases from initial PFAS concentrations during benchtop testing of PRD treatment in different water matrices
 
 
[[File:Newell-Article 1-Fig3..JPG|500px|thumbnail|right|Figure 3. Conceptual explanation of Darcy’s Law based on Darcy’s experiment (Adapted from course notes developed by Dr. R.J. Mitchell, Western Washington University).]]
 
Since&nbsp;Darcy’s&nbsp;time,&nbsp;Darcy’s Law has been extended to develop a useful variation of Darcy's formula that calculates the actual velocity that the groundwater is moving in units such as meters traveled per year. This quantity is called “interstitial velocity” or “seepage velocity” and is calculated by dividing the Darcy Velocity (flow per unit area) by the actual open pore area where groundwater is flowing, the “effective porosity”&nbsp;(Table 1):
 
 
 
[[File:Newell-Article 1-Equation 2r.jpg|400px]]
 
 
 
:Where:
 
::''V<sub>S</sub>'' = “interstitial velocity” or “seepage velocity” (units of length per time, such as m/sec)<br />
 
::''V<sub>D</sub>'' = “Darcy Velocity”; describes groundwater flow as the volume of flow per unit area per time (also units of length per time)<br />
 
::''n<sub>e</sub>'' = Effective porosity - fraction of cross section available for groundwater flow (unitless)
 
 
 
Effective porosity is smaller than total porosity. The difference is that total porosity includes some dead-end pores that do not support groundwater. Typical values for total and effective porosity are&nbsp;shown&nbsp;in&nbsp;Table&nbsp;1.
 
 
 
[[File:Newell-Article 1-Fig4.JPG|500px|thumbnail|left|Figure 4.  Difference between Darcy Velocity (also called Specific Discharge) and Seepage Velocity (also called Interstitial Velocity).]]
 
 
 
===Darcy Velocity and Seepage Velocity===
 
In&nbsp;groundwater&nbsp;calculations, Darcy Velocity and Seepage Velocity are used for different purposes. For any calculation where the actual flow rate in units of volume per time (such as liters per day or gallons per minute) is involved, the original Darcy Equation should be used (calculate ''V<sub>D</sub>'', Equation 1) without using effective porosity. When calculating solute travel time however, the seepage velocity calculation (''V<sub>S</sub>'', Equation 2) must be used and an estimate of effective porosity is required. Figure 4 illustrates the differences between Darcy Velocity and&nbsp;Seepage&nbsp;Velocity.
 
 
 
===Mobile Porosity===
 
{| class="wikitable" style="float:right; margin-left:10px; text-align:center;"
 
|+Table 2. Mobile porosity estimates from 15 tracer tests<ref name="Payne2008">Payne, F.C., Quinnan, J.A. and Potter, S.T., 2008. Remediation Hydraulics. CRC Press. ISBN 9780849372490  Available from: [https://www.routledge.com/Remediation-Hydraulics/Payne-Quinnan-Potter/p/book/9780849372490 CRC Press]</ref>
 
 
|-
 
|-
!Aquifer Material
+
! Analytes
!Mobile Porosity<br /><small>(volume fraction)</small>
+
!
 +
! GW
 +
! FF
 +
! AFFF<br>Rinsate
 +
! AFF<br>(diluted 10X)
 +
! IDW NF
 
|-
 
|-
|Poorly sorted sand and gravel||0.085
+
| &Sigma; Total PFAS<small><sup>a</sup></small> (ND=0)
 +
| rowspan="9" style="background-color:white;" | <p style="writing-mode: vertical-rl">% Decrease<br>(Initial Concentration, &mu;g/L)</p>
 +
| 93%<br>(370) || 96%<br>(32,000) || 89%<br>(57,000) || 86 %<br>(770,000) || 84%<br>(82)
 
|-
 
|-
|Poorly sorted sand and gravel||0.04 - 0.07
+
| &Sigma; Total PFAS (ND=MDL) || 93%<br>(400) || 86%<br>(32,000) || 90%<br>(59,000) || 71%<br>(770,000) || 88%<br>(110)
 +
|-  
 +
| &Sigma; Total PFAS (ND=RL) || 94%<br>(460) || 96%<br>(32,000) || 91%<br>(66,000) || 34%<br>(770,000) || 92%<br>(170)
 
|-
 
|-
|Poorly sorted sand and gravel||0.09
+
| &Sigma; Highly Regulated PFAS<small><sup>b</sup></small> (ND=0) || >99%<br>(180) || >99%<br>(20,000) || 95%<br>(20,000) || 92%<br>(390,000) || 95%<br>(50)
 
|-
 
|-
|Fractured sandstone||0.001 - 0.007
+
| &Sigma; Highly Regulated PFAS (ND=MDL) || >99%<br>(180) || 98%<br>(20,000) || 95%<br>(20,000) || 88%<br>(390,000) || 95%<br> (52)
 
|-
 
|-
|Alluvial formation||0.102
+
| &Sigma; Highly Regulated PFAS (ND=RL) || >99%<br>(190) || 93%<br>(20,000) || 95%<br>(20,000) || 79%<br>(390,000) || 95%<br>(55)
 
|-
 
|-
|Glacial outwash||0.145
+
| &Sigma; High Priority PFAS<small><sup>c</sup></small> (ND=0) || 91%<br>(180) || 98%<br>(20,000) || 85%<br>(20,000) || 82%<br>(400,000) || 94%<br>(53)
 
|-
 
|-
|Weathered mudstone regolith||0.07 - 0.10
+
| &Sigma; High Priority PFAS (ND=MDL) || 91%<br>(190) || 94%<br>(20,000) || 85%<br>(20,000) || 79%<br>(400,000) || 86%<br>(58)
 
|-
 
|-
|Alluvial formation||0.07
+
| &Sigma; High Priority PFAS (ND=RL) || 92%<br>(200) || 87%<br>(20,000) || 86%<br>(21,000) || 70%<br>(400,000) || 87%<br>(65)
 
|-
 
|-
|Alluvial formation||0.07
+
| Fluorine mass balance<small><sup>d</sup></small> || ||106% || 109% || 110% || 65% || 98%
 
|-
 
|-
|Silty sand||0.05
+
| Sorbed organic fluorine<small><sup>e</sup></small> || || 4% || 4% || 33% || N/A || 31%
 
|-
 
|-
|Fractured sandstone||0.0008 - 0.001
+
| colspan="7" style="background-color:white; text-align:left" | <small>Notes:<br>GW = groundwater<br>GW FF = groundwater foam fractionate<br>AFFF rinsate = rinsate collected from fire system decontamination<br>AFFF (diluted 10x) = 3M Lightwater AFFF diluted 10x<br>IDW NF = investigation derived waste nanofiltrate<br>ND = non-detect<br>MDL = Method Detection Limit<br>RL = Reporting Limit<br><small><sup>a</sup></small>Total PFAS = 40 analytes + unidentified PFCA precursors<br><small><sup>b</sup></small>Highly regulated PFAS = PFNA, PFOA, PFOS, PFHxS, PFBS, HFPO-DA<br><small><sup>c</sup></small>High priority PFAS = PFNA, PFOA, PFHxA, PFBA, PFOS, PFHxS, PFBS, HFPO-DA<br><small><sup>d</sup></small>Ratio of the final to the initial organic fluorine plus inorganic fluoride concentrations<br><small><sup>e</sup></small>Percent of organic fluorine that sorbed to the reactor walls during treatment<br></small>
|-
 
|Alluvium, sand and gravel||0.017
 
|-
 
|Alluvium, poorly sorted sand and gravel||0.003 - 0.017
 
|-
 
|Alluvium, sand and gravel||0.11 - 0.18
 
|-
 
|Siltstone, sandstone, mudstone||0.01 - 0.05
 
 
|}
 
|}
 +
</br>
 +
The&nbsp;PRD&nbsp;reaction&nbsp;has&nbsp;been validated at the bench scale for the destruction of PFAS in a variety of environmental samples from Department of Defense sites (Table 1). Enspired Solutions<small><sup>TM</sup></small> has designed and manufactured a fully automatic commercial-scale piece of equipment called PFASigator<small><sup>TM</sup></small>, specializing in PRD PFAS destruction (Figure 2). This equipment is modular and scalable, has a small footprint, and can be used alone or in series with existing water treatment trains. The PFASigator<small><sup>TM</sup></small> employs commercially available UV reactors and monitoring meters that have been used in the water industry for decades. The system has been tested on PRD efficiency operational parameters, and key metrics were proven to be consistent with benchtop studies.
  
Payne&nbsp;et&nbsp;al.&nbsp;(2008)&nbsp;reported the results from multiple short-term tracer tests conducted to aid the design of amendment injection systems<ref name="Payne2008" />. In these tests, the dissolved solutes were observed to migrate more rapidly through the aquifer than could be explained with typically reported values of ''n<sub>e</sub>''. They concluded that the heterogeneity of unconsolidated formations results in a relatively small area of an aquifer cross section carrying most of the water, and therefore solutes migrate more rapidly than expected. Based on these results, they recommend that a quantity called “mobile porosity” should be used in place of ''n<sub>e</sub>'' in equation 2 for calculating solute transport velocities. Based on 15 different tracer tests, typical values of mobile porosity range from 0.02 to 0.10 (Table 2). 
+
Bench scale PRD tests were performed for the following samples collected from Department of Defense sites: groundwater (GW), groundwater foam fractionate (FF), firefighting truck rinsate ([[Wikipedia: Firefighting foam | AFFF]] Rinsate), 3M Lightwater AFFF, investigation derived waste nanofiltrate (IDW NF), [[Wikipedia: Ion exchange | ion exchange]] still bottom (IX SB), and Ansulite AFFF. The PRD treatment was more effective in low conductivity/TDS solutions. Generally, PRD reaction rates decrease for solutions with a TDS > 10,000 ppm, with an upper limit of 30,000 ppm. Ansulite AFFF and IX SB samples showed low destruction efficiencies during initial screening tests, which was primarily attributed to their high TDS concentrations. Benchtop testing data are shown in Table 1 for the remaining five sample matrices.
 
 
A data mining analysis of 43 sites in California by Kulkarni et al. (2020) showed that on average 90% of the groundwater flow occurred in about 30% of cross sectional area perpendicular to groundwater flow.  These data provided “moderate (but not confirmatory) support for the&nbsp;mobile&nbsp;porosity&nbsp;concept.”<ref name="Kulkarni2020">Kulkarni, P.R., Godwin, W.R., Long, J.A., Newell, R.C., Newell, C.J., 2020. How much heterogeneity? Flow versus area from a big data perspective. Remediation 30(2), pp. 15-23. [https://doi.org/10.1002/rem.21639 DOI: 10.1002/rem.21639]  [//www.enviro.wiki/images/9/9b/Kulkarni2020.pdf Report.pdf]</ref>
 
 
 
==Advection-Dispersion-Reaction Equation==
 
The transport of dissolved solutes in groundwater is often modeled using the Advection-Dispersion-Reaction (ADR) equation. As shown below (Equation 3), the ADR equation describes the change in dissolved solute concentration (''C'') over time (''t'') where groundwater flow is oriented along the ''x'' direction.
 
  
{|
+
During treatment, PFOS and PFOA concentrations decreased 96% to >99% and 77% to 97%, respectively. For the PFAS with proposed drinking water Maximum Contaminant Levels (MCLs) recently established by the USEPA (PFNA, PFOA, PFOS, PFHxS, PFBS, and HFPO-DA), concentrations decreased >99% for GW, 93% for FF, 95% for AFFF Rinsate and IDW NF, and 79% for AFFF (diluted 10x) during the treatment time allotted. Meanwhile, the total PFAS concentrations, including all 40 known PFAS analytes and unidentified perfluorocarboxylic acid (PFCA) precursors, decreased from 34% to 96% following treatment. All of these concentration reduction values were calculated by using reporting limits (RL) as the concentrations for non-detects.
| || [[File:AdvectionEq3r.PNG|center|635px]]
 
|-
 
| Where: ||
 
|-
 
|
 
:''D<sub>x</sub>, D<sub>y</sub>, and D<sub>z</sub>''&nbsp;&nbsp;
 
| are hydrodynamic dispersion coefficients in the ''x, y'' and ''z'' directions (L<sup>2</sup>/T),  
 
|-
 
|
 
:''v''
 
| is the advective transport or seepage velocity in the ''x'' direction (L/T), and  
 
|-
 
|
 
:''λ''
 
| is an effective first order decay rate due to combined biotic and abiotic processes (1/T).
 
|-
 
|
 
:''R''
 
| is the linear, equilibrium retardation factor (see [[Sorption of Organic Contaminants]])
 
|}
 
  
The term on the left side of the equation is the rate of mass change per unit volume. On the right side are terms representing the solute flux due to dispersion in the ''x, y'', and ''z'' directions, the advective flux in the ''x'' direction, and the first order decay due to biotic and abiotic processes. Dispersion coefficients (''D<sub>x,y,z</sub>'') are commonly estimated using the following relationships (Equation 4):
+
Excellent fluorine/fluoride mass balance was achieved. There was nearly a 1:1 conversion of organic fluorine to free inorganic fluoride ion during treatment of GW, FF and AFFF Rinsate. The 3M Lightwater AFFF (diluted 10x) achieved only 65% fluorine mass balance, but this was likely due to high adsorption of PFAS to the reactor.
  
{|
+
===Application===
| || [[File:AdvectionEq4.PNG|center|360px]]
+
Due to the first-order kinetics of PRD, destruction of PFAS is most energy efficient when paired with a pre-concentration technology, such as foam fractionation (FF), nanofiltration, reverse osmosis, or resin/carbon adsorption, that remove PFAS from water. Application of the PFASigator<small><sup>TM</sup></small> is therefore proposed as a part of a PFAS treatment train that includes a pre-concentration step.
|-
 
| Where: ||
 
|-
 
|
 
:''D<sub>m</sub>''
 
| is the molecular diffusion coefficient (L<sup>2</sup>/T), and
 
|-
 
|
 
:''&alpha;<sub>L</sub>, &alpha;<sub>T</sub>'', and ''&alpha;<sub>V</sub>''&nbsp;&nbsp;
 
| are the longitudinal, transverse and vertical dispersivities (L), respectively.  
 
|}
 
  
===ADR Applications===
+
The first pilot study with the PFASigator<small><sup>TM</sup></small> was conducted in late 2023 at an industrial facility in Michigan with PFAS-impacted groundwater. The goal of the pilot study was to treat the groundwater to below the limits for regulatory discharge permits. For the pilot demonstration, the PFASigator<small><sup>TM</sup></small> was paired with an FF unit, which pre-concentrated the PFAS into a foamate that was pumped into the PFASigator<small><sup>TM</sup></small> for batch PFAS destruction. Residual PFAS remaining after the destruction batch was treated by looping back the PFASigator<small><sup>TM</sup></small> effluent to the FF system influent. During the one-month field pilot duration, site-specific discharge limits were met, and steady state operation between the FF unit and PFASigator<small><sup>TM</sup></small> was achieved such that the PFASigator<small><sup>TM</sup></small> destroyed the required concentrated PFAS mass and no off-site disposal of PFAS contaminated waste was required.
[[File:AdvectionFig5.png | thumb | right | 350px | Figure 5. Curves of concentration versus distance (a) and concentration versus time (b) generated by solving the ADR equation for a continuous source of a non-reactive tracer with ''R'' = 1, λ = 0, ''v'' = 5 m/yr, and ''D<sub>x</sub>'' = 10 m<sup>2</sup>/yr.]]
 
The ADR equation can be solved to find the spatial and temporal distribution of solutes using a variety of analytical and numerical approaches.  The design tools [https://www.epa.gov/water-research/bioscreen-natural-attenuation-decision-support-system BIOSCREEN]<ref name="Newell1996">Newell, C.J., McLeod, R.K. and Gonzales, J.R., 1996. BIOSCREEN: Natural Attenuation Decision Support System - User's Manual, Version 1.3. US Environmental Protection Agency, EPA/600/R-96/087. [https://www.enviro.wiki/index.php?title=File:Newell-1996-Bioscreen_Natural_Attenuation_Decision_Support_System.pdf Report.pdf]  [https://www.epa.gov/water-research/bioscreen-natural-attenuation-decision-support-system BIOSCREEN website]</ref>, [https://www.epa.gov/water-research/biochlor-natural-attenuation-decision-support-system BIOCHLOR]<ref name="Aziz2000">Aziz, C.E., Newell, C.J., Gonzales, J.R., Haas, P.E., Clement, T.P. and Sun, Y., 2000. BIOCHLOR Natural Attenuation Decision Support System. User’s Manual - Version 1.0. US Environmental Protection Agency, EPA/600/R-00/008.  [https://www.enviro.wiki/index.php?title=File:Aziz-2000-BIOCHLOR-Natural_Attenuation_Dec_Support.pdf Report.pdf]  [https://www.epa.gov/water-research/biochlor-natural-attenuation-decision-support-system BIOCHLOR website]</ref>, and [https://www.epa.gov/water-research/remediation-evaluation-model-chlorinated-solvents-remchlor REMChlor]<ref name="Falta2007">Falta, R.W., Stacy, M.B., Ahsanuzzaman, A.N.M., Wang, M. and Earle, R.C., 2007. REMChlor Remediation Evaluation Model for Chlorinated Solvents - User’s Manual, Version 1.0. US Environmental Protection Agency. Center for Subsurface Modeling Support, Ada, OK.  [[Media:REMChlorUserManual.pdf | Report.pdf]]  [https://www.epa.gov/water-research/remediation-evaluation-model-chlorinated-solvents-remchlor REMChlor website]</ref> (see also [[REMChlor - MD]]) employ an analytical solution of the ADR equation.  [https://www.usgs.gov/software/mt3d-usgs-groundwater-solute-transport-simulator-modflow MT3DMS]<ref name="Zheng1999">Zheng, C. and Wang, P.P., 1999. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide. Contract Report SERDP-99-1 U.S. Army Engineer Research and Development Center, Vicksburg, MS. [[Media:Mt3dmanual.pdf | Report.pdf]]  [https://www.usgs.gov/software/mt3d-usgs-groundwater-solute-transport-simulator-modflow MT3DMS website]</ref> uses a numerical method to solve the ADR equation using the head distribution generated by the groundwater flow model MODFLOW<ref name="McDonald1988">McDonald, M.G. and Harbaugh, A.W., 1988. A Modular Three-dimensional Finite-difference Ground-water Flow Model, Techniques of Water-Resources Investigations, Book 6, Modeling Techniques. U.S. Geological Survey, 586 pages. [https://doi.org/10.3133/twri06A1  DOI: 10.3133/twri06A1]  [[Media: McDonald1988.pdf | Report.pdf]]  Free MODFLOW download from: [https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs?qt-science_center_objects=0#qt-science_center_objects USGS]</ref>.
 
 
 
Figures 5a and 5b were generated using a numerical solution of the ADR equation for a non-reactive tracer (''R'' = 1; λ = 0) with ''v'' = 5 m/yr and ''D<sub>x</sub>'' = 10 m<sup>2</sup>/yr.  Figure 5a shows the predicted change in concentration of the tracer, chloride, versus distance downgradient from the continuous contaminant source at different times (0, 1, 2, and 4 years).  Figure 5b shows the change in concentration versus time (commonly referred to as the breakthrough curve or BTC) at different downgradient distances (10, 20, 30 and 40 m).  At 2 years, the mid-point of the concentration versus distance curve (Figure 5a) is located 10 m downgradient (x = 5 m/yr * 2 yr).  At 20 m downgradient, the mid-point of the concentration versus time curves (Figure 5b) occurs at 4 years (t = 20 m / 5 m/yr).
 
 
 
===Modeling Dispersion===
 
Mechanical&nbsp;dispersion (hydrodynamic dispersion) results from groundwater moving at rates both greater and less than the average linear velocity. This is due to: 1) fluids moving faster through the center of the pores than along the edges, 2) fluids traveling shorter pathways and/or splitting or branching to the sides, and 3) fluids traveling faster through larger pores than through smaller pores<ref>Fetter, C.W., 1994. Applied Hydrogeology: Macmillan College Publishing Company. New York New York. ISBN-13:978-0130882394</ref>. Because the invading solute-containing water does not travel at the same velocity everywhere, mixing occurs along flow paths. This mixing is called mechanical dispersion and results in distribution of the solute at the advancing edge of flow. The mixing that occurs in the direction of flow is called longitudinal dispersion. Spreading normal to the direction of flow from splitting and branching out to the sides is called transverse dispersion (Figure 6).  Typical values of the mechanical dispersivity measured in laboratory column tests are on the order of 0.01 to 1 cm<ref name="Anderson1979">Anderson, M.P. and Cherry, J.A., 1979. Using models to simulate the movement of contaminants through groundwater flow systems. Critical Reviews in Environmental Science and Technology, 9(2), pp.97-156.  [https://doi.org/10.1080/10643387909381669 DOI: 10.1080/10643387909381669]</ref>.
 
[[File:Fig2 dispanddiff.JPG|thumbnail|left|400px|Figure 6. Conceptual depiction of mechanical dispersion (adapted from ITRC (2011)<ref name="ITRC2011">ITRC Integrated DNAPL Site Strategy Team, 2011. Integrated DNAPL Site Strategy. Technical/Regulatory Guidance Document, 209 pgs. [//www.enviro.wiki/images/d/d9/ITRC-2011-Integrated_DNAPL.pdf Report pdf]</ref>).]]
 
 
 
The dispersion coefficient in the ADR equation accounts for the combined effects of mechanical dispersion and molecular diffusion, both of which cause spreading of the contaminant plume from highly concentrated areas toward less concentrated areas. [[wikipedia:Molecular diffusion | Molecular diffusion]] is the result of the thermal motion of individual molecules which causes a flux of dissolved solutes from areas of higher concentration to areas of lower concentration.
 
 
 
===Modeling Diffusion===
 
[[File:Fig1 dispanddiff.JPG|thumbnail|right|400px|Figure 7. Conceptual depiction of diffusion of a dissolved chemical recently placed in a container at Time 1 (left panel) and then distributed throughout the container (right panel) at Time 2.]]
 
[[wikipedia: Molecular diffusion | Molecular&nbsp;diffusion]] is the result of the thermal motion of individual molecules which causes a flux of dissolved solutes from areas of higher concentration to areas of lower concentration (Figure 7). The diffusion coefficient is a proportionality constant between the molar flux due to molecular diffusion and the concentration gradient and is a function of the temperature and molecular weight. In locations where advective flux is low (clayey aquitards and sedimentary rock), diffusion is often the dominant transport mechanism.
 
 
 
The&nbsp;diffusive&nbsp;flux&nbsp;''J'' (M/L<sup>2</sup>/T) in groundwater is calculated using [[wikipedia:Fick's laws of diffusion | Fick’s Law]]:
 
 
 
{|
 
|
 
|<big>'''''J&nbsp;=&nbsp;-D<sub>e</sub>&nbsp;dC/dx'''''</big>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(Equation&nbsp;5)
 
|-
 
|Where:||
 
|-
 
|
 
:''D<sub>e</sub>''
 
|is the effective diffusion coefficient and
 
|-
 
|
 
:''dC/dx''&nbsp;&nbsp;&nbsp;&nbsp;
 
|is the concentration gradient.
 
|}
 
The effective diffusion coefficient for transport through the porous media, ''D<sub>e</sub>, is estimated as:''
 
{|
 
|
 
|<big>'''''D<sub>e</sub>&nbsp;=&nbsp;D<sub>m</sub>&nbsp;n<sub>e</sub>&nbsp;&delta;/&Tau;'''''</big>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(Equation&nbsp;6)
 
|-
 
|Where:||
 
|-
 
|
 
:''D<sub>m</sub>''&nbsp;&nbsp;&nbsp;&nbsp;
 
|is the [[wikipedia:Mass diffusivity | diffusion coefficient]] of the solute in water,
 
|-
 
|
 
:''n<sub>e</sub>''
 
|is the effective porosity (dimensionless),
 
|-
 
|
 
:''&delta;''
 
|is the constrictivity (dimensionless) which reflects the restricted motion of particles in narrow pores<ref name="Grathwohl1998">Grathwohl, P., 1998. Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics. Kluwer Academic Publishers, Boston. DOI: 10.1007/978-1-4615-5683-1 Available from: [https://link.springer.com/book/10.1007/978-1-4615-5683-1 Springer.com]</ref>, and
 
|-
 
|
 
:''&Tau;''
 
|is the [[wikipedia:Tortuosity | tortuosity]] (dimensionless) which reflects the longer diffusion path in porous media around sediment particles<ref name="Carey2016">Carey, G.R., McBean, E.A. and Feenstra, S., 2016. Estimating Tortuosity Coefficients Based on Hydraulic Conductivity. Groundwater, 54(4), pp.476-487.  [https://doi.org/10.1111/gwat.12406 DOI:10.1111/gwat.12406] Available from: [https://ngwa.onlinelibrary.wiley.com/doi/abs/10.1111/gwat.12406 NGWA]</ref>.
 
|}
 
''D<sub>m</sub>'' is a function of the temperature, fluid viscosity and molecular weight.  Values of ''D<sub>m</sub>'' for common groundwater solutes are shown in Table 3.
 
 
 
{| class="wikitable" style="float:left; margin-right:20px; text-align:center;"
 
|+Table 3. Diffusion Coefficients (''D<sub>m</sub>'') for Common Groundwater Solutes.
 
|-
 
!Aqueous Diffusion Coefficient
 
!Temperature<br /><small>(&deg;C)</small>
 
!''D<sub>m</sub>''<br /><small>(cm<sup>2</sup>/s)</small>
 
!Reference
 
|-
 
|Acetone||25||&nbsp;&nbsp;1.16x10<sup>-5</sup>&nbsp;&nbsp;||Cussler 1997 <ref name="Cussler1997">Cussler, E.L., 1997. Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, New York, 580 pages.  ISBN: 9780521450782</ref>
 
|-
 
|Benzene||20||1.02x10<sup>-5</sup>||Bonoli and Witherspoon 1968 <ref name="Bonoli1968">Bonoli, L. and Witherspoon, P.A., 1968. Diffusion of Aromatic and Cycloparaffin Hydrocarbons in Water from 2 to 60 deg. The Journal of Physical Chemistry, 72(7), pp.2532-2534.  [https://doi.org/10.1021/j100853a045 DOI: 10.1021/j100853a045]</ref>
 
|-
 
|Carbon dioxide||25||1.92x10<sup>-5</sup>||Cussler 1997 <ref name="Cussler1997"/>
 
|-
 
|Carbon tetrachloride||25||9.55x10<sup>-6</sup>||Yaws 1995 <ref name="Yaws1995">Yaws, C.L., 1995. Handbook of Transport Property Data: Viscosity, Thermal Conductivity and Diffusion Coefficients of Liquids and Gases, Gulf Publishing Company, Houston, TX.  ISBN: 0884153924</ref>
 
|-
 
|Chloroform||25||1.08x10<sup>-5</sup>||Yaws 1995 <ref name="Yaws1995"/>
 
|-
 
|Dichloroethene||25||1.12x10<sup>-5</sup>||Yaws 1995 <ref name="Yaws1995"/>
 
|-
 
|1,4-Dioxane||25||1.02x10<sup>-5</sup>||Yaws 1995 <ref name="Yaws1995"/>
 
|-
 
|Ethane||25||1.52x10<sup>-5</sup>||Witherspoon and Saraf 1965 <ref name="Witherspoon1965">Witherspoon, P.A. and Saraf, D.N., 1965. Diffusion of Methane, Ethane, Propane, and n-Butane in Water from 25 to 43&deg;. The Journal of Physical Chemistry, 69(11), pp. 3752-3755.  [https://doi.org/10.1021/j100895a017 DOI: 10.1021/j100895a017]</ref>
 
|-
 
|Ethylbenzene||20||8.10x10<sup>-6</sup>||Bonoli and Witherspoon 1968 <ref name="Bonoli1968"/>
 
|-
 
|Ethene||25||1.87x10<sup>-5</sup>||Cussler 1997 <ref name="Cussler1997"/>
 
|-
 
|Helium||25||6.28x10<sup>-5</sup>||Cussler 1997 <ref name="Cussler1997"/>
 
|-
 
|Hydrogen||25||4.50x10<sup>-5</sup>||Cussler 1997 <ref name="Cussler1997"/>
 
|-
 
|Methane||25||1.88x10<sup>-5</sup>||Witherspoon and Saraf 1965 <ref name="Witherspoon1965"/>
 
|-
 
|Nitrogen||25||1.88x10<sup>-5</sup>||Cussler 1997 <ref name="Cussler1997"/>
 
|-
 
|Oxygen||25||2.10x10<sup>-5</sup>||Cussler 1997 <ref name="Cussler1997"/>
 
|-
 
|Perfluorooctanoic acid (PFOA)||20||4.80x10<sup>-6</sup>||Schaefer et al. 2019 <ref name="Schaefer2019">Schaefer, C.E., Drennan, D.M., Tran, D.N., Garcia, R., Christie, E., Higgins, C.P. and Field, J.A., 2019. Measurement of Aqueous Diffusivities for Perfluoroalkyl Acids. Journal of Environmental Engineering, 145(11).  [https://doi.org/10.1061/(ASCE)EE.1943-7870.0001585 DOI: 10.1061/(ASCE)EE.1943-7870.0001585]</ref>
 
|-
 
|Perfluorooctane sulfonic acid (PFOS)||20||5.40x10<sup>-6</sup>||Schaefer et al. 2019 <ref name="Schaefer2019"/>
 
|-
 
|Tetrachloroethene||25||8.99x10<sup>-6</sup>||Yaws 1995 <ref name="Yaws1995"/>
 
|-
 
|Toluene||20||8.50x10<sup>-6</sup>||Bonoli and Witherspoon 1968 <ref name="Bonoli1968"/>
 
|-
 
|Trichloroethene||25||8.16x10<sup>-6</sup>||Rossi et al. 2015 <ref name="Rossi2015">Rossi, F., Cucciniello, R., Intiso, A., Proto, A., Motta, O. and Marchettini, N., 2015. Determination of the Trichloroethylene Diffusion Coefficient in Water. American Institute of Chemical Engineers Journal, 61(10), pp.3511-3515.  [https://doi.org/10.1002/aic.14861 DOI: 10.1002/aic.14861]</ref>
 
|-
 
|Vinyl chloride||25||1.34x10<sup>-5</sup>||Yaws 1995 <ref name="Yaws1995"/>
 
|}
 
</br>
 
===Macrodispersion===
 
[[File:ADRFig2.PNG | thumb | right | 350px | Figure 8. Predicted variation in macrodispersivity with distance for varying ''σ<sup>2</sup>Y'' and correlation length = 3 m.]]
 
[[File:NewThinkingAboutDispersion.mp4 |thumbnail|right|500px|Figure 9. Matrix diffusion processes and their effects on plume persistence and attenuation.]]
 
Spatial variations in hydraulic conductivity can increase the apparent spreading of solute plumes observed in groundwater monitoring wells. For example, in an aquifer composed of alternating layers of lower hydraulic conductivity (''K'') silty sand and higher ''K'' sandy gravel layers, the dissolved solute rapidly migrates downgradient through the sandy gravel layers resulting in relatively high concentration fingers surrounded by relatively uncontaminated material. Over time, contaminants in lower ''K'' layers eventually breakthrough at the monitoring well, causing a more gradual further increase in measured concentrations. This rapid breakthrough followed by gradual increases in solute concentrations gives the appearance of a plume with a very large dispersion coefficient. This spreading of the solute caused by large-scale heterogeneities in the aquifer and the associated spatial variations in advective transport velocity is referred to as macrodispersion. 
 
 
 
In some groundwater modeling projects, large values of the dispersion coefficient are used as an adjustment factor to better represent the observed large-scale spreading of plumes<ref name="ITRC2011"/>. Theoretical studies suggest that macrodispersivity will increase with distance near the source, and then increase more slowly farther downgradient, eventually approaching an asymptotic value<ref name="Gelhar1979">Gelhar, L.W., Gutjahr, A.L. and Naff, R.L., 1979. Stochastic analysis of macrodispersion in a stratified aquifer. Water Resources Research, 15(6), pp.1387-1397.  [https://doi.org/10.1029/WR015i006p01387 DOI:10.1029/WR015i006p01387]</ref><ref name="Gelhar1983">Gelhar, L.W. and Axness, C.L., 1983. Three‐dimensional stochastic analysis of macrodispersion in aquifers. Water Resources Research, 19(1), pp.161-180.  [https://doi.org/10.1029/WR019i001p00161 DOI:10.1029/WR019i001p00161]</ref><ref name="Dagan1988">Dagan, G., 1988. Time‐dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers. Water Resources Research, 24(9), pp.1491-1500.  [https://doi.org/10.1029/WR024i009p01491 DOI:10.1029/WR024i009p01491]</ref>.  Figure 8 shows values of macrodispersivity calculated using the theory of Dagan<ref name="Dagan1988"/> with an autocorrelation length of 3 m and several different values of the variance of ''Y'' (σ<small><sup>2</sup><sub>''Y''</sub></small>) where ''Y'' = Log ''K''. The calculated macrodispersivity increases more rapidly and approaches higher asymptotic values for more heterogeneous aquifers with greater variations in ''K'' (larger σ<small><sup>2</sup><sub>''Y''</sub></small>).  The maximum predicted dispersivity values were in the range of 0.5 to 5 m.  Zech, et al. (2015)<ref>Zech, A., Attinger, S., Cvetkovic, V., Dagan, G., Dietrich, P., Fiori, A., Rubin, Y. and Teutsch, G., 2015. Is unique scaling of aquifer macrodispersivity supported by field data? Water Resources Research, 51(9), pp.7662-7679.  [https://doi.org/10.1002/2015WR017220 DOI: 10.1002/2015WR017220]&nbsp;&nbsp; Free access article from [https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1002/2015WR017220 American Geophysical Union]</ref> presented moderate and high reliability measurements of longitudinal macrodispersivity versus distance. Typical values of the longitudinal macrodispersivity varied from 0.1 to 10 m, with much lower values for transverse and vertical dispersivities.
 
 
 
===Matrix Diffusion===
 
Recently, an alternate conceptual model for describing large-scale plume spreading in heterogeneous soils has been proposed<ref name="ITRC2011" /><ref name="Payne2008"/><ref name="Hadley2014">Hadley, P.W. and Newell, C., 2014. The new potential for understanding groundwater contaminant transport. Groundwater, 52(2), pp.174-186. [http://dx.doi.org/10.1111/gwat.12135 doi:10.1111/gwat.12135]</ref>. In this approach, solute transport in the transmissive zones is reasonably well described by the advection-dispersion equation using relatively small dispersion coefficients representing mechanical dispersion. However, over time, molecular diffusion slowly transports solutes into lower permeability zones. As the transmissive zones are remediated, these solutes slowly diffuse back out, causing a long extended tail to the flushout curve. This process, referred to as [[Matrix Diffusion |matrix diffusion]], is controlled by [[wikipedia: Molecular diffusion | molecular diffusion]] and the presence of geologic heterogeneity with sharp contrasts between transmissive and low permeability media<ref>Sale, T.C., Illangasekare, T., Zimbron, J., Rodriguez, D., Wilkins, B. and Marinelli, F., 2007. AFCEE source zone initiative. Report Prepared for the Air Force Center for Environmental Excellence by Colorado State University and Colorado School of Mines. [//www.enviro.wiki/images/0/08/AFCEE-2007-Sale.pdf Report pdf]</ref> as discussed in the [//www.enviro.wiki/images/8/8a/NewThinkingAboutDispersion.mp4 video] shown in Figure 9. In some cases, matrix diffusion can maintain contaminant concentrations in more permeable zones at greater than target cleanup goals for decades or even centuries after the primary sources have been addressed<ref>Chapman, S.W. and Parker, B.L., 2005. Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation. Water Resources Research, 41(12): W12411.  [https://doi.org/10.1029/2005WR004224 DOI: 10.1029/2005WR004224] &nbsp;&nbsp; Free access article from [https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2005WR004224 American Geophysical Union]</ref>.
 
<br clear="left" />
 
  
 
==References==
 
==References==
 
 
<references />
 
<references />
  
 
==See Also==
 
==See Also==
 
*[http://iwmi.dhigroup.com/solute_transport/advection.html International Water Management Institute Animations]
 
*[http://www2.nau.edu/~doetqp-p/courses/env303a/lec32/lec32.htm NAU Lecture Notes on Advective Transport]
 
*[https://www.youtube.com/watch?v=00btLB6u6DY MIT Open CourseWare Solute Transport: Advection with Dispersion Video]
 
*[https://www.youtube.com/watch?v=AtJyKiA1vcY Physical Groundwater Model Video]
 
*[https://www.coursera.org/learn/natural-attenuation-of-groundwater-contaminants/lecture/UzS8q/groundwater-flow-review Online Lecture Course - Groundwater Flow]
 

Latest revision as of 18:43, 8 May 2024

Photoactivated Reductive Defluorination PFAS Destruction

Photoactivated Reductive Defluorination (PRD) is a PFAS destruction technology predicated on ultraviolet (UV) light-activated photochemical reactions. The destruction efficiency of this process is enhanced by the use of a surfactant to confine PFAS molecules in self-assembled micelles. The photochemical reaction produces hydrated electrons from an electron donor that associates with the micelle. The hydrated electrons have sufficient energy to rapidly cleave fluorine-carbon and other molecular bonds of PFAS molecules due to the association of the electron donor with the micelle. Micelle-accelerated PRD is a highly efficient method to destroy PFAS in a wide variety of water matrices.

Related Article(s):

Contributor(s):

  • Dr. Suzanne Witt
  • Dr. Meng Wang
  • Dr. Denise Kay

Key Resource(s):

  • Efficient Reductive Destruction of Perfluoroalkyl Substances under Self-Assembled Micelle Confinement[1]
  • Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-Acetic-Acid in Organomodified Montmorillonite[2]
  • Application of Surfactant Modified Montmorillonite with Different Conformation for Photo-Treatment of Perfluorooctanoic Acid by Hydrated Electrons[3]
  • ER21-7569: Photoactivated Reductive Defluorination PFAS Destruction[4]

Introduction

Figure 1. Schematic of PRD mechanism[4]

The Photoactivated Reductive Defluorination (PRD) process is based on a patented chemical reaction that breaks fluorine-carbon bonds and disassembles PFAS molecules in a linear fashion beginning with the hydrophilic functional groups and proceeding through shorter molecules to complete mineralization. Figure 1 shows how PRD is facilitated by adding cetyltrimethylammonium bromide (CTAB) to form a surfactant micelle cage that traps PFAS. A non-toxic proprietary chemical is added to solution to associate with the micelle surface and produce hydrated electrons via stimulation with UV light. These highly reactive hydrated electrons have the energy required to cleave fluorine-carbon and other molecular bonds resulting in the final products of fluoride, water, and simple carbon molecules (e.g., formic acid and acetic acid). The methods, mechanisms, theory, and reactions described herein have been published in peer reviewed literature[1][2][3][4].

Advantages and Disadvantages

Advantages

In comparison to other reported PFAS destruction techniques, PRD offers several advantages:

  • Relative to UV/sodium sulfite and UV/sodium iodide systems, the fitted degradation rates in the micelle-accelerated PRD reaction system were ~18 and ~36 times higher, indicating the key role of the self-assembled micelle in creating a confined space for rapid PFAS destruction[1]. The negatively charged hydrated electron associated with the positively charged cetyltrimethylammonium ion (CTA+) forms the surfactant micelle to trap molecules with similar structures, selectively mineralizing compounds with both hydrophobic and hydrophilic groups (e.g., PFAS).
  • The PRD reaction does not require solid catalysts or electrodes, which can be expensive to acquire and difficult to regenerate or dispose.
  • The aqueous solution is not heated or pressurized, and the UV wavelength used does not cause direct water photolysis, therefore the energy input to the system is more directly employed to destroy PFAS, resulting in greater energy efficiency.
  • Since the reaction is performed at ambient temperature and pressure, there are limited concerns regarding environmental health and safety or volatilization of PFAS compared to heated and pressurized systems.
  • Due to the reductive nature of the reaction, there is no formation of unwanted byproducts resulting from oxidative processes, such as perchlorate generation during electrochemical oxidation[5][6][7].
  • Aqueous fluoride ions are the primary end products of PRD, enabling real-time reaction monitoring with a fluoride ion selective electrode (ISE), which is far less expensive and faster than relying on PFAS analytical data alone to monitor system performance.

Disadvantages

  • The CTAB additive is only partially consumed during the reaction, and although CTAB is not problematic when discharged to downstream treatment processes that incorporate aerobic digestors, CTAB can be toxic to surface waters and anaerobic digestors. Therefore, disposal options for treated solutions will need to be evaluated on a site-specific basis. Possible options include removal of CTAB from solution for reuse in subsequent PRD treatments, or implementation of an oxidation reaction to degrade CTAB.
  • The PRD reaction rate decreases in water matrices with high levels of total dissolved solids (TDS). It is hypothesized that in high TDS solutions (e.g., ion exchange still bottoms with TDS of 200,000 ppm), the presence of ionic species inhibits the association of the electron donor with the micelle, thus decreasing the reaction rate.
  • The PRD reaction rate decreases in water matrices with very low UV transmissivity. Low UV transmissivity (i.e., < 1 %) prevents the penetration of UV light into the solution, such that the utilization efficiency of UV light decreases.

State of the Art

Technical Performance

Figure 2. Enspired SolutionsTM commercial PRD PFAS destruction equipment, the PFASigatorTM. Dimensions are 8 feet long by 4 feet wide by 9 feet tall.
Table 1. Percent decreases from initial PFAS concentrations during benchtop testing of PRD treatment in different water matrices
Analytes GW FF AFFF
Rinsate
AFF
(diluted 10X)
IDW NF
Σ Total PFASa (ND=0)

% Decrease
(Initial Concentration, μg/L)

93%
(370)
96%
(32,000)
89%
(57,000)
86 %
(770,000)
84%
(82)
Σ Total PFAS (ND=MDL) 93%
(400)
86%
(32,000)
90%
(59,000)
71%
(770,000)
88%
(110)
Σ Total PFAS (ND=RL) 94%
(460)
96%
(32,000)
91%
(66,000)
34%
(770,000)
92%
(170)
Σ Highly Regulated PFASb (ND=0) >99%
(180)
>99%
(20,000)
95%
(20,000)
92%
(390,000)
95%
(50)
Σ Highly Regulated PFAS (ND=MDL) >99%
(180)
98%
(20,000)
95%
(20,000)
88%
(390,000)
95%
(52)
Σ Highly Regulated PFAS (ND=RL) >99%
(190)
93%
(20,000)
95%
(20,000)
79%
(390,000)
95%
(55)
Σ High Priority PFASc (ND=0) 91%
(180)
98%
(20,000)
85%
(20,000)
82%
(400,000)
94%
(53)
Σ High Priority PFAS (ND=MDL) 91%
(190)
94%
(20,000)
85%
(20,000)
79%
(400,000)
86%
(58)
Σ High Priority PFAS (ND=RL) 92%
(200)
87%
(20,000)
86%
(21,000)
70%
(400,000)
87%
(65)
Fluorine mass balanced 106% 109% 110% 65% 98%
Sorbed organic fluorinee 4% 4% 33% N/A 31%
Notes:
GW = groundwater
GW FF = groundwater foam fractionate
AFFF rinsate = rinsate collected from fire system decontamination
AFFF (diluted 10x) = 3M Lightwater AFFF diluted 10x
IDW NF = investigation derived waste nanofiltrate
ND = non-detect
MDL = Method Detection Limit
RL = Reporting Limit
aTotal PFAS = 40 analytes + unidentified PFCA precursors
bHighly regulated PFAS = PFNA, PFOA, PFOS, PFHxS, PFBS, HFPO-DA
cHigh priority PFAS = PFNA, PFOA, PFHxA, PFBA, PFOS, PFHxS, PFBS, HFPO-DA
dRatio of the final to the initial organic fluorine plus inorganic fluoride concentrations
ePercent of organic fluorine that sorbed to the reactor walls during treatment


The PRD reaction has been validated at the bench scale for the destruction of PFAS in a variety of environmental samples from Department of Defense sites (Table 1). Enspired SolutionsTM has designed and manufactured a fully automatic commercial-scale piece of equipment called PFASigatorTM, specializing in PRD PFAS destruction (Figure 2). This equipment is modular and scalable, has a small footprint, and can be used alone or in series with existing water treatment trains. The PFASigatorTM employs commercially available UV reactors and monitoring meters that have been used in the water industry for decades. The system has been tested on PRD efficiency operational parameters, and key metrics were proven to be consistent with benchtop studies.

Bench scale PRD tests were performed for the following samples collected from Department of Defense sites: groundwater (GW), groundwater foam fractionate (FF), firefighting truck rinsate ( AFFF Rinsate), 3M Lightwater AFFF, investigation derived waste nanofiltrate (IDW NF), ion exchange still bottom (IX SB), and Ansulite AFFF. The PRD treatment was more effective in low conductivity/TDS solutions. Generally, PRD reaction rates decrease for solutions with a TDS > 10,000 ppm, with an upper limit of 30,000 ppm. Ansulite AFFF and IX SB samples showed low destruction efficiencies during initial screening tests, which was primarily attributed to their high TDS concentrations. Benchtop testing data are shown in Table 1 for the remaining five sample matrices.

During treatment, PFOS and PFOA concentrations decreased 96% to >99% and 77% to 97%, respectively. For the PFAS with proposed drinking water Maximum Contaminant Levels (MCLs) recently established by the USEPA (PFNA, PFOA, PFOS, PFHxS, PFBS, and HFPO-DA), concentrations decreased >99% for GW, 93% for FF, 95% for AFFF Rinsate and IDW NF, and 79% for AFFF (diluted 10x) during the treatment time allotted. Meanwhile, the total PFAS concentrations, including all 40 known PFAS analytes and unidentified perfluorocarboxylic acid (PFCA) precursors, decreased from 34% to 96% following treatment. All of these concentration reduction values were calculated by using reporting limits (RL) as the concentrations for non-detects.

Excellent fluorine/fluoride mass balance was achieved. There was nearly a 1:1 conversion of organic fluorine to free inorganic fluoride ion during treatment of GW, FF and AFFF Rinsate. The 3M Lightwater AFFF (diluted 10x) achieved only 65% fluorine mass balance, but this was likely due to high adsorption of PFAS to the reactor.

Application

Due to the first-order kinetics of PRD, destruction of PFAS is most energy efficient when paired with a pre-concentration technology, such as foam fractionation (FF), nanofiltration, reverse osmosis, or resin/carbon adsorption, that remove PFAS from water. Application of the PFASigatorTM is therefore proposed as a part of a PFAS treatment train that includes a pre-concentration step.

The first pilot study with the PFASigatorTM was conducted in late 2023 at an industrial facility in Michigan with PFAS-impacted groundwater. The goal of the pilot study was to treat the groundwater to below the limits for regulatory discharge permits. For the pilot demonstration, the PFASigatorTM was paired with an FF unit, which pre-concentrated the PFAS into a foamate that was pumped into the PFASigatorTM for batch PFAS destruction. Residual PFAS remaining after the destruction batch was treated by looping back the PFASigatorTM effluent to the FF system influent. During the one-month field pilot duration, site-specific discharge limits were met, and steady state operation between the FF unit and PFASigatorTM was achieved such that the PFASigatorTM destroyed the required concentrated PFAS mass and no off-site disposal of PFAS contaminated waste was required.

References

  1. ^ 1.0 1.1 1.2 Chen, Z., Li, C., Gao, J., Dong, H., Chen, Y., Wu, B., Gu, C., 2020. Efficient Reductive Destruction of Perfluoroalkyl Substances under Self-Assembled Micelle Confinement. Environmental Science and Technology, 54(8), pp. 5178–5185. doi: 10.1021/acs.est.9b06599
  2. ^ 2.0 2.1 Tian, H., Gao, J., Li, H., Boyd, S.A., Gu, C., 2016. Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-Acetic-Acid in Organomodified Montmorillonite. Scientific Reports, 6(1), Article 32949. doi: 10.1038/srep32949   Open Access Article
  3. ^ 3.0 3.1 Chen, Z., Tian, H., Li, H., Li, J. S., Hong, R., Sheng, F., Wang, C., Gu, C., 2019. Application of Surfactant Modified Montmorillonite with Different Conformation for Photo-Treatment of Perfluorooctanoic Acid by Hydrated Electrons. Chemosphere, 235, pp. 1180–1188. doi: 10.1016/j.chemosphere.2019.07.032
  4. ^ 4.0 4.1 4.2 Kay, D., Witt, S., Wang, M., 2023. Photoactivated Reductive Defluorination PFAS Destruction: Final Report. ESTCP Project ER21-7569. Project Website   Final Report.pdf
  5. ^ Veciana, M., Bräunig, J., Farhat, A., Pype, M. L., Freguia, S., Carvalho, G., Keller, J., Ledezma, P., 2022. Electrochemical Oxidation Processes for PFAS Removal from Contaminated Water and Wastewater: Fundamentals, Gaps and Opportunities towards Practical Implementation. Journal of Hazardous Materials, 434, Article 128886. doi: 10.1016/j.jhazmat.2022.128886
  6. ^ Trojanowicz, M., Bojanowska-Czajka, A., Bartosiewicz, I., Kulisa, K., 2018. Advanced Oxidation/Reduction Processes Treatment for Aqueous Perfluorooctanoate (PFOA) and Perfluorooctanesulfonate (PFOS) – A Review of Recent Advances. Chemical Engineering Journal, 336, pp. 170–199. doi: 10.1016/j.cej.2017.10.153
  7. ^ Wanninayake, D.M., 2021. Comparison of Currently Available PFAS Remediation Technologies in Water: A Review. Journal of Environmental Management, 283, Article 111977. doi: 10.1016/j.jenvman.2021.111977

See Also