Difference between revisions of "User:Jhurley/sandbox"

From Enviro Wiki
Jump to: navigation, search
(Introduction)
 
(551 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Mercury in Sediments==
+
==PFAS Treatment by Anion Exchange==  
Mercury (Hg) is released into the environment typically in the inorganic form. Industrial and natural emissions of gaseous elemental mercury, Hg(0), can travel long distances in the atmosphere before being oxidized and deposited on land and in water as inorganic Hg(II). Direct exposure to Hg(II) and Hg(0) can be a human health risk at heavily contaminated sites. However, the organic form of Hg, methylmercury (MeHg), is a neurotoxin that can [[Wikipedia: Bioaccumulation | bioaccumulate]] and is the form of Hg that poses the greatest human and ecological health risk. As a chemical element, Hg cannot be destroyed, so the goal of Hg-remediation is immobilization and prevention of food web bioaccumulation.
+
[[Wikipedia: Ion exchange | Anion exchange]] has emerged as one of the most effective and economical technologies for treatment of water contaminated by [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) | per- and polyfluoroalkyl substances (PFAS)]]. Anion exchange resins (AERs) are polymer beads (0.5–1 mm diameter) incorporating cationic adsorption sites that attract anionic PFAS by a combination of electrostatic and hydrophobic mechanisms. Both regenerable and single-use resin treatment systems are being investigated, and results from pilot-scale studies show that AERs can treat much greater volumes of PFAS-contaminated water than comparable amounts of [[Wikipedia: Activated carbon | granular activated carbon (GAC)]] adsorbent media. Life cycle treatment costs and environmental impacts of anion exchange and other adsorbent technologies are highly dependent upon the treatment criteria selected by site managers to determine when media is exhausted and requires replacement or regeneration.
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
 
'''Related Article(s):'''
 
'''Related Article(s):'''
* [[Contaminated Sediments - Introduction]]
+
*[[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]]  
* [[In Situ Treatment of Contaminated Sediments with Activated Carbon]]
+
*[[PFAS Sources]]
 +
*[[PFAS Transport and Fate]]
 +
*[[PFAS Ex Situ Water Treatment]]
 +
*[[Supercritical Water Oxidation (SCWO)]]
 +
*[[PFAS Treatment by Electrical Discharge Plasma]]
  
'''Contributor(s):''' [[Dr. Grace Schwartz]]
+
'''Contributor(s):'''  
 +
*Dr. Timothy J. Strathmann
 +
*Dr. Anderson Ellis
 +
*Dr. Treavor H. Boyer
  
 
'''Key Resource(s):'''
 
'''Key Resource(s):'''
* Challenges and opportunities for managing aquatic mercury pollution in altered landscapes<ref name ="Hsu-Kim2018">Hsu-Kim, H., Eckley, C.S., Achá, D., Feng, X., Gilmour, C.C., Jonsson, S., Mitchell, C.P.J., 2018. Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio, 47, pp. 141-169.  [https://doi.org/10.1007/s13280-017-1006-7 DOI: 10.1007/s13280-017-1006-7]&nbsp;&nbsp; [https://link.springer.com/content/pdf/10.1007/s13280-017-1006-7.pdf Free access article]&nbsp;&nbsp; [[Media: Hsu-Kim2018.pdf | Report.pdf]]</ref>
+
*Anion Exchange Resin Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Impacted Water: A Critical Review<ref name="BoyerEtAl2021a">Boyer, T.H., Fang, Y., Ellis, A., Dietz, R., Choi, Y.J., Schaefer, C.E., Higgins, C.P., Strathmann, T.J., 2021. Anion Exchange Resin Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Impacted Water: A Critical Review. Water Research, 200, Article 117244. [https://doi.org/10.1016/j.watres.2021.117244 doi: 10.1016/j.watres.2021.117244]&nbsp;&nbsp; [[Media: BoyerEtAl2021a.pdf | Open Access Manuscript.pdf]]</ref>
  
* The assessment and remediation of mercury contaminated sites: A review of current approaches<ref name="Eckley2020">Eckley, C.S., Gilmour, C.C., Janssen, S., Luxton, T.P., Randall, P.M., Whalin, L., Austin, C., 2020. The assessment and remediation of mercury contaminated sites: A review of current approaches. Science of the Total Environment, 707, Article 136031. [https://doi.org/10.1016/j.scitotenv.2019.136031 DOI: 10.1016/j.scitotenv.2019.136031]&nbsp;&nbsp; Free download from: [https://www.researchgate.net/profile/Chris-Eckley/publication/338083205_The_assessment_and_remediation_of_mercury_contaminated_sites_A_review_of_current_approaches/links/5e00f77792851c836496293c/The-assessment-and-remediation-of-mercury-contaminated-sites-A-review-of-current-approaches.pdf ResearchGate]</ref>
+
*Regenerable Resin Sorbent Technologies with Regenerant Solution Recycling for Sustainable Treatment of PFAS; SERDP Project ER18-1063 Final Report<ref>Strathmann, T.J., Higgins, C.P., Boyer, T., Schaefer, C., Ellis, A., Fang, Y., del Moral, L., Dietz, R., Kassar, C., Graham, C, 2023. Regenerable Resin Sorbent Technologies with Regenerant Solution Recycling for Sustainable Treatment of PFAS; SERDP Project ER18-1063 Final Report. 285 pages. [https://serdp-estcp.org/projects/details/d3ede38b-9f24-4b22-91c9-1ad634aa5384 Project Website]&nbsp;&nbsp; [[Media: ER18-1063.pdf | Report.pdf]]</ref>
  
* Bioaccumulation and Biomagnification of Mercury through Food Webs<ref name="Kidd">Kidd, K., Clayden, M., Jardine, T., 2012. Bioaccumulation and Biomagnification of Mercury through Food Webs. Environmental Chemistry and Toxicology of Mercury, pp. 453-499. Liu, G., Yong, C. O’Driscoll, N., Eds. John Wiley and Sons, Inc. Hoboken, NJ. [https://doi.org/10.1002/9781118146644.ch14 DOI: 10.1002/9781118146644.ch14]</ref>
+
==Introduction==
 +
[[File:StrathmannFig1.png | thumb |300px|Figure 1. Illustration of PFAS adsorption by anion exchange resins (AERs). Incorporation of longer alkyl group side chains on the cationic quaternary amine functional groups leads to PFAS-resin hydrophobic interactions that increase resin selectivity for PFAS over inorganic anions like Cl<sup>-</sup>.]]
 +
 
 +
[[File:StrathmannFig2.png | thumb | 300px| Figure 2. Effect of perfluoroalkyl carbon chain length on the estimated bed volumes (BVs) to 50% breakthrough of PFCAs and PFSAs observed in a pilot study<ref name="StrathmannEtAl2020">Strathmann, T.J., Higgins, C., Deeb, R., 2020. Hydrothermal Technologies for On-Site Destruction of Site Investigation Wastes Impacted by PFAS, Final Report - Phase I. SERDP Project ER18-1501. [https://serdp-estcp.mil/projects/details/b34d6396-6b6d-44d0-a89e-6b22522e6e9c Project Website]&nbsp;&nbsp; [[Media: ER18-1501.pdf | Report.pdf]]</ref> treating PFAS-contaminated groundwater with the PFAS-selective AER (Purolite PFA694E) ]]
 +
 
 +
Anion exchange is an adsorptive treatment technology that uses polymeric resin beads (0.5–1 mm diameter) that incorporate cationic adsorption sites to remove anionic pollutants from water<ref>SenGupta, A.K., 2017. Ion Exchange in Environmental Processes: Fundamentals, Applications and Sustainable Technology. Wiley. ISBN:9781119157397  [https://onlinelibrary.wiley.com/doi/book/10.1002/9781119421252 Wiley Online Library]</ref>. Anions (e.g., NO<sub>3</sub><sup>-</sup>) are adsorbed by an ion exchange reaction with anions that are initially bound to the adsorption sites (e.g., Cl<sup>-</sup>) during resin preparation. Many per- and polyfluoroalkyl substances (PFAS) of concern, including [[Wikipedia: Perfluorooctanoic acid | perfluorooctanoic acid (PFOA)]] and [[Wikipedia: Perfluorooctanesulfonic acid | perfluorooctane sulfonate (PFOS)]], are present in contaminated water as anionic species that can be adsorbed by anion exchange reactions<ref name="BoyerEtAl2021a"/><ref name="DixitEtAl2021">Dixit, F., Dutta, R., Barbeau, B., Berube, P., Mohseni, M., 2021. PFAS Removal by Ion Exchange Resins: A Review. Chemosphere, 272, Article 129777. [https://doi.org/10.1016/j.chemosphere.2021.129777 doi: 10.1016/j.chemosphere.2021.129777]</ref><ref name="RahmanEtAl2014">Rahman, M.F., Peldszus, S., Anderson, W.B., 2014. Behaviour and Fate of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) in Drinking Water Treatment: A Review. Water Research, 50, pp. 318–340. [https://doi.org/10.1016/j.watres.2013.10.045 doi: 10.1016/j.watres.2013.10.045]</ref>.
 +
</br>
 +
<center><big>Anion Exchange Reaction:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''PFAS<sup>-</sup></big><sub>(aq)</sub><big>&nbsp;+&nbsp;Cl<sup>-</sup></big><sub>(resin bound)</sub><big>&nbsp;&nbsp;&rArr;&nbsp;&nbsp;PFAS<sup>-</sup></big><sub>(resin bound)</sub><big>&nbsp;+&nbsp;Cl<sup>-</sup></big><sub>(aq)</sub>'''</center>
 +
Resins most commonly applied for PFAS treatment are strong base anion exchange resins (SB-AERs) that incorporate [[Wikipedia: Quaternary ammonium cation | quaternary ammonium]] cationic functional groups with hydrocarbon side chains (R-groups) that promote PFAS adsorption by a combination of electrostatic and hydrophobic mechanisms (Figure 1)<ref name="BoyerEtAl2021a"/><ref>Fuller, Mark. Ex Situ Treatment of PFAS-Impacted Groundwater Using Ion Exchange with Regeneration; ER18-1027. [https://serdp-estcp.mil/projects/details/af660326-56e0-4d3c-b80a-1d8a2d613724 Project Website].</ref>. SB-AERs maintain cationic functional groups independent of water pH. Recently introduced ‘PFAS-selective’ AERs show >1,000,000-fold greater selectivity for some PFAS over the Cl<sup>-</sup> initially loaded onto resins<ref name="FangEtAl2021">Fang, Y., Ellis, A., Choi, Y.J., Boyer, T.H., Higgins, C.P., Schaefer, C.E., Strathmann, T.J., 2021. Removal of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) Using Ion-Exchange and Nonionic Resins. Environmental Science and Technology, 55(8), pp. 5001–5011. [https://doi.org/10.1021/acs.est.1c00769 doi: 10.1021/acs.est.1c00769]</ref>. These resins also show much higher adsorption capacities for PFAS (mg PFAS adsorbed per gram of adsorbent media) than granular activated carbon (GAC) adsorbents.
 +
 
 +
PFAS of concern include a wide range of structures, including [[Wikipedia: Perfluoroalkyl carboxylic acids | perfluoroalkyl carboxylic acids (PFCAs)]] and [[Wikipedia: Perfluorosulfonic acids | perfluoroalkyl sulfonic acids (PFSAs)]] of varying carbon chain length<ref>Interstate Technology Regulatory Council (ITRC), 2023. Technical Resources for Addressing Environmental Releases of Per- and Polyfluoroalkyl Substances (PFAS). [https://pfas-1.itrcweb.org/ ITRC PFAS Website]</ref>. As such, affinity for adsorption to AERs is heavily dependent upon PFAS structure<ref name="BoyerEtAl2021a"/><ref name="DixitEtAl2021"/>. In general, it has been found that the extent of adsorption increases with increasing chain length, and that PFSAs adsorb more strongly than PFCAs of similar chain length (Figure 2)<ref name="FangEtAl2021"/><ref>Gagliano, E., Sgroi, M., Falciglia, P.P., Vagliasindi, F.G.A., Roccaro, P., 2020. Removal of Poly- and Perfluoroalkyl Substances (PFAS) from Water by Adsorption: Role of PFAS Chain Length, Effect of Organic Matter and Challenges in Adsorbent Regeneration. Water Research, 171, Article 115381. [https://doi.org/10.1016/j.watres.2019.115381 doi: 10.1016/j.watres.2019.115381]</ref>. The chain length-dependence supports the conclusion that PFAS-resin hydrophobic mechanisms contribute to adsorption. Adsorption of polyfluorinated structures also depend on structure and prevailing charge, with adsorption of zwitterionic species (containing both anionic and cationic groups in the same structure) to AERs being documented despite having a net neutral charge<ref name="FangEtAl2021"/>.
 +
 
 +
==Reactors for Treatment of PFAS-Contaminated Water==
 +
Anion exchange treatment of water is accomplished by pumping contaminated water through fixed bed reactors filled with AERs (Figure 3). A common configuration involves flowing water through two reactors arranged in a lead-lag configuration<ref name="WoodardEtAl2017">Woodard, S., Berry, J., Newman, B., 2017. Ion Exchange Resin for PFAS Removal and Pilot Test Comparison to GAC. Remediation, 27(3), pp. 19–27. [https://doi.org/10.1002/rem.21515 doi: 10.1002/rem.21515]</ref>. Water flows through the pore spaces in close contact with resin beads. Sufficient contact time needs to be provided, referred to as empty bed contact time (EBCT), to allow PFAS to diffuse from the water into the resin structure and adsorb to exchange sites. Typical EBCTs for AER treatment of PFAS are 2-5 min, shorter than contact times recommended for granular activated carbon (GAC) adsorbents (≥10 min)<ref name="LiuEtAl2022">Liu, C. J., Murray, C.C., Marshall, R.E., Strathmann, T.J., Bellona, C., 2022. Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater by Granular Activated Carbon and Anion Exchange Resins: A Pilot-Scale Comparative Assessment. Environmental Science: Water Research and Technology, 8(10), pp. 2245–2253. [https://doi.org/10.1039/D2EW00080F doi: 10.1039/D2EW00080F]</ref><ref>Liu, C.J., Werner, D., Bellona, C., 2019. Removal of Per- and Polyfluoroalkyl Substances (PFASs) from Contaminated Groundwater Using Granular Activated Carbon: A Pilot-Scale Study with Breakthrough Modeling. Environmental Science: Water Research and Technology, 5(11), pp. 1844–1853. [https://doi.org/10.1039/C9EW00349E doi: 10.1039/C9EW00349E]</ref>. The higher adsorption capacities and shorter EBCTs of AERs enable use of much less media and smaller vessels than GAC, reducing expected capital costs for AER treatment systems<ref name="EllisEtAl2023">Ellis, A.C., Boyer, T.H., Fang, Y., Liu, C.J., Strathmann, T.J., 2023. Life Cycle Assessment and Life Cycle Cost Analysis of Anion Exchange and Granular Activated Carbon Systems for Remediation of Groundwater Contaminated by Per- and Polyfluoroalkyl Substances (PFASs). Water Research, 243, Article 120324. [https://doi.org/10.1016/j.watres.2023.120324 doi: 10.1016/j.watres.2023.120324]</ref>.
 +
 
 +
Like other adsorption media, PFAS will initially adsorb to media encountered near the inlet side of the reactor, but as ion exchange sites become saturated with PFAS, the active zone of adsorption will begin to migrate through the packed bed with increasing volume of water treated. Moreover, some PFAS with lower affinity for exchange sites (e.g., shorter-chain PFAS that are less hydrophobic) will be displaced by competition from other PFAS (e.g., longer-chain PFAS that are more hydrophobic) and move further along the bed to occupy open sites<ref name="EllisEtAl2022">Ellis, A.C., Liu, C.J., Fang, Y., Boyer, T.H., Schaefer, C.E., Higgins, C.P., Strathmann, T.J., 2022. Pilot Study Comparison of Regenerable and Emerging Single-Use Anion Exchange Resins for Treatment of Groundwater Contaminated by per- and Polyfluoroalkyl Substances (PFASs). Water Research, 223, Article 119019. [https://doi.org/10.1016/j.watres.2022.119019 doi: 10.1016/j.watres.2022.119019]&nbsp;&nbsp; [[Media: EllisEtAl2022.pdf | Open Access Manuscript]]</ref>. Eventually, PFAS will start to breakthrough into the effluent from the reactor, typically beginning with the shorter-chain compounds. The initial breakthrough of shorter-chain PFAS is similar to the behavior observed for AER treatment of inorganic contaminants.
 +
 
 +
Upon breakthrough, treatment is halted, and the exhausted resins are either replaced with fresh media or regenerated before continuing treatment. Most vendors are currently operating AER treatment systems for PFAS in single-use mode where virgin media is delivered to replace exhausted resins, which are transported off-site for disposal or incineration<ref name="BoyerEtAl2021a"/>. As an alternative, some providers are developing regenerable AER treatment systems, where exhausted resins are regenerated on-site by desorbing PFAS from the resins using a combination of salt brine (typically ≥1 wt% NaCl) and cosolvent (typically ≥70 vol% methanol)<ref name="BoyerEtAl2021a"/><ref name="BoyerEtAl2021b">Boyer, T.H., Ellis, A., Fang, Y., Schaefer, C.E., Higgins, C.P., Strathmann, T.J., 2021. Life Cycle Environmental Impacts of Regeneration Options for Anion Exchange Resin Remediation of PFAS Impacted Water. Water Research, 207, Article 117798. [https://doi.org/10.1016/j.watres.2021.117798 doi: 10.1016/j.watres.2021.117798]&nbsp;&nbsp; [[Media: BoyerEtAl2021b.pdf | Open Access Manuscript]]</ref><ref>Houtz, E., (projected completion 2025). Treatment of PFAS in Groundwater with Regenerable Anion Exchange Resin as a Bridge to PFAS Destruction, Project ER23-8391. [https://serdp-estcp.mil/projects/details/a12b603d-0d4a-4473-bf5b-069313a348ba/treatment-of-pfas-in-groundwater-with-regenerable-anion-exchange-resin-as-a-bridge-to-pfas-destruction Project Website].</ref>. This mode of operation allows for longer term use of resins before replacement, but requires more complex and extensive site infrastructure. Cosolvent in the resulting waste regenerant can be recycled by distillation, which reduces chemical inputs and lowers the volume of PFAS-contaminated still bottoms requiring further treatment or disposal<ref name="BoyerEtAl2021b"/>. Currently, there is active research on various technologies for destruction of PFAS concentrates in AER still bottoms residuals<ref name="StrathmannEtAl2020">Strathmann, T.J., Higgins, C., Deeb, R., 2020. Hydrothermal Technologies for On-Site Destruction of Site Investigation Wastes Impacted by PFAS, Final Report - Phase I. SERDP Project ER18-1501. [https://serdp-estcp.mil/projects/details/b34d6396-6b6d-44d0-a89e-6b22522e6e9c Project Website]&nbsp;&nbsp; [[Media: ER18-1501.pdf | Report.pdf]]</ref><ref name="HuangEtAl2021">Huang, Q., Woodard, S., Nickleson, M., Chiang, D., Liang, S., Mora, R., 2021. Electrochemical Oxidation of Perfluoroalkyl Acids in Still Bottoms from Regeneration of Ion Exchange Resins Phase I - Final Report. SERDP Project ER18-1320. [https://serdp-estcp.mil/projects/details/ccaa70c4-b40a-4520-ba17-14db2cd98e8f Project Website]&nbsp;&nbsp; [[Media: ER18-1320.pdf | Report.pdf]]</ref>.
 +
 
 +
==Field Demonstrations==
 +
Field pilot studies are critical to demonstrating the effectiveness and expected costs of PFAS treatment technologies. A growing number of pilot studies testing the performance of commercially available AERs to treat PFAS-contaminated groundwater, including sites impacted by historical use of aqueous film-forming foam (AFFF), have been published recently (Figure 4)
  
==Introduction==
 
[[File: Schwartz1w2Fig1.PNG | thumb | 500px | Figure 1.  Conceptual model of mercury speciation in the environment<ref>European Commission's Joint Research Centre, 2017. A new CRM to make mercury measurements in food more reliable. [https://ec.europa.eu/jrc/en/science-update/new-crm-make-mercury-measurements-food-more-reliable Website]</ref>]]
 
[[Wikipedia: Mercury (element) | Mercury]] (Hg) is released into the environment typically in the inorganic form. Natural emissions of Hg(0) come mainly from volcanoes and the ocean. Anthropogenic emissions are mainly from artisanal and small-scale gold mining, coal combustion, and various industrial processes that use Hg ( see the [https://www.unep.org/explore-topics/chemicals-waste/what-we-do/mercury/global-mercury-assessment UN Global mercury assessment]). Industrial and natural emissions of gaseous elemental mercury, Hg(0), can travel long distances in the atmosphere before being oxidized and deposited on land and in water as inorganic Hg(II). The long range transport and atmospheric deposition of Hg results in widespread low-level Hg contamination of soils at concentrations of 0.01 to 0.3 mg/kg<ref name="Eckley2020"/>.
 
  
Hg-contaminated sites are most commonly contaminated with Hg(II) from industrial discharge and have soil concentrations in the range of 100s to 1000s of mg/kg<ref name="Eckley2020"/>.  Direct exposure to Hg(II) and Hg(0) can be a human health risk at heavily contaminated sites. However, the organic form of Hg, [[Wikipedia: Methylmercury | methylmercury]] (MeHg or CH<sub>3</sub>Hg<sup>+</sup>) is typically the greater concern. MeHg is a neurotoxin that is particularly harmful to developing fetuses and young children. Direct contamination of the environment with MeHg is not common, but has occurred, most notably in [https://www.minamatadiseasemuseum.net/10-things-to-know Minamata Bay, Japan] (see also [https://en.wikipedia.org/wiki/Minamata_disease Minamata disease]). More commonly, MeHg is formed in the environment from Hg(II) in oxygen-limited conditions in a processes mediated by anaerobic microorganisms. Because MeHg [[Wikipedia: Biomagnification | biomagnifies]] in the aquatic food web, MeHg concentrations in fish can be elevated in areas that have relatively low levels of Hg contamination. The MeHg production depends heavily on site geochemistry, and high total Hg sediment concentrations do not always correlate with MeHg production potential.
 
  
==Biogeochemistry/Mobility of Hg in soils==
+
In comparison to other reported PFAS destruction techniques, PRD offers several advantages:
In the environment, Hg mobility is largely controlled by chelation with various ligands or adsorption to particles<ref name ="Hsu-Kim2018"/>. Hg(II) is most strongly attracted to the sulfur functional groups in dissolved organic matter (DOM) and to sulfur ligands. Over time, newly released Hg(II) “ages” and becomes less reactive to ligands and is less likely to be found in the dissolved phase. Legacy Hg(II) found in sediments and soils is more likely to be strongly adsorbed to the soil matrix and not very bioavailable compared to newly released Hg(II)<ref name ="Hsu-Kim2018"/>. MeHg has mobility tendencies similar to Hg, with DOM and sulfur ligands competing with each other to form complexes with MeHg<ref name="Loux2007">Loux, N.T., 2007. An assessment of thermodynamic reaction constants for simulating aqueous environmental monomethylmercury speciation. Chemical Speciation and Bioavailability, 19(4), pp.183-196. [https://doi.org/10.3184/095422907X255947  DOI: 10.3184/095422907X255947]&nbsp;&nbsp; [https://www.tandfonline.com/doi/pdf/10.3184/095422907X255947?needAccess=true Free access article]&nbsp;&nbsp; [Media: Loux2007.pdf | Report.pdf]]</ref>. However, unlike Hg-S complexes, MeHg-S does not have limited solubility.
+
*Relative to UV/sodium sulfite and UV/sodium iodide systems, the fitted degradation rates in the micelle-accelerated PRD reaction system were ~18 and ~36 times higher, indicating the key role of the self-assembled micelle in creating a confined space for rapid PFAS destruction<ref name="ChenEtAl2020"/>. The negatively charged hydrated electron associated with the positively charged cetyltrimethylammonium ion (CTA<sup>+</sup>) forms the surfactant micelle to trap molecules with similar structures, selectively mineralizing compounds with both hydrophobic and hydrophilic groups (e.g., PFAS).
 +
*The PRD reaction does not require solid catalysts or electrodes, which can be expensive to acquire and difficult to regenerate or dispose.  
 +
*The aqueous solution is not heated or pressurized, and the UV wavelength used does not cause direct water [[Wikipedia: Photodissociation | photolysis]], therefore the energy input to the system is more directly employed to destroy PFAS, resulting in greater energy efficiency.
 +
*Since the reaction is performed at ambient temperature and pressure, there are limited concerns regarding environmental health and safety or volatilization of PFAS compared to heated and pressurized systems.
 +
*Due to the reductive nature of the reaction, there is no formation of unwanted byproducts resulting from oxidative processes, such as [[Wikipedia: Perchlorate | perchlorate]]  generation during electrochemical oxidation<ref>Veciana, M., Bräunig, J., Farhat, A., Pype, M. L., Freguia, S., Carvalho, G., Keller, J., Ledezma, P., 2022. Electrochemical Oxidation Processes for PFAS Removal from Contaminated Water and Wastewater: Fundamentals, Gaps and Opportunities towards Practical Implementation. Journal of Hazardous Materials, 434, Article 128886. [https://doi.org/10.1016/j.jhazmat.2022.128886 doi: 10.1016/j.jhazmat.2022.128886]</ref><ref>Trojanowicz, M., Bojanowska-Czajka, A., Bartosiewicz, I., Kulisa, K., 2018. Advanced Oxidation/Reduction Processes Treatment for Aqueous Perfluorooctanoate (PFOA) and Perfluorooctanesulfonate (PFOS) – A Review of Recent Advances. Chemical Engineering Journal, 336, pp. 170–199. [https://doi.org/10.1016/j.cej.2017.10.153 doi: 10.1016/j.cej.2017.10.153]</ref><ref>Wanninayake, D.M., 2021. Comparison of Currently Available PFAS Remediation Technologies in Water: A Review. Journal of Environmental Management, 283, Article 111977. [https://doi.org/10.1016/j.jenvman.2021.111977 doi: 10.1016/j.jenvman.2021.111977]</ref>.
 +
*Aqueous fluoride ions are the primary end products of PRD, enabling real-time reaction monitoring with a fluoride [[Wikipedia: Ion-selective electrode | ion selective electrode (ISE)]], which is far less expensive and faster than relying on PFAS analytical data alone to monitor system performance.
  
The bioavailability of Hg(II) is one of the factors controlling MeHg production in the environment. MeHg production occurs in anoxic environments and is affected by: (1) the bioavailability of Hg(II) complexes to Hg-[[Wikipedia: Methylation | methylating]] microorganisms, (2) the activity of Hg-methylating microorganisms, and (3) the rate of biotic and abiotic [[Wikipedia: Demethylation | demethylation]]. MeHg is produced by anaerobic microorganisms that contain the ''hgcAB'' gene<ref name="Parks2013">Parks, J.M., Johs, A., Podar, M., Bridou, R. Hurt, R.A., Smith, S.D., Tomanicek, S.J., Qian, Y., Brown, S.D., Brandt, C.C., Palumbo, A.V., Smith, J.C., Wall, J.D., Elias, D.A., Liang, L., 2013. The Genetic Basis for Bacterial Mercury Methylation. Science, 339(6125), pp. 1332-1335. [https://science.sciencemag.org/content/339/6125/1332 DOI: 10.1126/science.1230667]</ref>. These microorganisms are a diverse group and include, sulfate-reducing bacteria, iron-reducing bacteria, and methanogenic bacteria. Site geochemistry has a significant effect on MeHg production. Methylating microorganisms are sensitive to oxygen, and MeHg production occurs in oxygen-depleted or anaerobic zones in the environment, such as anoxic aquatic sediments, saturated soils, and biofilms with anoxic microenvironments<ref name="Bravo2020">Bravo, A.G., Cosio, C., 2020. Biotic formation of methylmercury: A bio–physico–chemical conundrum. Limnology and Oceanography, 65(5), pp. 1010-1027. [https://doi.org/10.1002/lno.11366 DOI: 10.1002/lno.11366]&nbsp;&nbsp; [https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.1002/lno.11366 Free Access Article]&nbsp;&nbsp; [[Media: Bravo2020.pdf | Report.pdf]]</ref>. The activity of methylating microorganisms can be impacted by redox conditions, the concentrations of organic carbon, and different electron acceptors (e.g. sulfate vs iron)<ref name="Bravo2020"/>. Overall, MeHg concentrations and production are impacted by demethylation as well. Demethylation can occur both abiotically and biotically and occurs at a much faster rate than methylation. The main routes of abiotic demethylation are photochemical reactions and demethylation catalyzed by reduced sulfur surfaces<ref name="Du2019">Du, H. Ma, M., Igarashi, Y., Wang, D., 2019. Biotic and Abiotic Degradation of Methylmercury in Aquatic Ecosystems: A Review. Bulletin of Environmental Contamination and Toxicology, 102 pp. 605-611. [https://doi.org/10.1007/s00128-018-2530-2 DOI: 10.1007/s00128-018-2530-2]</ref><ref name="Jonsson2016">Jonsson, S., Mazrui, N.M., Mason, R.P., 2016. Dimethylmercury Formation Mediated by Inorganic and Organic Reduced Sulfur Surfaces. Scientific Reports, 6, Article 27958.  [https://doi.org/10.1038/srep27958 DOI: 10.1038/srep27958]&nbsp;&nbsp; [https://www.nature.com/articles/srep27958.pdf Free access article]&nbsp;&nbsp; [[Media: Jonsson2016.pdf | Report.pdf]]</ref>. Methylmercury can be degraded biotically by aerobic bacteria containing the mercury detoxification, ''mer'' [[Wikipedia: Operon | operon]] and through oxidative demethylation by anaerobic microorganisms<ref name="Du2019"/>.  
+
===Disadvantages===
 +
*The CTAB additive is only partially consumed during the reaction, and although CTAB is not problematic when discharged to downstream treatment processes that incorporate aerobic digestors, CTAB can be toxic to surface waters and anaerobic digestors. Therefore, disposal options for treated solutions will need to be evaluated on a site-specific basis. Possible options include removal of CTAB from solution for reuse in subsequent PRD treatments, or implementation of an oxidation reaction to degrade CTAB.  
 +
*The PRD reaction rate decreases in water matrices with high levels of total dissolved solids (TDS). It is hypothesized that in high TDS solutions (e.g., ion exchange still bottoms with TDS of 200,000 ppm), the presence of ionic species inhibits the association of the electron donor with the micelle, thus decreasing the reaction rate.
 +
*The PRD reaction rate decreases in water matrices with very low UV transmissivity. Low UV transmissivity (i.e., < 1 %) prevents the penetration of UV light into the solution, such that the utilization efficiency of UV light decreases.
  
==Bioaccumulation and Toxicology==
+
==State of the Art==
Regulatory criteria are most often based on total Hg concentrations, however, MeHg is the form of Hg that can [[Wikipedia: Bioaccumulation | bioaccumulate]] in wildlife and is the greatest human and ecological health risk<ref name=”ATSDR1999”>Agency for Toxic Substances and Disease Registry (ATSDR), 1999. Toxicological Profile for Mercury.  [https://www.atsdr.cdc.gov/ToxProfiles/tp46.pdf Free download]&nbsp;&nbsp; [[Media: ATSDR1999.pdf | Report.pdf]]</ref>. MeHg represents over 95% of the Hg found in fish<ref name="Bloom1992">Bloom, N.S., 1992. On the Chemical Form of Mercury in Edible Fish and Marine Invertebrate Tissue. Canadian Journal of Fisheries and Aquatic Sciences 49(5), pp. 1010-117.  [https://doi.org/10.1139/f92-113 DOI: 10.1139/f92-113]</ref>. Hg and MeHg can be taken up directly from contaminated water into organisms, with the identity of the Hg-ligand complexes determining how readily the Hg is taken up into the organism<ref name="Kidd2012">Kidd, K., Clayden, M., Jardine, T., 2012. Bioaccumulation and Biomagnification of Mercury through Food Webs. Environmental Chemistry and Toxicology of Mercury, pp. 453-499. Liu, G., Yong, C. O’Driscoll, N., Eds. John Wiley and Sons, Inc. Hoboken, NJ.  [https://doi.org/10.1002/9781118146644.ch14 DOI: 10.1002/9781118146644.ch14]</ref>. Direct bioconcentration from water is the major uptake route at the base of the food web. Hg and MeHg can also enter the food web when benthic organisms ingest contaminated sediments<ref name="Mason2001">Mason, R.P., 2001. The Bioaccumulation of Mercury, Methylmercury and Other Toxic Elements into Pelagic and Benthic Organisms. Coastal and Estuarine Risk Assessment, pp. 127-149. Newman, M., Roberts, M., and Hale, R.C., Ed.s. CRC Press. ISBN: 978-1-4200-3245-1  Free download from: [https://www.researchgate.net/profile/Robert-Mason-13/publication/266354387_The_Bioaccumulation_of_Mercury_Methylmercury_and_Other_Toxic_Elements_into_Pelagic_and_Benthic_Organisms/links/55083eff0cf26ff55f80662d/The-Bioaccumulation-of-Mercury-Methylmercury-and-Other-Toxic-Elements-into-Pelagic-and-Benthic-Organisms.pdf ResearchGate]</ref>. Further up the food web organisms are exposed to Hg and MeHg both through exposure to contaminated water and through their diet. The higher up the trophic level, the more important dietary exposure becomes. Fish obtain more than 90% of Hg from their diet<ref name="Kidd2012"/>.
 
  
Humans are mainly exposed to Hg in the forms of MeHg and Hg(0). Hg(0) exposure comes from dental amalgams and industrial/contaminated site exposures. Hg(0) readily crosses the blood/brain barrier and mainly effects the nervous system and the kidneys<ref name="Clarkson2003">Clarkson, T.W., Magos, L., Myers, G.J., 2003. The Toxicology of Mercury — Current Exposures and Clinical Manifestations. New England Journal of Medicine, 349, pp. 1731-1737. [https://doi.org/10.1056/NEJMra022471 DOI: 10.1056/NEJMra022471]</ref>. MeHg exposure comes from the consumption of contaminated fish. In the human body, MeHg is readily absorbed through the gastrointestinal tract into the bloodstream and crosses the blood/brain barrier, affecting the central nervous system. MeHg can also pass through the placenta to the fetus and is particularly harmful to the developing nervous system of the fetus.  
+
===Technical Performance===
 +
[[File:WittFig2.png | thumb |400px| Figure 2. Enspired Solutions<small><sup>TM</sup></small> commercial PRD PFAS destruction equipment, the PFASigator<small><sup>TM</sup></small>. Dimensions are 8 feet long by 4 feet wide by 9 feet tall.]]
  
MeHg and Hg toxicity in the body occurs through multiple pathways and may be linked to the affinity of Hg for sulfur groups. Hg and MeHg bind to S-containing groups, which can block normal bodily functions<ref name="Bjørklund2017">Bjørklund, G., Dadar, M., Mutter, J. and Aaseth, J., 2017. The toxicology of mercury: Current research and emerging trends. Environmental Research, 159, pp.545-554. [https://doi.org/10.1016/j.envres.2017.08.051 DOI: 10.1016/j.envres.2017.08.051]</ref>.  
+
{| class="wikitable mw-collapsible" style="float:left; margin-right:20px; text-align:center;"
 +
|+Table 1. Percent decreases from initial PFAS concentrations during benchtop testing of PRD treatment in different water matrices
 +
|-
 +
! Analytes
 +
!
 +
! GW
 +
! FF
 +
! AFFF<br>Rinsate
 +
! AFF<br>(diluted 10X)
 +
! IDW NF
 +
|-
 +
| &Sigma; Total PFAS<small><sup>a</sup></small> (ND=0)
 +
| rowspan="9" style="background-color:white;" | <p style="writing-mode: vertical-rl">% Decrease<br>(Initial Concentration, &mu;g/L)</p>
 +
| 93%<br>(370) || 96%<br>(32,000) || 89%<br>(57,000) || 86 %<br>(770,000) || 84%<br>(82)
 +
|-
 +
| &Sigma; Total PFAS (ND=MDL) || 93%<br>(400) || 86%<br>(32,000) || 90%<br>(59,000) || 71%<br>(770,000) || 88%<br>(110)
 +
|-
 +
| &Sigma; Total PFAS (ND=RL) || 94%<br>(460) || 96%<br>(32,000) || 91%<br>(66,000) || 34%<br>(770,000) || 92%<br>(170)
 +
|-
 +
| &Sigma; Highly Regulated PFAS<small><sup>b</sup></small> (ND=0) || >99%<br>(180) || >99%<br>(20,000) || 95%<br>(20,000) || 92%<br>(390,000) || 95%<br>(50)
 +
|-
 +
| &Sigma; Highly Regulated PFAS (ND=MDL) || >99%<br>(180) || 98%<br>(20,000) || 95%<br>(20,000) || 88%<br>(390,000) || 95%<br> (52)
 +
|-
 +
| &Sigma; Highly Regulated PFAS (ND=RL) || >99%<br>(190) || 93%<br>(20,000) || 95%<br>(20,000) || 79%<br>(390,000) || 95%<br>(55)
 +
|-
 +
| &Sigma; High Priority PFAS<small><sup>c</sup></small> (ND=0) || 91%<br>(180) || 98%<br>(20,000) || 85%<br>(20,000) || 82%<br>(400,000) || 94%<br>(53)
 +
|-
 +
| &Sigma; High Priority PFAS (ND=MDL) || 91%<br>(190) || 94%<br>(20,000) || 85%<br>(20,000) || 79%<br>(400,000) || 86%<br>(58)
 +
|-
 +
| &Sigma; High Priority PFAS (ND=RL) || 92%<br>(200) || 87%<br>(20,000) || 86%<br>(21,000) || 70%<br>(400,000) || 87%<br>(65)
 +
|-
 +
| Fluorine mass balance<small><sup>d</sup></small> || ||106% || 109% || 110% || 65% || 98%
 +
|-
 +
| Sorbed organic fluorine<small><sup>e</sup></small> || || 4% || 4% || 33% || N/A || 31%
 +
|-
 +
| colspan="7" style="background-color:white; text-align:left" | <small>Notes:<br>GW = groundwater<br>GW FF = groundwater foam fractionate<br>AFFF rinsate = rinsate collected from fire system decontamination<br>AFFF (diluted 10x) = 3M Lightwater AFFF diluted 10x<br>IDW NF = investigation derived waste nanofiltrate<br>ND = non-detect<br>MDL = Method Detection Limit<br>RL = Reporting Limit<br><small><sup>a</sup></small>Total PFAS = 40 analytes + unidentified PFCA precursors<br><small><sup>b</sup></small>Highly regulated PFAS = PFNA, PFOA, PFOS, PFHxS, PFBS, HFPO-DA<br><small><sup>c</sup></small>High priority PFAS = PFNA, PFOA, PFHxA, PFBA, PFOS, PFHxS, PFBS, HFPO-DA<br><small><sup>d</sup></small>Ratio of the final to the initial organic fluorine plus inorganic fluoride concentrations<br><small><sup>e</sup></small>Percent of organic fluorine that sorbed to the reactor walls during treatment<br></small>
 +
|}
 +
</br>
 +
The&nbsp;PRD&nbsp;reaction&nbsp;has&nbsp;been validated at the bench scale for the destruction of PFAS in a variety of environmental samples from Department of Defense sites (Table 1). Enspired Solutions<small><sup>TM</sup></small> has designed and manufactured a fully automatic commercial-scale piece of equipment called PFASigator<small><sup>TM</sup></small>, specializing in PRD PFAS destruction (Figure 2). This equipment is modular and scalable, has a small footprint, and can be used alone or in series with existing water treatment trains. The PFASigator<small><sup>TM</sup></small> employs commercially available UV reactors and monitoring meters that have been used in the water industry for decades. The system has been tested on PRD efficiency operational parameters, and key metrics were proven to be consistent with benchtop studies.  
  
==Regulatory Framework for Mercury==
+
Bench scale PRD tests were performed for the following samples collected from Department of Defense sites: groundwater (GW), groundwater foam fractionate (FF), firefighting truck rinsate ([[Wikipedia: Firefighting foam | AFFF]] Rinsate), 3M Lightwater AFFF, investigation derived waste nanofiltrate (IDW NF), [[Wikipedia: Ion exchange | ion exchange]] still bottom (IX SB), and Ansulite AFFF. The PRD treatment was more effective in low conductivity/TDS solutions. Generally, PRD reaction rates decrease for solutions with a TDS > 10,000 ppm, with an upper limit of 30,000 ppm. Ansulite AFFF and IX SB samples showed low destruction efficiencies during initial screening tests, which was primarily attributed to their high TDS concentrations. Benchtop testing data are shown in Table 1 for the remaining five sample matrices.
In the United States, mercury is regulated by several different [[Wikipedia: Mercury regulation in the United States | environmental laws]] including: the Mercury Export Ban Act of 2008, the Mercury-Containing and Rechargeable Battery Management Act of 1996, the Clean Air Act, the Clean Water Act, the Emergency Planning and Community Right-to-Know Act, the Resource Conservation and Recovery Act, and the Safe Drinking Water Act<ref name=”USEPA2021”>US EPA, 2021.  Environmental Laws that Apply to Mercury. [https://www.epa.gov/mercury/environmental-laws-apply-mercury US EPA Website]</ref>.  
 
  
In 2013, the United States signed the international [https://www.epa.gov/international-cooperation/minamata-convention-mercury Minamata Convention on Mercury]. The Minamata Convention on Mercury seeks to address and reduce human activities that are contributing to widespread mercury pollution. Worldwide, 128 countries have signed the Convention.
+
During treatment, PFOS and PFOA concentrations decreased 96% to >99% and 77% to 97%, respectively. For the PFAS with proposed drinking water Maximum Contaminant Levels (MCLs) recently established by the USEPA (PFNA, PFOA, PFOS, PFHxS, PFBS, and HFPO-DA), concentrations decreased >99% for GW, 93% for FF, 95% for AFFF Rinsate and IDW NF, and 79% for AFFF (diluted 10x) during the treatment time allotted. Meanwhile, the total PFAS concentrations, including all 40 known PFAS analytes and unidentified perfluorocarboxylic acid (PFCA) precursors, decreased from 34% to 96% following treatment. All of these concentration reduction values were calculated by using reporting limits (RL) as the concentrations for non-detects.  
  
==Remediation Technologies==
+
Excellent fluorine/fluoride mass balance was achieved. There was nearly a 1:1 conversion of organic fluorine to free inorganic fluoride ion during treatment of GW, FF and AFFF Rinsate. The 3M Lightwater AFFF (diluted 10x) achieved only 65% fluorine mass balance, but this was likely due to high adsorption of PFAS to the reactor.
As a chemical element, Hg cannot be destroyed, so the goal of Hg-remediation is immobilization and prevention of food web bioaccumulation. At very highly contaminated sites (>100s ppm), sediments are often removed and landfilled<ref name="Eckley2020"/>. ''In situ'' capping is also a common remediation approach. Both dredging and capping can be costly and ecologically destructive, and the development of less invasive, less costly remediation technologies for Hg and MeHg contaminated sediments is an active research field. Eckley et al.<ref name="Eckley2020"/>and Wang et al.<ref name="Wang2020">Wang, L., Hou, D., Cao, Y., Ok, Y.S., Tack, F., Rinklebe, J., O’Connor, D., 2020. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environmental International, 134, 105281.  [https://doi.org/10.1016/j.envint.2019.105281  DOI: 10.1016/j.envint.2019.105281]&nbsp;&nbsp; [https://www.sciencedirect.com/science/article/pii/S0160412019324754 Free access article]</ref> give thorough reviews of standard and emerging technologies.  
 
  
Recently application of ''in situ'' sorbents has garnered interest as a remediation solution for Hg<ref name="Eckley2020"/>. Many different materials, including biochar and various formulations of [[In Situ Treatment of Contaminated Sediments with Activated Carbon | activated carbon]], are successful in lowering porewater concentrations of Hg and MeHg in contaminated sediments<ref name="Gilmour2013">Gilmour, C.C., Riedel, G.S., Riedel, G., Kwon, S., Landis, R., Brown, S.S., Menzie, C.A., Ghosh, U., 2013. Activated Carbon Mitigates Mercury and Methylmercury Bioavailability in Contaminated Sediments. Environmental Science and Technology, 47(22), pp. 13001-13010.  [https://doi.org/10.1021/es4021074 DOI: 10.1021/es4021074]&nbsp;&nbsp; Free download from: [https://www.researchgate.net/profile/Steven-Brown-18/publication/258042399_Activated_Carbon_Mitigates_Mercury_and_Methylmercury_Bioavailability_in_Contaminated_Sediments/links/5702a10e08aea09bb1a30083/Activated-Carbon-Mitigates-Mercury-and-Methylmercury-Bioavailability-in-Contaminated-Sediments.pdf ResearchGate]</ref>. More research is needed to determine whether Hg and MeHg sorbed to these materials are available for uptake into organisms. Site biogeochemistry can also impact the efficacy of sorbent materials, with dissolved organic matter and sulfide concentrations impacting Hg and MeHg sorption. Overall, knowing site biogeochemical characteristics is important for predicting Hg mobility and MeHg production risks as well as for designing a remediation strategy that will be effective.
+
===Application===
 +
Due to the first-order kinetics of PRD, destruction of PFAS is most energy efficient when paired with a pre-concentration technology, such as foam fractionation (FF), nanofiltration, reverse osmosis, or resin/carbon adsorption, that remove PFAS from water. Application of the PFASigator<small><sup>TM</sup></small> is therefore proposed as a part of a PFAS treatment train that includes a pre-concentration step.
  
<br clear="left" />
+
The first pilot study with the PFASigator<small><sup>TM</sup></small> was conducted in late 2023 at an industrial facility in Michigan with PFAS-impacted groundwater. The goal of the pilot study was to treat the groundwater to below the limits for regulatory discharge permits. For the pilot demonstration, the PFASigator<small><sup>TM</sup></small> was paired with an FF unit, which pre-concentrated the PFAS into a foamate that was pumped into the PFASigator<small><sup>TM</sup></small> for batch PFAS destruction. Residual PFAS remaining after the destruction batch was treated by looping back the PFASigator<small><sup>TM</sup></small> effluent to the FF system influent. During the one-month field pilot duration, site-specific discharge limits were met, and steady state operation between the FF unit and PFASigator<small><sup>TM</sup></small> was achieved such that the PFASigator<small><sup>TM</sup></small> destroyed the required concentrated PFAS mass and no off-site disposal of PFAS contaminated waste was required.
  
 
==References==
 
==References==
 
 
<references />
 
<references />
  
 
==See Also==
 
==See Also==

Latest revision as of 22:07, 16 May 2024

PFAS Treatment by Anion Exchange

Anion exchange has emerged as one of the most effective and economical technologies for treatment of water contaminated by per- and polyfluoroalkyl substances (PFAS). Anion exchange resins (AERs) are polymer beads (0.5–1 mm diameter) incorporating cationic adsorption sites that attract anionic PFAS by a combination of electrostatic and hydrophobic mechanisms. Both regenerable and single-use resin treatment systems are being investigated, and results from pilot-scale studies show that AERs can treat much greater volumes of PFAS-contaminated water than comparable amounts of granular activated carbon (GAC) adsorbent media. Life cycle treatment costs and environmental impacts of anion exchange and other adsorbent technologies are highly dependent upon the treatment criteria selected by site managers to determine when media is exhausted and requires replacement or regeneration.

Related Article(s):

Contributor(s):

  • Dr. Timothy J. Strathmann
  • Dr. Anderson Ellis
  • Dr. Treavor H. Boyer

Key Resource(s):

  • Anion Exchange Resin Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Impacted Water: A Critical Review[1]
  • Regenerable Resin Sorbent Technologies with Regenerant Solution Recycling for Sustainable Treatment of PFAS; SERDP Project ER18-1063 Final Report[2]

Introduction

Figure 1. Illustration of PFAS adsorption by anion exchange resins (AERs). Incorporation of longer alkyl group side chains on the cationic quaternary amine functional groups leads to PFAS-resin hydrophobic interactions that increase resin selectivity for PFAS over inorganic anions like Cl-.
File:StrathmannFig2.png
Figure 2. Effect of perfluoroalkyl carbon chain length on the estimated bed volumes (BVs) to 50% breakthrough of PFCAs and PFSAs observed in a pilot study[3] treating PFAS-contaminated groundwater with the PFAS-selective AER (Purolite PFA694E)

Anion exchange is an adsorptive treatment technology that uses polymeric resin beads (0.5–1 mm diameter) that incorporate cationic adsorption sites to remove anionic pollutants from water[4]. Anions (e.g., NO3-) are adsorbed by an ion exchange reaction with anions that are initially bound to the adsorption sites (e.g., Cl-) during resin preparation. Many per- and polyfluoroalkyl substances (PFAS) of concern, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), are present in contaminated water as anionic species that can be adsorbed by anion exchange reactions[1][5][6].

Anion Exchange Reaction:      PFAS-(aq) + Cl-(resin bound)  ⇒  PFAS-(resin bound) + Cl-(aq)

Resins most commonly applied for PFAS treatment are strong base anion exchange resins (SB-AERs) that incorporate quaternary ammonium cationic functional groups with hydrocarbon side chains (R-groups) that promote PFAS adsorption by a combination of electrostatic and hydrophobic mechanisms (Figure 1)[1][7]. SB-AERs maintain cationic functional groups independent of water pH. Recently introduced ‘PFAS-selective’ AERs show >1,000,000-fold greater selectivity for some PFAS over the Cl- initially loaded onto resins[8]. These resins also show much higher adsorption capacities for PFAS (mg PFAS adsorbed per gram of adsorbent media) than granular activated carbon (GAC) adsorbents.

PFAS of concern include a wide range of structures, including perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) of varying carbon chain length[9]. As such, affinity for adsorption to AERs is heavily dependent upon PFAS structure[1][5]. In general, it has been found that the extent of adsorption increases with increasing chain length, and that PFSAs adsorb more strongly than PFCAs of similar chain length (Figure 2)[8][10]. The chain length-dependence supports the conclusion that PFAS-resin hydrophobic mechanisms contribute to adsorption. Adsorption of polyfluorinated structures also depend on structure and prevailing charge, with adsorption of zwitterionic species (containing both anionic and cationic groups in the same structure) to AERs being documented despite having a net neutral charge[8].

Reactors for Treatment of PFAS-Contaminated Water

Anion exchange treatment of water is accomplished by pumping contaminated water through fixed bed reactors filled with AERs (Figure 3). A common configuration involves flowing water through two reactors arranged in a lead-lag configuration[11]. Water flows through the pore spaces in close contact with resin beads. Sufficient contact time needs to be provided, referred to as empty bed contact time (EBCT), to allow PFAS to diffuse from the water into the resin structure and adsorb to exchange sites. Typical EBCTs for AER treatment of PFAS are 2-5 min, shorter than contact times recommended for granular activated carbon (GAC) adsorbents (≥10 min)[12][13]. The higher adsorption capacities and shorter EBCTs of AERs enable use of much less media and smaller vessels than GAC, reducing expected capital costs for AER treatment systems[14].

Like other adsorption media, PFAS will initially adsorb to media encountered near the inlet side of the reactor, but as ion exchange sites become saturated with PFAS, the active zone of adsorption will begin to migrate through the packed bed with increasing volume of water treated. Moreover, some PFAS with lower affinity for exchange sites (e.g., shorter-chain PFAS that are less hydrophobic) will be displaced by competition from other PFAS (e.g., longer-chain PFAS that are more hydrophobic) and move further along the bed to occupy open sites[15]. Eventually, PFAS will start to breakthrough into the effluent from the reactor, typically beginning with the shorter-chain compounds. The initial breakthrough of shorter-chain PFAS is similar to the behavior observed for AER treatment of inorganic contaminants.

Upon breakthrough, treatment is halted, and the exhausted resins are either replaced with fresh media or regenerated before continuing treatment. Most vendors are currently operating AER treatment systems for PFAS in single-use mode where virgin media is delivered to replace exhausted resins, which are transported off-site for disposal or incineration[1]. As an alternative, some providers are developing regenerable AER treatment systems, where exhausted resins are regenerated on-site by desorbing PFAS from the resins using a combination of salt brine (typically ≥1 wt% NaCl) and cosolvent (typically ≥70 vol% methanol)[1][16][17]. This mode of operation allows for longer term use of resins before replacement, but requires more complex and extensive site infrastructure. Cosolvent in the resulting waste regenerant can be recycled by distillation, which reduces chemical inputs and lowers the volume of PFAS-contaminated still bottoms requiring further treatment or disposal[16]. Currently, there is active research on various technologies for destruction of PFAS concentrates in AER still bottoms residuals[3][18].

Field Demonstrations

Field pilot studies are critical to demonstrating the effectiveness and expected costs of PFAS treatment technologies. A growing number of pilot studies testing the performance of commercially available AERs to treat PFAS-contaminated groundwater, including sites impacted by historical use of aqueous film-forming foam (AFFF), have been published recently (Figure 4)


In comparison to other reported PFAS destruction techniques, PRD offers several advantages:

  • Relative to UV/sodium sulfite and UV/sodium iodide systems, the fitted degradation rates in the micelle-accelerated PRD reaction system were ~18 and ~36 times higher, indicating the key role of the self-assembled micelle in creating a confined space for rapid PFAS destruction[19]. The negatively charged hydrated electron associated with the positively charged cetyltrimethylammonium ion (CTA+) forms the surfactant micelle to trap molecules with similar structures, selectively mineralizing compounds with both hydrophobic and hydrophilic groups (e.g., PFAS).
  • The PRD reaction does not require solid catalysts or electrodes, which can be expensive to acquire and difficult to regenerate or dispose.
  • The aqueous solution is not heated or pressurized, and the UV wavelength used does not cause direct water photolysis, therefore the energy input to the system is more directly employed to destroy PFAS, resulting in greater energy efficiency.
  • Since the reaction is performed at ambient temperature and pressure, there are limited concerns regarding environmental health and safety or volatilization of PFAS compared to heated and pressurized systems.
  • Due to the reductive nature of the reaction, there is no formation of unwanted byproducts resulting from oxidative processes, such as perchlorate generation during electrochemical oxidation[20][21][22].
  • Aqueous fluoride ions are the primary end products of PRD, enabling real-time reaction monitoring with a fluoride ion selective electrode (ISE), which is far less expensive and faster than relying on PFAS analytical data alone to monitor system performance.

Disadvantages

  • The CTAB additive is only partially consumed during the reaction, and although CTAB is not problematic when discharged to downstream treatment processes that incorporate aerobic digestors, CTAB can be toxic to surface waters and anaerobic digestors. Therefore, disposal options for treated solutions will need to be evaluated on a site-specific basis. Possible options include removal of CTAB from solution for reuse in subsequent PRD treatments, or implementation of an oxidation reaction to degrade CTAB.
  • The PRD reaction rate decreases in water matrices with high levels of total dissolved solids (TDS). It is hypothesized that in high TDS solutions (e.g., ion exchange still bottoms with TDS of 200,000 ppm), the presence of ionic species inhibits the association of the electron donor with the micelle, thus decreasing the reaction rate.
  • The PRD reaction rate decreases in water matrices with very low UV transmissivity. Low UV transmissivity (i.e., < 1 %) prevents the penetration of UV light into the solution, such that the utilization efficiency of UV light decreases.

State of the Art

Technical Performance

Figure 2. Enspired SolutionsTM commercial PRD PFAS destruction equipment, the PFASigatorTM. Dimensions are 8 feet long by 4 feet wide by 9 feet tall.
Table 1. Percent decreases from initial PFAS concentrations during benchtop testing of PRD treatment in different water matrices
Analytes GW FF AFFF
Rinsate
AFF
(diluted 10X)
IDW NF
Σ Total PFASa (ND=0)

% Decrease
(Initial Concentration, μg/L)

93%
(370)
96%
(32,000)
89%
(57,000)
86 %
(770,000)
84%
(82)
Σ Total PFAS (ND=MDL) 93%
(400)
86%
(32,000)
90%
(59,000)
71%
(770,000)
88%
(110)
Σ Total PFAS (ND=RL) 94%
(460)
96%
(32,000)
91%
(66,000)
34%
(770,000)
92%
(170)
Σ Highly Regulated PFASb (ND=0) >99%
(180)
>99%
(20,000)
95%
(20,000)
92%
(390,000)
95%
(50)
Σ Highly Regulated PFAS (ND=MDL) >99%
(180)
98%
(20,000)
95%
(20,000)
88%
(390,000)
95%
(52)
Σ Highly Regulated PFAS (ND=RL) >99%
(190)
93%
(20,000)
95%
(20,000)
79%
(390,000)
95%
(55)
Σ High Priority PFASc (ND=0) 91%
(180)
98%
(20,000)
85%
(20,000)
82%
(400,000)
94%
(53)
Σ High Priority PFAS (ND=MDL) 91%
(190)
94%
(20,000)
85%
(20,000)
79%
(400,000)
86%
(58)
Σ High Priority PFAS (ND=RL) 92%
(200)
87%
(20,000)
86%
(21,000)
70%
(400,000)
87%
(65)
Fluorine mass balanced 106% 109% 110% 65% 98%
Sorbed organic fluorinee 4% 4% 33% N/A 31%
Notes:
GW = groundwater
GW FF = groundwater foam fractionate
AFFF rinsate = rinsate collected from fire system decontamination
AFFF (diluted 10x) = 3M Lightwater AFFF diluted 10x
IDW NF = investigation derived waste nanofiltrate
ND = non-detect
MDL = Method Detection Limit
RL = Reporting Limit
aTotal PFAS = 40 analytes + unidentified PFCA precursors
bHighly regulated PFAS = PFNA, PFOA, PFOS, PFHxS, PFBS, HFPO-DA
cHigh priority PFAS = PFNA, PFOA, PFHxA, PFBA, PFOS, PFHxS, PFBS, HFPO-DA
dRatio of the final to the initial organic fluorine plus inorganic fluoride concentrations
ePercent of organic fluorine that sorbed to the reactor walls during treatment


The PRD reaction has been validated at the bench scale for the destruction of PFAS in a variety of environmental samples from Department of Defense sites (Table 1). Enspired SolutionsTM has designed and manufactured a fully automatic commercial-scale piece of equipment called PFASigatorTM, specializing in PRD PFAS destruction (Figure 2). This equipment is modular and scalable, has a small footprint, and can be used alone or in series with existing water treatment trains. The PFASigatorTM employs commercially available UV reactors and monitoring meters that have been used in the water industry for decades. The system has been tested on PRD efficiency operational parameters, and key metrics were proven to be consistent with benchtop studies.

Bench scale PRD tests were performed for the following samples collected from Department of Defense sites: groundwater (GW), groundwater foam fractionate (FF), firefighting truck rinsate ( AFFF Rinsate), 3M Lightwater AFFF, investigation derived waste nanofiltrate (IDW NF), ion exchange still bottom (IX SB), and Ansulite AFFF. The PRD treatment was more effective in low conductivity/TDS solutions. Generally, PRD reaction rates decrease for solutions with a TDS > 10,000 ppm, with an upper limit of 30,000 ppm. Ansulite AFFF and IX SB samples showed low destruction efficiencies during initial screening tests, which was primarily attributed to their high TDS concentrations. Benchtop testing data are shown in Table 1 for the remaining five sample matrices.

During treatment, PFOS and PFOA concentrations decreased 96% to >99% and 77% to 97%, respectively. For the PFAS with proposed drinking water Maximum Contaminant Levels (MCLs) recently established by the USEPA (PFNA, PFOA, PFOS, PFHxS, PFBS, and HFPO-DA), concentrations decreased >99% for GW, 93% for FF, 95% for AFFF Rinsate and IDW NF, and 79% for AFFF (diluted 10x) during the treatment time allotted. Meanwhile, the total PFAS concentrations, including all 40 known PFAS analytes and unidentified perfluorocarboxylic acid (PFCA) precursors, decreased from 34% to 96% following treatment. All of these concentration reduction values were calculated by using reporting limits (RL) as the concentrations for non-detects.

Excellent fluorine/fluoride mass balance was achieved. There was nearly a 1:1 conversion of organic fluorine to free inorganic fluoride ion during treatment of GW, FF and AFFF Rinsate. The 3M Lightwater AFFF (diluted 10x) achieved only 65% fluorine mass balance, but this was likely due to high adsorption of PFAS to the reactor.

Application

Due to the first-order kinetics of PRD, destruction of PFAS is most energy efficient when paired with a pre-concentration technology, such as foam fractionation (FF), nanofiltration, reverse osmosis, or resin/carbon adsorption, that remove PFAS from water. Application of the PFASigatorTM is therefore proposed as a part of a PFAS treatment train that includes a pre-concentration step.

The first pilot study with the PFASigatorTM was conducted in late 2023 at an industrial facility in Michigan with PFAS-impacted groundwater. The goal of the pilot study was to treat the groundwater to below the limits for regulatory discharge permits. For the pilot demonstration, the PFASigatorTM was paired with an FF unit, which pre-concentrated the PFAS into a foamate that was pumped into the PFASigatorTM for batch PFAS destruction. Residual PFAS remaining after the destruction batch was treated by looping back the PFASigatorTM effluent to the FF system influent. During the one-month field pilot duration, site-specific discharge limits were met, and steady state operation between the FF unit and PFASigatorTM was achieved such that the PFASigatorTM destroyed the required concentrated PFAS mass and no off-site disposal of PFAS contaminated waste was required.

References

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 Boyer, T.H., Fang, Y., Ellis, A., Dietz, R., Choi, Y.J., Schaefer, C.E., Higgins, C.P., Strathmann, T.J., 2021. Anion Exchange Resin Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Impacted Water: A Critical Review. Water Research, 200, Article 117244. doi: 10.1016/j.watres.2021.117244   Open Access Manuscript.pdf
  2. ^ Strathmann, T.J., Higgins, C.P., Boyer, T., Schaefer, C., Ellis, A., Fang, Y., del Moral, L., Dietz, R., Kassar, C., Graham, C, 2023. Regenerable Resin Sorbent Technologies with Regenerant Solution Recycling for Sustainable Treatment of PFAS; SERDP Project ER18-1063 Final Report. 285 pages. Project Website   Report.pdf
  3. ^ 3.0 3.1 Strathmann, T.J., Higgins, C., Deeb, R., 2020. Hydrothermal Technologies for On-Site Destruction of Site Investigation Wastes Impacted by PFAS, Final Report - Phase I. SERDP Project ER18-1501. Project Website   Report.pdf
  4. ^ SenGupta, A.K., 2017. Ion Exchange in Environmental Processes: Fundamentals, Applications and Sustainable Technology. Wiley. ISBN:9781119157397 Wiley Online Library
  5. ^ 5.0 5.1 Dixit, F., Dutta, R., Barbeau, B., Berube, P., Mohseni, M., 2021. PFAS Removal by Ion Exchange Resins: A Review. Chemosphere, 272, Article 129777. doi: 10.1016/j.chemosphere.2021.129777
  6. ^ Rahman, M.F., Peldszus, S., Anderson, W.B., 2014. Behaviour and Fate of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) in Drinking Water Treatment: A Review. Water Research, 50, pp. 318–340. doi: 10.1016/j.watres.2013.10.045
  7. ^ Fuller, Mark. Ex Situ Treatment of PFAS-Impacted Groundwater Using Ion Exchange with Regeneration; ER18-1027. Project Website.
  8. ^ 8.0 8.1 8.2 Fang, Y., Ellis, A., Choi, Y.J., Boyer, T.H., Higgins, C.P., Schaefer, C.E., Strathmann, T.J., 2021. Removal of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) Using Ion-Exchange and Nonionic Resins. Environmental Science and Technology, 55(8), pp. 5001–5011. doi: 10.1021/acs.est.1c00769
  9. ^ Interstate Technology Regulatory Council (ITRC), 2023. Technical Resources for Addressing Environmental Releases of Per- and Polyfluoroalkyl Substances (PFAS). ITRC PFAS Website
  10. ^ Gagliano, E., Sgroi, M., Falciglia, P.P., Vagliasindi, F.G.A., Roccaro, P., 2020. Removal of Poly- and Perfluoroalkyl Substances (PFAS) from Water by Adsorption: Role of PFAS Chain Length, Effect of Organic Matter and Challenges in Adsorbent Regeneration. Water Research, 171, Article 115381. doi: 10.1016/j.watres.2019.115381
  11. ^ Woodard, S., Berry, J., Newman, B., 2017. Ion Exchange Resin for PFAS Removal and Pilot Test Comparison to GAC. Remediation, 27(3), pp. 19–27. doi: 10.1002/rem.21515
  12. ^ Liu, C. J., Murray, C.C., Marshall, R.E., Strathmann, T.J., Bellona, C., 2022. Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater by Granular Activated Carbon and Anion Exchange Resins: A Pilot-Scale Comparative Assessment. Environmental Science: Water Research and Technology, 8(10), pp. 2245–2253. doi: 10.1039/D2EW00080F
  13. ^ Liu, C.J., Werner, D., Bellona, C., 2019. Removal of Per- and Polyfluoroalkyl Substances (PFASs) from Contaminated Groundwater Using Granular Activated Carbon: A Pilot-Scale Study with Breakthrough Modeling. Environmental Science: Water Research and Technology, 5(11), pp. 1844–1853. doi: 10.1039/C9EW00349E
  14. ^ Ellis, A.C., Boyer, T.H., Fang, Y., Liu, C.J., Strathmann, T.J., 2023. Life Cycle Assessment and Life Cycle Cost Analysis of Anion Exchange and Granular Activated Carbon Systems for Remediation of Groundwater Contaminated by Per- and Polyfluoroalkyl Substances (PFASs). Water Research, 243, Article 120324. doi: 10.1016/j.watres.2023.120324
  15. ^ Ellis, A.C., Liu, C.J., Fang, Y., Boyer, T.H., Schaefer, C.E., Higgins, C.P., Strathmann, T.J., 2022. Pilot Study Comparison of Regenerable and Emerging Single-Use Anion Exchange Resins for Treatment of Groundwater Contaminated by per- and Polyfluoroalkyl Substances (PFASs). Water Research, 223, Article 119019. doi: 10.1016/j.watres.2022.119019   Open Access Manuscript
  16. ^ 16.0 16.1 Boyer, T.H., Ellis, A., Fang, Y., Schaefer, C.E., Higgins, C.P., Strathmann, T.J., 2021. Life Cycle Environmental Impacts of Regeneration Options for Anion Exchange Resin Remediation of PFAS Impacted Water. Water Research, 207, Article 117798. doi: 10.1016/j.watres.2021.117798   Open Access Manuscript
  17. ^ Houtz, E., (projected completion 2025). Treatment of PFAS in Groundwater with Regenerable Anion Exchange Resin as a Bridge to PFAS Destruction, Project ER23-8391. Project Website.
  18. ^ Huang, Q., Woodard, S., Nickleson, M., Chiang, D., Liang, S., Mora, R., 2021. Electrochemical Oxidation of Perfluoroalkyl Acids in Still Bottoms from Regeneration of Ion Exchange Resins Phase I - Final Report. SERDP Project ER18-1320. Project Website   Report.pdf
  19. ^ Cite error: Invalid <ref> tag; no text was provided for refs named ChenEtAl2020
  20. ^ Veciana, M., Bräunig, J., Farhat, A., Pype, M. L., Freguia, S., Carvalho, G., Keller, J., Ledezma, P., 2022. Electrochemical Oxidation Processes for PFAS Removal from Contaminated Water and Wastewater: Fundamentals, Gaps and Opportunities towards Practical Implementation. Journal of Hazardous Materials, 434, Article 128886. doi: 10.1016/j.jhazmat.2022.128886
  21. ^ Trojanowicz, M., Bojanowska-Czajka, A., Bartosiewicz, I., Kulisa, K., 2018. Advanced Oxidation/Reduction Processes Treatment for Aqueous Perfluorooctanoate (PFOA) and Perfluorooctanesulfonate (PFOS) – A Review of Recent Advances. Chemical Engineering Journal, 336, pp. 170–199. doi: 10.1016/j.cej.2017.10.153
  22. ^ Wanninayake, D.M., 2021. Comparison of Currently Available PFAS Remediation Technologies in Water: A Review. Journal of Environmental Management, 283, Article 111977. doi: 10.1016/j.jenvman.2021.111977

See Also