Difference between revisions of "User:Debra Tabron/sandbox"

From Enviro Wiki
Jump to: navigation, search
 
(379 intermediate revisions by the same user not shown)
Line 1: Line 1:
The Training Range Environmental Evaluation and Characterization System (TREECS™) was developed for the Army to forecast the fate of and risk from munitions constituents (MC), such as high explosives (HE) and metals. TREECS™ is general enough that it can also be used for other types of contaminants and (non-Department of Defense) sites. TREECS™ has been validated as a valuable resource for predicting contaminant exposure in soil, groundwater, and surface water. This capability will allow stakeholders to forecast exposure risks as well as evaluate various management alternatives and best management practices (BMPs) to avoid or reduce such risks.
+
The heterogeneous distribution of munitions constituents, released as particles from munitions firing and detonations on military training ranges, presents challenges for representative soil sample collection and for defensible decision making. Military range characterization studies and the development of the incremental sampling methodology (ISM) have enabled the development of recommended methods for soil sampling that produce representative and reproducible concentration data for munitions constituents. This article provides a broad overview of recommended soil sampling and processing practices for analysis of munitions constituents on military ranges.  
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
'''Related Articles''':
+
'''Related Article(s)''':  
  
  
'''CONTRIBUTOR(S):''' [[Dr. Mark S. Dortch, PE, D.WRE]] and [[Dr. Billy E. Johnson]]
+
'''CONTRIBUTOR(S):''' [[Dr. Samuel Beal]]
  
  
'''Key Resource(s):'''
+
'''Key Resource(s)''':
Dortch, M.S., and B.E. Johnson. 2016 Draft. Field Demonstration and Validation of TREECS™ for the Risk Assessment of Contaminants on DoD Ranges, ESTCP, 2016.<ref name = "Dortch2016a">Dortch, M.S., and B.E. Johnson. 2016 Draft. Field demonstration and validation of TREECS™ and CTS for the risk assessment of contaminants on DoD ranges. ERDC/EL TR-16-xx, U.S. Army Engineer Research and Development Center, Vicksburg, MS.</ref>  
+
*[[media:Taylor-2011 ERDC-CRREL TR-11-15.pdf| Guidance for Soil Sampling of Energetics and Metals]]<ref name= "Taylor2011">Taylor, S., Jenkins, T.F., Bigl, S., Hewitt, A.D., Walsh, M.E. and Walsh, M.R., 2011. Guidance for Soil Sampling for Energetics and Metals (No. ERDC/CRREL-TR-11-15). [[media:Taylor-2011 ERDC-CRREL TR-11-15.pdf| Report.pdf]]</ref>
 +
*[[Media:Hewitt-2009 ERDC-CRREL TR-09-6.pdf| Report.pdf | Validation of Sampling Protocol and the Promulgation of Method Modifications for the Characterization of Energetic Residues on Military Testing and Training Ranges]]<ref name= "Hewitt2009">Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Bigl, S.R. and Brochu, S., 2009. Validation of sampling protocol and the promulgation of method modifications for the characterization of energetic residues on military testing and training ranges (No. ERDC/CRREL-TR-09-6). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-09-6, Hanover, NH, USA. [[Media:Hewitt-2009 ERDC-CRREL TR-09-6.pdf | Report.pdf]]</ref>
 +
*[[media:Epa-2006-method-8330b.pdf| U.S. EPA SW-846 Method 8330B: Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC)]]<ref name= "USEPA2006M">U.S. Environmental Protection Agency (USEPA), 2006. Method 8330B (SW-846): Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC), Rev. 2. Washington, D.C. [[media:Epa-2006-method-8330b.pdf | Report.pdf]]</ref>
 +
*[[media:Epa-2007-method-8095.pdf | U.S. EPA SW-846 Method 8095: Explosives by Gas Chromatography.]]<ref name= "USEPA2007M">U.S. Environmental Protection Agency (US EPA), 2007. Method 8095 (SW-846): Explosives by Gas Chromatography. Washington, D.C. [[media:Epa-2007-method-8095.pdf| Report.pdf]]</ref>
  
 
==Introduction==
 
==Introduction==
There is a need to sustain training and firing ranges while complying with requirements to protect the environment from MC residue that can pose health concerns to human and ecological receptors outside of installations. Models are required for predicting the fate of MC so that environmental specialists can estimate if and when MC residue could pose a concern and to evaluate alternatives for managing MC exposure.
+
[[File:Beal1w2 Fig1.png|thumb|200 px|left|Figure 1: Downrange distance of visible propellant plume on snow from the firing of different munitions. Note deposition behind firing line for the 84-mm rocket. Data from: Walsh et al.<ref>Walsh, M.R., Walsh, M.E., Ampleman, G., Thiboutot, S., Brochu, S. and Jenkins, T.F., 2012. Munitions propellants residue deposition rates on military training ranges. Propellants, Explosives, Pyrotechnics, 37(4), pp.393-406. [http://dx.doi.org/10.1002/prep.201100105 doi: 10.1002/prep.201100105]</ref><ref>Walsh, M.R., Walsh, M.E., Hewitt, A.D., Collins, C.M., Bigl, S.R., Gagnon, K., Ampleman, G., Thiboutot, S., Poulin, I. and Brochu, S., 2010. Characterization and Fate of Gun and Rocket Propellant Residues on Testing and Training Ranges: Interim Report 2. (ERDC/CRREL TR-10-13.  Also: ESTCP Project ER-1481)  [[media:Walsh-2010 ERDC-CRREL TR-11-15 ESTCP ER-1481.pdf| Report]]</ref>]]
 +
[[File:Beal1w2 Fig2.png|thumb|left|200 px|Figure 2: A low-order detonation mortar round (top) with surrounding discrete soil samples produced concentrations spanning six orders of magnitude within a 10m by 10m area (bottom). (Photo and data: A.D. Hewitt)]]
  
TREECS™ is a client-based modeling software system developed for personal computers. Figure 1 is a home screen shot of the software with application to Ft. Leonard Wood, MO. TREECS™ that includes time-varying contaminant fate/transport models for soil, vadose zone, groundwater, and surface water to forecast MC (or other contaminants) export from ranges (or other source areas) and resulting exposure concentrations in each medium. TREECS™ is a system of numerical models that allows environmental specialists to readily assess migration of MC, as well as other contaminants, to determine if and when there could be risks to human and ecological receptors down-gradient of ranges and source areas. Additionally, TREECS™ can be used to evaluate BMP alternatives where concentrations presently exceed (or are predicted in the future to exceed) protective action limits (PALs) for human and ecological health.
+
Munitions constituents are released on military testing and training ranges through several common mechanisms. Some are locally dispersed as solid particles from incomplete combustion during firing and detonation. Also, small residual particles containing propellant compounds (e.g., [[Wikipedia: Nitroglycerin | nitroglycerin [NG]]] and [[Wikipedia: 2,4-Dinitrotoluene | 2,4-dinitrotoluene [2,4-DNT]]]) are distributed in front of and surrounding target practice firing lines (Figure 1). At impact areas and demolition areas, high order detonations typically yield very small amounts (<1 to 10 mg/round) of residual high explosive compounds (e.g., [[Wikipedia: TNT | TNT ]], [[Wikipedia: RDX | RDX ]] and [[Wikipedia: HMX | HMX ]]) that are distributed up to and sometimes greater than) 24 m from the site of detonation<ref name= "Walsh2017">Walsh, M.R., Temple, T., Bigl, M.F., Tshabalala, S.F., Mai, N. and Ladyman, M., 2017. Investigation of Energetic Particle Distribution from High‐Order Detonations of Munitions. Propellants, Explosives, Pyrotechnics, 42(8), pp.932-941. [https://doi.org/10.1002/prep.201700089 doi: 10.1002/prep.201700089] [[media: Walsh-2017-High-Order-Detonation-Residues-Particle-Distribution-PEP.pdf| Report.pdf]]</ref>.
  
A detailed description of TREECS™, as well as its performance, is provided by Dortch et al., 2013<ref>Dortch, M.S., Johnson, B.E. and Gerald, J.A., 2013. Modeling fate and transport of munitions constituents on firing ranges. Soil and Sediment Contamination: An International Journal, 22(6), pp.667-688. [http://dx.doi.org/10.1080/15320383.2013.756453 doi: 10.1080/15320383.2013.756453]</ref>. Furthermore, its development is documented in a series of technical reports<ref>Dortch, M.S., J.A. Gerald, and B.E. Johnson. 2009. Methods for tier 1 modeling with the training range environmental evaluation and characterization system. ERDC/EL TR-09-11, U.S. Army Engineer Research and Development Center, Vicksburg, MS. [http://www.environmentalrestoration.wiki/images/6/66/Dortch-2009-Methods_for_Tier_1_modeling_training_range_ERCDC-EL-TR0911.pdf Report pdf]</ref><ref>Dortch, M.S., B.E. Johnson, Z. Zhang, and J.A. Gerald. 2011. Methods for Tier 2 modeling within the training range environmental evaluation and characterization system (TREECS™). ERDC/EL TR-11-2, U.S. Army Engineer Research and Development Center, Vicksburg, MS. [http://www.environmentalrestoration.wiki/images/a/a5/Dortch-2011a-Methods_for_Tier_2_modeling_Training_Range_ERDC-EL-TR112.pdf Report pdf]</ref><ref>Dortch, M.S., B.E. Johnson, and J.A. Gerald. 2012. Extension of capabilities for the tier 1 and tier 2 approaches within the training range environmental evaluation and characterization system (TREECS™). ERDC/EL TR-12-11, U.S. Army Engineer Research and Development Center, Vicksburg, MS. [http://www.environmentalrestoration.wiki/images/7/7c/Dortch-2012-Extension_of_cap_for_the_Tier_1_and_2_approaches_Training_range_ERDC-EL-TR-12-11.pdf Report pdf]</ref><ref>Johnson, B.E. and Dortch, M.S., 2014. Hydrology Model Formulation within the Training Range Environmental Evaluation and Characterization System (TREECS) (No. ERDC/EL-TR-14-2). Engineer Research and Development Center, Vicksburg, MS Environmental Lab. [http://www.environmentalrestoration.wiki/images/e/e1/Johnson-2014a-Hydrology_Model_Formulation.ERDC.EL_TR-14-2.pdf Report pdf]</ref><ref>Dortch, M.S., 2014. Evaluation of time-varying hydrology within the training range environmental evaluation and characterization system (TREECS TM) (No. ERDC/EL-CR-14-3). Engineer Research and Development Center, Vicksburg, MS Environmental Lab. [http://www.environmentalrestoration.wiki/images/9/9e/Dortch-2014-Eval_of_time-varying_hydrology...ERD-EL-CR-14-3.pdf Report pdf]</ref>. Development of BMP capabilities is documented by Dortch et al., 2013<ref>Dortch, M.S., B.E. Johnson, and J.A. Gerald. 2013. Modeling firing range best management practices with TREECS™. ERDC/EL TR-13-6, U.S. Army Engineer Research and Development Center, Vicksburg, MS. [http://www.environmentalrestoration.wiki/images/7/7e/Dortch-2013b-Modeling_firing_range...ERDC-EL_TR-13-6.pdf Report pdf]</ref><ref>Dortch, M.S. and Gerald, J.A., 2015. Modules for modeling firing range best management practices within TREECS™ (No. ERDC/EL-TR-15-7). Engineer Research and Development Center Vicksburg MS Environmental Lab. [http://www.environmentalrestoration.wiki/images/0/03/Dortch-2015-Modules_for_modeling_firing_range.pdf Report pdf]</ref>. There is also a user’s<ref>Gerald, J.A., B.E. Johnson, and M.S. Dortch. 2012. User guide for applying the Training Range Environmental Evaluation and Characterization System (TREECS™). ERDC/EL TR-12-16, U.S. Army Engineer Research and Development Center, Vicksburg, MS. [http://www.environmentalrestoration.wiki/images/5/50/Gerald-2012-User_guide_for_applying_the_training_range_Evnl_Eval.Char_sys.pdf Report pdf]</ref>.
+
Low-order detonations and duds are thought to be the primary source of munitions constituents on ranges<ref>Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Walsh, M.R. and Taylor, S., 2005. RDX and TNT residues from live-fire and blow-in-place detonations. Chemosphere, 61(6), pp.888-894. [https://doi.org/10.1016/j.chemosphere.2005.04.058 doi: 10.1016/j.chemosphere.2005.04.058]</ref><ref>Walsh, M.R., Walsh, M.E., Poulin, I., Taylor, S. and Douglas, T.A., 2011. Energetic residues from the detonation of common US ordnance. International Journal of Energetic Materials and Chemical Propulsion, 10(2). [https://doi.org/10.1615/intjenergeticmaterialschemprop.2012004956 doi: 10.1615/IntJEnergeticMaterialsChemProp.2012004956] [[media:Walsh-2011-Energetic-Residues-Common-US-Ordnance.pdf| Report.pdf]]</ref>. Duds are initially intact but may become perforated or fragmented into micrometer to centimeter;o0i0k-sized particles by nearby detonations<ref>Walsh, M.R., Thiboutot, S., Walsh, M.E., Ampleman, G., Martel, R., Poulin, I. and Taylor, S., 2011. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC/CRREL-TR-11-13). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-11-13, Hanover, NH, USA. [[media:Epa-2006-method-8330b.pdf| Report.pdf]]</ref>. Low-order detonations can scatter micrometer to centimeter-sized particles up to 20 m from the site of detonation<ref name= "Taylor2004">Taylor, S., Hewitt, A., Lever, J., Hayes, C., Perovich, L., Thorne, P. and Daghlian, C., 2004. TNT particle size distributions from detonated 155-mm howitzer rounds. Chemosphere, 55(3), pp.357-367.[[media:Taylor-2004 TNT PSDs.pdf| Report.pdf]]</ref>
[[File:BJohnson-Article 1-Figure 1.PNG|600px|thumbnail|center|Figure 1. TREECS main screen as it appears for an application involving GIS data.]]
 
  
==TREECS™ Capability Levels==
+
The particulate nature of munitions constituents in the environment presents a distinct challenge to representative soil sampling. Figure 2 shows an array of discrete soil samples collected around the site of a low-order detonation – resultant soil concentrations vary by orders of magnitude within centimeters of each other. The inadequacy of discrete sampling is apparent in characterization studies from actual ranges which show wide-ranging concentrations and poor precision (Table 1).
TREECS™ was developed with three levels of capability:
 
#Tier 1 consists of screening-level methods that assume conservative, steady state contaminant loading and fate. It requires minimal input data requirements and can be quickly applied by environmental specialists to assess the potential for contaminant migration into surface water and groundwater. If predicted surface or groundwater concentrations exceed PALs at receptor locations, then further evaluation with Tier 2 is recommended to obtain more definitive results.
 
#Tier 2 provides time-varying analyses and solves mass balance equations for both solid and water-dissolved phases. Additionally, MC or contaminant loadings to the soil or source area can vary from year-to-year based on site use. Media concentrations computed should be closer to those expected under actual conditions and lower than those computed with Tier 1 due to attenuation.
 
#Advanced Tier 2 is the third capability level. It uses a visual, object-oriented user interface for setting up more complex contaminant environmental media pathways, such as runoff to a surface water stream that recharges an aquifer, such as at Marin Base Camp Pendleton, CA<ref name = "Dortch2016a"/>. The conceptual site model (CSM) and the Advanced Tier 2 setup at Marin Base Camps are shown in Figures 2 and 3, respectively.
 
[[File:BJohnson-Article 1-Figure 2.PNG|500px|thumbnail|left|Figure 2. Conceptual Site Model used with TREECS™ Advanced Tier 2 for the Zulu Impact Area (ZIA) and receiving waters, Camp Pendleton, CA<ref name = "Dortch2016a"/>. The area of interest (AOI) is the ZIA.]]
 
[[File:BJohnson-Article 1-Figure 3.PNG|500px|thumbnail|center|Figure 3. CSM as modeled in TREECS™ with Advanced Tier 2 option for Camp Pendleton, CA<ref name = "Dortch2016a"/>.]]
 
  
==TREECS™ Additional Features==
+
In comparison to discrete sampling, incremental sampling tends to yield reproducible concentrations (low relative standard deviation [RSD]) that statistically better represent an area of interest<ref name= "Hewitt2009"/>.
TREECS™ contains fate models for soil, vadose zone, groundwater, and surface water that can be connected in various manners to represent a variety of exposure pathways. The system and its models have graphical user interfaces (GUIs) for expediting model setup, and there is a Geographic Information System (GIS) to facilitate site applications and input development. There are three databases for providing physicochemical properties. There is a health benchmark database to provide PALs based on recommendations by the Department of Defense (DoD) Range Munitions Use Subcommittee (RMUS). There is also an MC residual mass loadings module and munitions database for estimating MC loadings onto ranges based on types and number of munitions fired. BMP modules can be used for evaluating strategies to reduce or avoid future contaminant exposure and risk.
 
  
==TREECS™ Applications==
+
{| class="wikitable" style="float: right; text-align: center; margin-left: auto; margin-right: auto;"
TREECS™ was initially validated for sites at Fort A. P. Hill (VA), U.S. Military Academy (West Point, NY), Ft. Jackson (SC), and Camp Edwards, Massachusetts Military Reservation (MMR)<ref>Dortch, M.S.  2012. Validation of the training range environmental evaluation and characterization system (TREECS™).  ERDC/EL TR-12-3, U.S. Army Engineer Research and Development Center, Vicksburg, MS.</ref>. Additional validation work was performed as part of ESTCP Project ER-201435<ref name = "Dortch2016a"/> that included additional applications at West Point and MMR as well as Marine Base Camp Pendleton (CA). Example validation results for the high explosive RDX in groundwater at MMR are compared with observed RDX concentrations in Figure 4. The model’s 95% confidence limits due to uncertainty of the RDX degradation rate are also shown.
+
|+ Table 1. Soil Sample Concentrations and Precision from Military Ranges Using Discrete and Incremental Sampling. (Data from Taylor et al. <ref name= "Taylor2011"/> and references therein.)
[[File:BJohnson-Article 1-Figure 4.PNG|thumbnail|500 px|right|Figure 4. Computed and measured groundwater concentrations of RDX at MW161 down gradient of Demolition Area 2, MMR, with upper (UCL) and lower (LCL) confidence limits for uncertainty of RDX degradation rate<ref name = "Dortch2016a"/><ref>ESTCP, 2014. Field Demonstration and Validation of the Training Range Environmental Evaluation and Characterization System (TREECS) and Environmental Fate Simulator (EFS) for the Risk Assessment of Contaminants on DoD Ranges. ER-201435. [https://www.serdp-estcp.org/index.php/Program-Areas/Environmental-Restoration/Contaminants-on-Ranges/Assessing-Potential-Ecological-Impacts/ER-201435/ER-201435 ER-201435]</ref>.]]
+
|-
 +
! Military Range Type !! Analyte !! Range<br/>(mg/kg) !! Median<br/>(mg/kg) !! RSD<br/>(%)
 +
|-
 +
| colspan="5" style="text-align: left;" | '''Discrete Samples'''
 +
|-
 +
| Artillery FP || 2,4-DNT || <0.04 – 6.4 || 0.65 || 110
 +
|-
 +
| Antitank Rocket || HMX || 5.8 – 1,200 || 200 || 99
 +
|-
 +
| Bombing || TNT || 0.15 – 780 || 6.4 || 274
 +
|-
 +
| Mortar || RDX || <0.04 – 2,400 || 1.7 || 441
 +
|-
 +
| Artillery || RDX || <0.04 – 170 || <0.04 || 454
 +
|-
 +
| colspan="5" style="text-align: left;" | '''Incremental Samples*'''
 +
|-
 +
| Artillery FP || 2,4-DNT || 0.60 – 1.4 || 0.92 || 26
 +
|-
 +
| Bombing || TNT || 13 – 17 || 14 || 17
 +
|-
 +
| Artillery/Bombing || RDX || 3.9 – 9.4 || 4.8 || 38
 +
|-  
 +
| Thermal Treatment || HMX || 3.96 – 4.26 || 4.16 || 4
 +
|-
 +
| colspan="5" style="text-align: left; background-color: white;" | * For incremental samples, 30-100 increments and 3-10 replicate samples were collected.
 +
|}
  
==Utility of TREECS™==
+
==Incremental Sampling Approach==
It has been estimated that the use of TREECS™ as part of the Army’s Operational Range Assessment Program (ORAP) Phase II analyses can save the Army approximately three million dollars every five years<ref name = "Dortch2016a"/>. However, the benefits of using TREECS™ go far beyond these cost savings. Modeling can be used to forecast not only if, but when PALs will be exceeded. Additionally, the modeling system can be used to assess BMP strategies for avoiding future PAL exceedances and to evaluate the carrying capacity of existing and future training/firing ranges. Modeling can provide insight for improved sample design and monitoring. It also allows the assessment of “what if” scenarios without the risks and costs associated with trial-and-error field implementation. Moreover, TREECS™ usage can be an integral part of the successful administration of ORAP and related range sustainment programs, which avoid substantial amounts of money being lost if operational ranges are closed due to compliance failure. It was shown that TREECS™ could be rapidly applied (in less than 80 labor hours), using readily available data, and providing accurate results (rated highly successful according to the ESTCP project objectives) <ref name = "Dortch2016a"/>.
+
ISM is a requisite for representative and reproducible sampling of training ranges, but it is an involved process that is detailed thoroughly elsewhere<ref name= "Hewitt2009"/><ref name= "Taylor2011"/><ref name= "USEPA2006M"/>. In short, ISM involves the collection of many (30 to >100) increments in a systematic pattern within a decision unit (DU). The DU may cover an area where releases are thought to have occurred or may represent an area relevant to ecological receptors (e.g., sensitive species). Figure 3 shows the ISM sampling pattern in a simplified (5x5 square) DU. Increments are collected at a random starting point with systematic distances between increments. Replicate samples can be collected by starting at a different random starting point, often at a different corner of the DU. Practically, this grid pattern can often be followed with flagging or lathe marking DU boundaries and/or sampling lanes and with individual pacing keeping systematic distances between increments. As an example, an artillery firing point might include a 100x100 m DU with 81 increments.
 +
[[File:Beal1w2 Fig3.png|thumb|200 px|left|Figure 3. Example ISM sampling pattern on a square decision unit. Replicates are collected in a systematic pattern from a random starting point at a corner of the DU. Typically more than the 25 increments shown are collected]]
  
TREECS™ version 5 can be downloaded from the World Wide Web (to be provided later, as still being migrated to new Web site). Version 6, which includes the BMP modules, will be available near the end of 2016.  
+
DUs can vary in shape (Figure 4), size, number of increments, and number of replicates according to a project’s data quality objectives.
  
 +
[[File:Beal1w2 Fig4.png|thumb|right|250 px|Figure 4: Incremental sampling of a circular DU on snow shows sampling lanes with a two-person team in process of collecting the second replicate in a perpendicular path to the first replicate. (Photo: Matthew Bigl)]]
 +
 +
==Sampling Tools==
 +
In many cases, energetic compounds are expected to reside within the soil surface. Figure 5 shows soil depth profiles on some studied impact areas and firing points. Overall, the energetic compound concentrations below 5-cm soil depth are negligible relative to overlying soil concentrations. For conventional munitions, this is to be expected as the energetic particles are relatively insoluble, and any dissolved compounds readily adsorb to most soils<ref>Pennington, J.C., Jenkins, T.F., Ampleman, G., Thiboutot, S., Brannon, J.M., Hewitt, A.D., Lewis, J., Brochu, S., 2006. Distribution and fate of energetics on DoD test and training ranges: Final Report. ERDC TR-06-13, Vicksburg, MS, USA. Also: SERDP/ESTCP Project ER-1155. [[media:Pennington-2006_ERDC-TR-06-13_ESTCP-ER-1155-FR.pdf| Report.pdf]]</ref>. Physical disturbance, as on hand grenade ranges, may require deeper sampling either with a soil profile or a corer/auger.
 +
 +
[[File:Beal1w2 Fig5.png|thumb|left|200 px|Figure 5. Depth profiles of high explosive compounds at impact areas (bottom) and of propellant compounds at firing points (top). Data from: Hewitt et al. <ref>Hewitt, A.D., Jenkins, T.F., Ramsey, C.A., Bjella, K.L., Ranney, T.A. and Perron, N.M., 2005. Estimating energetic residue loading on military artillery ranges: Large decision units (No. ERDC/CRREL-TR-05-7). [[media:Hewitt-2005 ERDC-CRREL TR-05-7.pdf| Report.pdf]]</ref> and Jenkins et al. <ref>Jenkins, T.F., Ampleman, G., Thiboutot, S., Bigl, S.R., Taylor, S., Walsh, M.R., Faucher, D., Mantel, R., Poulin, I., Dontsova, K.M. and Walsh, M.E., 2008. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC-TR-08-1). [[media:Jenkins-2008 ERDC TR-08-1.pdf| Report.pdf]]</ref>]]
 +
 +
Soil sampling with the Cold Regions Research and Engineering Laboratory (CRREL) Multi-Increment Sampling Tool (CMIST) or similar device is an easy way to collect ISM samples rapidly and reproducibly. This tool has an adjustable diameter size corer and adjustable depth to collect surface soil plugs (Figure 6). The CMIST can be used at almost a walking pace (Figure 7) using a two-person sampling team, with one person operating the CMIST and the other carrying the sample container and recording the number of increments collected. The CMIST with a small diameter tip works best in soils with low cohesion, otherwise conventional scoops may be used. Maintaining consistent soil increment dimensions is critical.
 +
 +
The sampling tool should be cleaned between replicates and between DUs to minimize potential for cross-contamination<ref>Walsh, M.R., 2009. User’s manual for the CRREL Multi-Increment Sampling Tool. Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) SR-09-1, Hanover, NH, USA.  [[media:Walsh-2009 ERDC-CRREL SR-09-1.pdf | Report.pdf]]</ref>.
 +
 +
==Sample Processing==
 +
While only 10 g of soil is typically used for chemical analysis, incremental sampling generates a sample weighing on the order of 1 kg. Splitting of a sample, either in the field or laboratory, seems like an easy way to reduce sample mass; however this approach has been found to produce high uncertainty for explosives and propellants, with a median RSD of 43.1%<ref name= "Hewitt2009"/>. Even greater error is associated with removing a discrete sub-sample from an unground sample. Appendix A in [https://www.epa.gov/sites/production/files/2015-07/documents/epa-8330b.pdf U.S. EPA Method 8330B]<ref name= "USEPA2006M"/> provides details on recommended ISM sample processing procedures.
 +
 +
Incremental soil samples are typically air dried over the course of a few days. Oven drying thermally degrades some energetic compounds and should be avoided<ref>Cragin, J.H., Leggett, D.C., Foley, B.T., and Schumacher, P.W., 1985. TNT, RDX and HMX explosives in soils and sediments: Analysis techniques and drying losses. (CRREL Report 85-15) Hanover, NH, USA. [[media:Cragin-1985 CRREL 85-15.pdf| Report.pdf]]</ref>. Once dry, the samples are sieved with a 2-mm screen, with only the less than 2-mm fraction processed further. This size fraction represents the USDA definition of soil. Aggregate soil particles should be broken up and vegetation shredded to pass through the sieve. Samples from impact or demolition areas may contain explosive particles from low order detonations that are greater than 2 mm and should be identified, given appropriate caution, and potentially weighed.
 +
 +
The <2-mm soil fraction is typically still ≥1 kg and impractical to extract in full for analysis. However, subsampling at this stage is not possible due to compositional heterogeneity, with the energetic compounds generally present as <0.5 mm particles<ref name= "Walsh2017"/><ref name= "Taylor2004"/>. Particle size reduction is required to achieve a representative and precise measure of the sample concentration. Grinding in a puck mill to a soil particle size <75 µm has been found to be required for representative/reproducible sub-sampling (Figure 8). For samples thought to contain propellant particles, a prolonged milling time is required to break down these polymerized particles and achieve acceptable precision (Figure 9). Due to the multi-use nature of some ranges, a 5-minute puck milling period can be used for all soils. Cooling periods between 1-minute milling intervals are recommended to avoid thermal degradation. Similar to field sampling, sub-sampling is done incrementally by spreading the sample out to a thin layer and collecting systematic random increments of consistent volume to a total mass for extraction of 10 g (Figure 10).
 +
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig6.png|thumb|200 px|Figure 6: CMIST soil sampling tool (top) and with ejected increment core using a large diameter tip (bottom).]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig7.png|thumb|200 px|Figure 7: Two person sampling team using CMIST, bag-lined bucket, and increment counter. (Photos: Matthew Bigl)]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig8.png|thumb|200 px|Figure 8: Effect of machine grinding on RDX and TNT concentration and precision in soil from a hand grenade range. Data from Walsh et al.<ref>Walsh, M.E., Ramsey, C.A. and Jenkins, T.F., 2002. The effect of particle size reduction by grinding on subsampling variance for explosives residues in soil. Chemosphere, 49(10), pp.1267-1273. [https://doi.org/10.1016/S0045-6535(02)00528-3 doi: 10.1016/S0045-6535(02)00528-3]</ref> ]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig9.png|thumb|200 px|Figure 9: Effect of puck milling time on 2,4-DNT concentration and precision in soil from a firing point. Data from Walsh et al.<ref>Walsh, M.E., Ramsey, C.A., Collins, C.M., Hewitt, A.D., Walsh, M.R., Bjella, K.L., Lambert, D.J. and Perron, N.M., 2005. Collection methods and laboratory processing of samples from Donnelly Training Area Firing Points, Alaska, 2003 (No. ERDC/CRREL-TR-05-6). [[media:Walsh-2005 ERDC-CRREL TR-05-6.pdf| Report.pdf]]</ref>.]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig10.png|thumb|200 px|center|Figure 10: Incremental sub-sampling of a milled soil sample spread out on aluminum foil.]]</li>
 +
 +
==Analysis==
 +
Soil sub-samples are extracted and analyzed following [[Media: epa-2006-method-8330b.pdf | EPA Method 8330B]]<ref name= "USEPA2006M"/> and [[Media:epa-2007-method-8095.pdf | Method 8095]]<ref name= "USEPA2007M"/> using [[Wikipedia: High-performance liquid chromatography | High Performance Liquid Chromatography (HPLC)]] and [[Wikipedia: Gas chromatography | Gas Chromatography (GC)]], respectively. Common estimated reporting limits for these analysis methods are listed in Table 2.
 +
 +
{| class="wikitable" style="float: center; text-align: center; margin-left: auto; margin-right: auto;"
 +
|+ Table 2. Typical Method Reporting Limits for Energetic Compounds in Soil. (Data from Hewitt et al.<ref>Hewitt, A., Bigl, S., Walsh, M., Brochu, S., Bjella, K. and Lambert, D., 2007. Processing of training range soils for the analysis of energetic compounds (No. ERDC/CRREL-TR-07-15). Hanover, NH, USA. [[media:Hewitt-2007 ERDC-CRREL TR-07-15.pdf| Report.pdf]]</ref>)
 +
|-
 +
! rowspan="2" | Compound
 +
! colspan="2" | Soil Reporting Limit (mg/kg)
 +
|-
 +
! HPLC (8330)
 +
! GC (8095)
 +
|-
 +
| HMX || 0.04 || 0.01
 +
|-
 +
| RDX || 0.04 || 0.006
 +
|-
 +
| [[Wikipedia: 1,3,5-Trinitrobenzene | TNB]] || 0.04 || 0.003
 +
|-
 +
| TNT || 0.04 || 0.002
 +
|-
 +
| [[Wikipedia: 2,6-Dinitrotoluene | 2,6-DNT]] || 0.08 || 0.002
 +
|-
 +
| 2,4-DNT || 0.04 || 0.002
 +
|-
 +
| 2-ADNT || 0.08 || 0.002
 +
|-
 +
| 4-ADNT || 0.08 || 0.002
 +
|-
 +
| NG || 0.1 || 0.01
 +
|-
 +
| [[Wikipedia: Dinitrobenzene | DNB ]] || 0.04 || 0.002
 +
|-
 +
| [[Wikipedia: Tetryl | Tetryl ]]  || 0.04 || 0.01
 +
|-
 +
| [[Wikipedia: Pentaerythritol tetranitrate | PETN ]] || 0.2 || 0.016
 +
|}
  
 
==References==
 
==References==
 
 
<references/>
 
<references/>
  
 
==See Also==
 
==See Also==
 +
*[https://itrcweb.org/ Interstate Technology and Regulatory Council]
 +
*[http://www.hawaiidoh.org/tgm.aspx Hawaii Department of Health]
 +
*[http://envirostat.org/ Envirostat]

Latest revision as of 18:58, 29 April 2020

The heterogeneous distribution of munitions constituents, released as particles from munitions firing and detonations on military training ranges, presents challenges for representative soil sample collection and for defensible decision making. Military range characterization studies and the development of the incremental sampling methodology (ISM) have enabled the development of recommended methods for soil sampling that produce representative and reproducible concentration data for munitions constituents. This article provides a broad overview of recommended soil sampling and processing practices for analysis of munitions constituents on military ranges.

Related Article(s):


CONTRIBUTOR(S): Dr. Samuel Beal


Key Resource(s):

Introduction

Figure 1: Downrange distance of visible propellant plume on snow from the firing of different munitions. Note deposition behind firing line for the 84-mm rocket. Data from: Walsh et al.[5][6]
Figure 2: A low-order detonation mortar round (top) with surrounding discrete soil samples produced concentrations spanning six orders of magnitude within a 10m by 10m area (bottom). (Photo and data: A.D. Hewitt)

Munitions constituents are released on military testing and training ranges through several common mechanisms. Some are locally dispersed as solid particles from incomplete combustion during firing and detonation. Also, small residual particles containing propellant compounds (e.g., nitroglycerin [NG] and 2,4-dinitrotoluene [2,4-DNT]) are distributed in front of and surrounding target practice firing lines (Figure 1). At impact areas and demolition areas, high order detonations typically yield very small amounts (<1 to 10 mg/round) of residual high explosive compounds (e.g., TNT , RDX and HMX ) that are distributed up to and sometimes greater than) 24 m from the site of detonation[7].

Low-order detonations and duds are thought to be the primary source of munitions constituents on ranges[8][9]. Duds are initially intact but may become perforated or fragmented into micrometer to centimeter;o0i0k-sized particles by nearby detonations[10]. Low-order detonations can scatter micrometer to centimeter-sized particles up to 20 m from the site of detonation[11]

The particulate nature of munitions constituents in the environment presents a distinct challenge to representative soil sampling. Figure 2 shows an array of discrete soil samples collected around the site of a low-order detonation – resultant soil concentrations vary by orders of magnitude within centimeters of each other. The inadequacy of discrete sampling is apparent in characterization studies from actual ranges which show wide-ranging concentrations and poor precision (Table 1).

In comparison to discrete sampling, incremental sampling tends to yield reproducible concentrations (low relative standard deviation [RSD]) that statistically better represent an area of interest[2].

Table 1. Soil Sample Concentrations and Precision from Military Ranges Using Discrete and Incremental Sampling. (Data from Taylor et al. [1] and references therein.)
Military Range Type Analyte Range
(mg/kg)
Median
(mg/kg)
RSD
(%)
Discrete Samples
Artillery FP 2,4-DNT <0.04 – 6.4 0.65 110
Antitank Rocket HMX 5.8 – 1,200 200 99
Bombing TNT 0.15 – 780 6.4 274
Mortar RDX <0.04 – 2,400 1.7 441
Artillery RDX <0.04 – 170 <0.04 454
Incremental Samples*
Artillery FP 2,4-DNT 0.60 – 1.4 0.92 26
Bombing TNT 13 – 17 14 17
Artillery/Bombing RDX 3.9 – 9.4 4.8 38
Thermal Treatment HMX 3.96 – 4.26 4.16 4
* For incremental samples, 30-100 increments and 3-10 replicate samples were collected.

Incremental Sampling Approach

ISM is a requisite for representative and reproducible sampling of training ranges, but it is an involved process that is detailed thoroughly elsewhere[2][1][3]. In short, ISM involves the collection of many (30 to >100) increments in a systematic pattern within a decision unit (DU). The DU may cover an area where releases are thought to have occurred or may represent an area relevant to ecological receptors (e.g., sensitive species). Figure 3 shows the ISM sampling pattern in a simplified (5x5 square) DU. Increments are collected at a random starting point with systematic distances between increments. Replicate samples can be collected by starting at a different random starting point, often at a different corner of the DU. Practically, this grid pattern can often be followed with flagging or lathe marking DU boundaries and/or sampling lanes and with individual pacing keeping systematic distances between increments. As an example, an artillery firing point might include a 100x100 m DU with 81 increments.

Figure 3. Example ISM sampling pattern on a square decision unit. Replicates are collected in a systematic pattern from a random starting point at a corner of the DU. Typically more than the 25 increments shown are collected

DUs can vary in shape (Figure 4), size, number of increments, and number of replicates according to a project’s data quality objectives.

Figure 4: Incremental sampling of a circular DU on snow shows sampling lanes with a two-person team in process of collecting the second replicate in a perpendicular path to the first replicate. (Photo: Matthew Bigl)

Sampling Tools

In many cases, energetic compounds are expected to reside within the soil surface. Figure 5 shows soil depth profiles on some studied impact areas and firing points. Overall, the energetic compound concentrations below 5-cm soil depth are negligible relative to overlying soil concentrations. For conventional munitions, this is to be expected as the energetic particles are relatively insoluble, and any dissolved compounds readily adsorb to most soils[12]. Physical disturbance, as on hand grenade ranges, may require deeper sampling either with a soil profile or a corer/auger.

Figure 5. Depth profiles of high explosive compounds at impact areas (bottom) and of propellant compounds at firing points (top). Data from: Hewitt et al. [13] and Jenkins et al. [14]

Soil sampling with the Cold Regions Research and Engineering Laboratory (CRREL) Multi-Increment Sampling Tool (CMIST) or similar device is an easy way to collect ISM samples rapidly and reproducibly. This tool has an adjustable diameter size corer and adjustable depth to collect surface soil plugs (Figure 6). The CMIST can be used at almost a walking pace (Figure 7) using a two-person sampling team, with one person operating the CMIST and the other carrying the sample container and recording the number of increments collected. The CMIST with a small diameter tip works best in soils with low cohesion, otherwise conventional scoops may be used. Maintaining consistent soil increment dimensions is critical.

The sampling tool should be cleaned between replicates and between DUs to minimize potential for cross-contamination[15].

Sample Processing

While only 10 g of soil is typically used for chemical analysis, incremental sampling generates a sample weighing on the order of 1 kg. Splitting of a sample, either in the field or laboratory, seems like an easy way to reduce sample mass; however this approach has been found to produce high uncertainty for explosives and propellants, with a median RSD of 43.1%[2]. Even greater error is associated with removing a discrete sub-sample from an unground sample. Appendix A in U.S. EPA Method 8330B[3] provides details on recommended ISM sample processing procedures.

Incremental soil samples are typically air dried over the course of a few days. Oven drying thermally degrades some energetic compounds and should be avoided[16]. Once dry, the samples are sieved with a 2-mm screen, with only the less than 2-mm fraction processed further. This size fraction represents the USDA definition of soil. Aggregate soil particles should be broken up and vegetation shredded to pass through the sieve. Samples from impact or demolition areas may contain explosive particles from low order detonations that are greater than 2 mm and should be identified, given appropriate caution, and potentially weighed.

The <2-mm soil fraction is typically still ≥1 kg and impractical to extract in full for analysis. However, subsampling at this stage is not possible due to compositional heterogeneity, with the energetic compounds generally present as <0.5 mm particles[7][11]. Particle size reduction is required to achieve a representative and precise measure of the sample concentration. Grinding in a puck mill to a soil particle size <75 µm has been found to be required for representative/reproducible sub-sampling (Figure 8). For samples thought to contain propellant particles, a prolonged milling time is required to break down these polymerized particles and achieve acceptable precision (Figure 9). Due to the multi-use nature of some ranges, a 5-minute puck milling period can be used for all soils. Cooling periods between 1-minute milling intervals are recommended to avoid thermal degradation. Similar to field sampling, sub-sampling is done incrementally by spreading the sample out to a thin layer and collecting systematic random increments of consistent volume to a total mass for extraction of 10 g (Figure 10).

  • Figure 6: CMIST soil sampling tool (top) and with ejected increment core using a large diameter tip (bottom).
  • Figure 7: Two person sampling team using CMIST, bag-lined bucket, and increment counter. (Photos: Matthew Bigl)
  • Figure 8: Effect of machine grinding on RDX and TNT concentration and precision in soil from a hand grenade range. Data from Walsh et al.[17]
  • Figure 9: Effect of puck milling time on 2,4-DNT concentration and precision in soil from a firing point. Data from Walsh et al.[18].
  • Figure 10: Incremental sub-sampling of a milled soil sample spread out on aluminum foil.
  • Analysis

    Soil sub-samples are extracted and analyzed following EPA Method 8330B[3] and Method 8095[4] using High Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC), respectively. Common estimated reporting limits for these analysis methods are listed in Table 2.

    Table 2. Typical Method Reporting Limits for Energetic Compounds in Soil. (Data from Hewitt et al.[19])
    Compound Soil Reporting Limit (mg/kg)
    HPLC (8330) GC (8095)
    HMX 0.04 0.01
    RDX 0.04 0.006
    TNB 0.04 0.003
    TNT 0.04 0.002
    2,6-DNT 0.08 0.002
    2,4-DNT 0.04 0.002
    2-ADNT 0.08 0.002
    4-ADNT 0.08 0.002
    NG 0.1 0.01
    DNB 0.04 0.002
    Tetryl 0.04 0.01
    PETN 0.2 0.016

    References

    1. ^ 1.0 1.1 1.2 Taylor, S., Jenkins, T.F., Bigl, S., Hewitt, A.D., Walsh, M.E. and Walsh, M.R., 2011. Guidance for Soil Sampling for Energetics and Metals (No. ERDC/CRREL-TR-11-15). Report.pdf
    2. ^ 2.0 2.1 2.2 2.3 Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Bigl, S.R. and Brochu, S., 2009. Validation of sampling protocol and the promulgation of method modifications for the characterization of energetic residues on military testing and training ranges (No. ERDC/CRREL-TR-09-6). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-09-6, Hanover, NH, USA. Report.pdf
    3. ^ 3.0 3.1 3.2 3.3 U.S. Environmental Protection Agency (USEPA), 2006. Method 8330B (SW-846): Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC), Rev. 2. Washington, D.C. Report.pdf
    4. ^ 4.0 4.1 U.S. Environmental Protection Agency (US EPA), 2007. Method 8095 (SW-846): Explosives by Gas Chromatography. Washington, D.C. Report.pdf
    5. ^ Walsh, M.R., Walsh, M.E., Ampleman, G., Thiboutot, S., Brochu, S. and Jenkins, T.F., 2012. Munitions propellants residue deposition rates on military training ranges. Propellants, Explosives, Pyrotechnics, 37(4), pp.393-406. doi: 10.1002/prep.201100105
    6. ^ Walsh, M.R., Walsh, M.E., Hewitt, A.D., Collins, C.M., Bigl, S.R., Gagnon, K., Ampleman, G., Thiboutot, S., Poulin, I. and Brochu, S., 2010. Characterization and Fate of Gun and Rocket Propellant Residues on Testing and Training Ranges: Interim Report 2. (ERDC/CRREL TR-10-13. Also: ESTCP Project ER-1481) Report
    7. ^ 7.0 7.1 Walsh, M.R., Temple, T., Bigl, M.F., Tshabalala, S.F., Mai, N. and Ladyman, M., 2017. Investigation of Energetic Particle Distribution from High‐Order Detonations of Munitions. Propellants, Explosives, Pyrotechnics, 42(8), pp.932-941. doi: 10.1002/prep.201700089 Report.pdf
    8. ^ Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Walsh, M.R. and Taylor, S., 2005. RDX and TNT residues from live-fire and blow-in-place detonations. Chemosphere, 61(6), pp.888-894. doi: 10.1016/j.chemosphere.2005.04.058
    9. ^ Walsh, M.R., Walsh, M.E., Poulin, I., Taylor, S. and Douglas, T.A., 2011. Energetic residues from the detonation of common US ordnance. International Journal of Energetic Materials and Chemical Propulsion, 10(2). doi: 10.1615/IntJEnergeticMaterialsChemProp.2012004956 Report.pdf
    10. ^ Walsh, M.R., Thiboutot, S., Walsh, M.E., Ampleman, G., Martel, R., Poulin, I. and Taylor, S., 2011. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC/CRREL-TR-11-13). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-11-13, Hanover, NH, USA. Report.pdf
    11. ^ 11.0 11.1 Taylor, S., Hewitt, A., Lever, J., Hayes, C., Perovich, L., Thorne, P. and Daghlian, C., 2004. TNT particle size distributions from detonated 155-mm howitzer rounds. Chemosphere, 55(3), pp.357-367. Report.pdf
    12. ^ Pennington, J.C., Jenkins, T.F., Ampleman, G., Thiboutot, S., Brannon, J.M., Hewitt, A.D., Lewis, J., Brochu, S., 2006. Distribution and fate of energetics on DoD test and training ranges: Final Report. ERDC TR-06-13, Vicksburg, MS, USA. Also: SERDP/ESTCP Project ER-1155. Report.pdf
    13. ^ Hewitt, A.D., Jenkins, T.F., Ramsey, C.A., Bjella, K.L., Ranney, T.A. and Perron, N.M., 2005. Estimating energetic residue loading on military artillery ranges: Large decision units (No. ERDC/CRREL-TR-05-7). Report.pdf
    14. ^ Jenkins, T.F., Ampleman, G., Thiboutot, S., Bigl, S.R., Taylor, S., Walsh, M.R., Faucher, D., Mantel, R., Poulin, I., Dontsova, K.M. and Walsh, M.E., 2008. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC-TR-08-1). Report.pdf
    15. ^ Walsh, M.R., 2009. User’s manual for the CRREL Multi-Increment Sampling Tool. Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) SR-09-1, Hanover, NH, USA. Report.pdf
    16. ^ Cragin, J.H., Leggett, D.C., Foley, B.T., and Schumacher, P.W., 1985. TNT, RDX and HMX explosives in soils and sediments: Analysis techniques and drying losses. (CRREL Report 85-15) Hanover, NH, USA. Report.pdf
    17. ^ Walsh, M.E., Ramsey, C.A. and Jenkins, T.F., 2002. The effect of particle size reduction by grinding on subsampling variance for explosives residues in soil. Chemosphere, 49(10), pp.1267-1273. doi: 10.1016/S0045-6535(02)00528-3
    18. ^ Walsh, M.E., Ramsey, C.A., Collins, C.M., Hewitt, A.D., Walsh, M.R., Bjella, K.L., Lambert, D.J. and Perron, N.M., 2005. Collection methods and laboratory processing of samples from Donnelly Training Area Firing Points, Alaska, 2003 (No. ERDC/CRREL-TR-05-6). Report.pdf
    19. ^ Hewitt, A., Bigl, S., Walsh, M., Brochu, S., Bjella, K. and Lambert, D., 2007. Processing of training range soils for the analysis of energetic compounds (No. ERDC/CRREL-TR-07-15). Hanover, NH, USA. Report.pdf

    See Also