Difference between revisions of "User:Debra Tabron/sandbox"

From Enviro Wiki
Jump to: navigation, search
(See Also)
 
(369 intermediate revisions by the same user not shown)
Line 1: Line 1:
Sustainable remediation involves evaluating remediation projects for their social, economic, and positive and negative environmental impacts. The key concept is incorporating sustainability into remediation projects is beneficial because system level and holistic thinking helps to: (a) identify opportunities to improve the net benefit of the project, and (b) highlight specific negative project impacts that can be mitigated to limit their adverse socio-economic and environmental impacts. Project-level application of sustainable remediation is scalable and can involve a minimal approach on one project and can be more comprehensive on another project.
+
The heterogeneous distribution of munitions constituents, released as particles from munitions firing and detonations on military training ranges, presents challenges for representative soil sample collection and for defensible decision making. Military range characterization studies and the development of the incremental sampling methodology (ISM) have enabled the development of recommended methods for soil sampling that produce representative and reproducible concentration data for munitions constituents. This article provides a broad overview of recommended soil sampling and processing practices for analysis of munitions constituents on military ranges.  
 
 
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
'''Related Articles''':
+
'''Related Article(s)''':  
  
  
'''CONTRIBUTOR(S):''' [[Paul Favara]]  
+
'''CONTRIBUTOR(S):''' [[Dr. Samuel Beal]]
  
  
'''Key Resource(s):'''
+
'''Key Resource(s)''':
*[http://www.environmentalrestoration.wiki/images/f/f8/Ellis-2009-SURF_White_Paper.pdf White Paper Sustainable remediation white paper: Integrating sustainable principles, practices, and metrics into remediation projects]<ref name= "Ellis2009">Ellis, D.E. and Hadley, P.W., 2009. Sustainable remediation white paper: Integrating sustainable principles, practices, and metrics into remediation projects. Remediation Journal, 19(3), pp.5-114. [http://www.environmentalrestoration.wiki/images/f/f8/Ellis-2009-SURF_White_Paper.pdf White Paper]</ref>
+
*[[media:Taylor-2011 ERDC-CRREL TR-11-15.pdf| Guidance for Soil Sampling of Energetics and Metals]]<ref name= "Taylor2011">Taylor, S., Jenkins, T.F., Bigl, S., Hewitt, A.D., Walsh, M.E. and Walsh, M.R., 2011. Guidance for Soil Sampling for Energetics and Metals (No. ERDC/CRREL-TR-11-15). [[media:Taylor-2011 ERDC-CRREL TR-11-15.pdf| Report.pdf]]</ref>
*[http://www.environmentalrestoration.wiki/images/3/3f/ESTCP-2013-Quantifying_Life_Cycle_envl_Footprints...ER-201127.pdf Quantifying Life Cycle Environmental Footprints of Soil and Groundwater Remedies. ER-201127 Report]<ref name= "ESTCP2013">ESTCP, 2013. Quantifying Life Cycle Environmental Footprints of Soil and Groundwater Remedies. ER-201127. [http://www.environmentalrestoration.wiki/images/3/3f/ESTCP-2013-Quantifying_Life_Cycle_envl_Footprints...ER-201127.pdf Report pdf]</ref>
+
*[[Media:Hewitt-2009 ERDC-CRREL TR-09-6.pdf| Report.pdf | Validation of Sampling Protocol and the Promulgation of Method Modifications for the Characterization of Energetic Residues on Military Testing and Training Ranges]]<ref name= "Hewitt2009">Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Bigl, S.R. and Brochu, S., 2009. Validation of sampling protocol and the promulgation of method modifications for the characterization of energetic residues on military testing and training ranges (No. ERDC/CRREL-TR-09-6). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-09-6, Hanover, NH, USA. [[Media:Hewitt-2009 ERDC-CRREL TR-09-6.pdf | Report.pdf]]</ref>  
*[http://www.environmentalrestoration.wiki/images/8/8a/USEPA-2008a._Green_Remediation-Incorporating_Sustainable_Envl_Practices.pdf Green Remediation: Incorporating Sustainable Environmental Practices into Remediation of Contaminated Sites]<ref name= "USEPA2008a">U.S. Environmental Protection Agency (USEPA), 2008. Green remediation: Incorporating sustainable environmental practices into remediation of contaminated sites. EPA 542-R-08-002. [http://www.environmentalrestoration.wiki/images/8/8a/USEPA-2008a._Green_Remediation-Incorporating_Sustainable_Envl_Practices.pdf Report pdf]</ref>  
+
*[[media:Epa-2006-method-8330b.pdf| U.S. EPA SW-846 Method 8330B: Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC)]]<ref name= "USEPA2006M">U.S. Environmental Protection Agency (USEPA), 2006. Method 8330B (SW-846): Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC), Rev. 2. Washington, D.C. [[media:Epa-2006-method-8330b.pdf | Report.pdf]]</ref>
 +
*[[media:Epa-2007-method-8095.pdf | U.S. EPA SW-846 Method 8095: Explosives by Gas Chromatography.]]<ref name= "USEPA2007M">U.S. Environmental Protection Agency (US EPA), 2007. Method 8095 (SW-846): Explosives by Gas Chromatography. Washington, D.C. [[media:Epa-2007-method-8095.pdf| Report.pdf]]</ref>
  
 
==Introduction==
 
==Introduction==
Sustainable remediation has been an industry focus area since 2006, when a small group of individuals met to assess if the remediation industry could benefit from a more formal adoption of sustainability concepts<ref name= "USEPA2008a"/><ref name= "Ellis2009"/><ref name= "ITRC2011">Interstate Technology and Regulatory Council (ITRC), 2011. Green and sustainable remediation: A practical framework. GSR-2, ITRC Green and Sustainable Remediation Team, Washington, D.C. [http://www.environmentalrestoration.wiki/images/6/65/ITRC-2011-Green_and_Sustainable_Remediation.pdf Report pdf]</ref><ref name= "ASTM2013">American Society for Testing and Materials. 2013. Standard guide for integrating sustainable objectives into cleanup. ASTM E2876-13. [https://doi.org/10.1520/e2876 doi: 10.1520/E2876]</ref>). Since that time, the topic has quickly launched into a key industry focus area. The main challenges in early sustainable remediation were how to define it and what the goals and outcomes would be. By 2011, three main variants of sustainable remediation were being applied to remediation projects around the world:
+
[[File:Beal1w2 Fig1.png|thumb|200 px|left|Figure 1: Downrange distance of visible propellant plume on snow from the firing of different munitions. Note deposition behind firing line for the 84-mm rocket. Data from: Walsh et al.<ref>Walsh, M.R., Walsh, M.E., Ampleman, G., Thiboutot, S., Brochu, S. and Jenkins, T.F., 2012. Munitions propellants residue deposition rates on military training ranges. Propellants, Explosives, Pyrotechnics, 37(4), pp.393-406. [http://dx.doi.org/10.1002/prep.201100105 doi: 10.1002/prep.201100105]</ref><ref>Walsh, M.R., Walsh, M.E., Hewitt, A.D., Collins, C.M., Bigl, S.R., Gagnon, K., Ampleman, G., Thiboutot, S., Poulin, I. and Brochu, S., 2010. Characterization and Fate of Gun and Rocket Propellant Residues on Testing and Training Ranges: Interim Report 2. (ERDC/CRREL TR-10-13.  Also: ESTCP Project ER-1481) [[media:Walsh-2010 ERDC-CRREL TR-11-15 ESTCP ER-1481.pdf| Report]]</ref>]]
#'''Green Remediation'''. The U.S. Environmental Protection Agency (EPA) released its Green Remediation Primer, which focused on the green elements of sustainability-mainly the environmental attributes associated with remediation<ref name= "USEPA2008a"/>.
+
[[File:Beal1w2 Fig2.png|thumb|left|200 px|Figure 2: A low-order detonation mortar round (top) with surrounding discrete soil samples produced concentrations spanning six orders of magnitude within a 10m by 10m area (bottom). (Photo and data: A.D. Hewitt)]]
#'''Sustainable Remediation'''. The Sustainable Remediation Forum<ref>The Sustainable Remediation Forum (SURF), 2016. Sustainable Remediation Forum. Sustainableremediation.org.</ref> released its white paper in 2009, addressed “Sustainable Remediation,” which is inclusive of social, environmental, and economic considerations<ref name= "Ellis2009"/>.
 
#'''Green and Sustainable Remediation (GSR)'''. In 2011, the Interstate Technology and Regulatory Council (ITRC) released its guidance on “Green and Sustainable Remediation (GSR)<ref name= "ITRC2011"/>. The GSR phrase was a compromise between the members of the work groups that advocated green remediation and sustainable remediation.
 
  
Since sustainable remediation first became a topic of interest in the remediation industry, it has spread around the globe with SURF-like organizations in Canada, Brazil, Italy, United Kingdom, Taiwan, the Netherlands, Colombia, Japan, Australia, and New Zealand. Most of these organizations have their own guidance documents and white papers. In addition to the variable definitions and different geographies to consider, different organizations have their own definitions of sustainable remediation and internal processes and guidance on how to implement it.
+
Munitions constituents are released on military testing and training ranges through several common mechanisms. Some are locally dispersed as solid particles from incomplete combustion during firing and detonation. Also, small residual particles containing propellant compounds (e.g., [[Wikipedia: Nitroglycerin | nitroglycerin [NG]]] and [[Wikipedia: 2,4-Dinitrotoluene | 2,4-dinitrotoluene [2,4-DNT]]]) are distributed in front of and surrounding target practice firing lines (Figure 1). At impact areas and demolition areas, high order detonations typically yield very small amounts (<1 to 10 mg/round) of residual high explosive compounds (e.g., [[Wikipedia: TNT | TNT ]], [[Wikipedia: RDX | RDX ]] and [[Wikipedia: HMX | HMX ]]) that are distributed up to and sometimes greater than) 24 m from the site of detonation<ref name= "Walsh2017">Walsh, M.R., Temple, T., Bigl, M.F., Tshabalala, S.F., Mai, N. and Ladyman, M., 2017. Investigation of Energetic Particle Distribution from High‐Order Detonations of Munitions. Propellants, Explosives, Pyrotechnics, 42(8), pp.932-941. [https://doi.org/10.1002/prep.201700089 doi: 10.1002/prep.201700089] [[media: Walsh-2017-High-Order-Detonation-Residues-Particle-Distribution-PEP.pdf| Report.pdf]]</ref>.
 
 
==Frameworks for Implementation==
 
There are a number of approaches that can be used to implement sustainable remediation. Frameworks underpin most of these approaches.  
 
  
Sustainable remediation can be implemented in a phased approach, where sustainability is looked at only within the boundaries of the specific project phase (left side of Fig. 1). SURF provides a framework that advocates thinking holistically about sustainability and thinking about integration of sustainability through time—backward to take insights from previous project phases, and forward by thinking about future project outcomes and considering those sustainability impacts in the current phase of<ref name= "Holland2011">Holland, K.S., Lewis, R.E., Tipton, K., Karnis, S., Dona, C., Petrovskis, E., Bull, L.P., Taege, D. and Hook, C., 2011. Framework for integrating sustainability into remediation projects. Remediation Journal, 21(3), pp.7-38. [http://dx.doi.org/10.1002/rem.20288  doi: 10.1002/rem.20288 ]</ref>.
+
Low-order detonations and duds are thought to be the primary source of munitions constituents on ranges<ref>Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Walsh, M.R. and Taylor, S., 2005. RDX and TNT residues from live-fire and blow-in-place detonations. Chemosphere, 61(6), pp.888-894. [https://doi.org/10.1016/j.chemosphere.2005.04.058 doi: 10.1016/j.chemosphere.2005.04.058]</ref><ref>Walsh, M.R., Walsh, M.E., Poulin, I., Taylor, S. and Douglas, T.A., 2011. Energetic residues from the detonation of common US ordnance. International Journal of Energetic Materials and Chemical Propulsion, 10(2). [https://doi.org/10.1615/intjenergeticmaterialschemprop.2012004956 doi: 10.1615/IntJEnergeticMaterialsChemProp.2012004956] [[media:Walsh-2011-Energetic-Residues-Common-US-Ordnance.pdf| Report.pdf]]</ref>. Duds are initially intact but may become perforated or fragmented into micrometer to centimeter;o0i0k-sized particles by nearby detonations<ref>Walsh, M.R., Thiboutot, S., Walsh, M.E., Ampleman, G., Martel, R., Poulin, I. and Taylor, S., 2011. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC/CRREL-TR-11-13). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-11-13, Hanover, NH, USA. [[media:Epa-2006-method-8330b.pdf| Report.pdf]]</ref>. Low-order detonations can scatter micrometer to centimeter-sized particles up to 20 m from the site of detonation<ref name= "Taylor2004">Taylor, S., Hewitt, A., Lever, J., Hayes, C., Perovich, L., Thorne, P. and Daghlian, C., 2004. TNT particle size distributions from detonated 155-mm howitzer rounds. Chemosphere, 55(3), pp.357-367.[[media:Taylor-2004 TNT PSDs.pdf| Report.pdf]]</ref>
[[File:Favara-Article 1-Figure 1-Exhibit-2.jpg|500px|thumbnail|center|Figure 1. Comparison of linear versus holistic approach to integrating sustainability into projects (from Holland et al, 2011<ref name= "Holland2011"/>).]]
 
  
Another example framework is the American Society of Testing and Materials (ASTM) Greener Cleanup standard, which identifies opportunities to implement best management practices (BMPs) and quantitative assessments (e.g., footprint analysis or life-cycle assessment [LCA]) in different phases of the project life cycle.
+
The particulate nature of munitions constituents in the environment presents a distinct challenge to representative soil sampling. Figure 2 shows an array of discrete soil samples collected around the site of a low-order detonation – resultant soil concentrations vary by orders of magnitude within centimeters of each other. The inadequacy of discrete sampling is apparent in characterization studies from actual ranges which show wide-ranging concentrations and poor precision (Table 1).
[[File:Favara-Article 1-Figure 2.PNG|thumbnail|500 px|center|Figure 2. Life-cycle phases of remediation projects and where footprint assessments and LCAs can be implemented<ref name= "ASTM2016">American Society for Testing and Materials (ASTM), 2016. Standard guide for greener cleanups.  ASTM E2893-16. [https://doi.org/10.1520/e2893-16 doi:10.1520/E2893-16]</ref>. Reprinted, with permission, from E2893-16, Standard Guide for Greener Cleanups, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA  19428.  A copy of the complete standard may be obtained from [http://www.astm.org/ ASTM International].]]
 
  
==Metrics==
+
In comparison to discrete sampling, incremental sampling tends to yield reproducible concentrations (low relative standard deviation [RSD]) that statistically better represent an area of interest<ref name= "Hewitt2009"/>.
Sustainable remediation often involves evaluation of several sustainability metrics that can be used to compare different remediation alternatives. There is a wide variety of metrics, but the following are often applied:  carbon dioxide emissions, energy consumption, water use, material use, waste generation, and occupational risk. In a typical sustainable remediation project, these metrics are calculated by applying one of the sustainable remediation tools that are currently available. A comprehensive list and discussion of sustainable remediation metrics is presented in the SURF Metrics Toolbox<ref name= "Butler2011">Butler, P.B., Larsen‐Hallock, L., Lewis, R., Glenn, C. and Armstead, R., 2011. Metrics for integrating sustainability evaluations into remediation projects. Remediation Journal, 21(3), pp.81-87. [http://dx.doi.org/10.1002/rem.20290  doi: 10.1002/rem.20290]</ref>.
 
  
==Tools==
+
{| class="wikitable" style="float: right; text-align: center; margin-left: auto; margin-right: auto;"
There are a number of sustainable remediation tools used in the industry. The most commonly used ones include:
+
|+ Table 1. Soil Sample Concentrations and Precision from Military Ranges Using Discrete and Incremental Sampling. (Data from Taylor et al. <ref name= "Taylor2011"/> and references therein.)
*Public domain footprint analysis tools such as SiteWise™<ref>NAVFAC, 2016. SiteWise™ Tool - V3.1. Developed by the Department of the Navy, Army Corps of Engineers, & Battelle. [http://www.navfac.navy.mil/navfac_worldwide/specialty_centers/exwc/products_and_services/ev/erb/gsr.html#tools  Website]</ref>, Sustainable Remediation Tool (SRT™)<ref>Air Force Center for Engineering and the Environment (AFCEE), 2011. Sustainable Remediation Tool User Guide, Version 2.2.</ref>, and USEPA’s Spreadsheets for Environmental Footprint Analysis (SEFA)<ref>U.S. Environmental Protection Agency (EPA). Spreadsheets for environmental footprint analysis.</ref><ref>U.S. Environmental Protection Agency (USEPA). 2012. Methodology for Understanding and Reducing a Project’s Environmental Footprint. EPA 542-R-12-002. [http://www.environmentalrestoration.wiki/images/7/75/USEPA-2012-Methodology_for_Understanding_and_Reducing_a_Projects_Envl_Footprint.pdf Report pdf]</ref>.
+
|-
*Commercially available life-cycle assessment software such as SimaPro®<ref>PRé, 2016. SimaPro. Putting the metrics behind sustainability. Pre-sustainability.com/simapro. Last accessed on October 18, 2016.</ref>
+
! Military Range Type !! Analyte !! Range<br/>(mg/kg) !! Median<br/>(mg/kg) !! RSD<br/>(%)
*Best management practices (BMPs) that are published by SURF<ref name= "Butler2011"/><ref name= "ITRC2011"/><ref>US Army Corp of Engineers (USACE), 2012. Evaluation of consideration and incorporation of Green and Sustainable Remediation (GSR) practices in army environmental remediation. [http://www.environmentalrestoration.wiki/images/8/81/USACE-2012-Evaluation_of_Consideration_and_inc._of_GSR.pdf Report pdf]</ref><ref name= "ASTM2013"/><ref name= "ASTM2016"/><ref>US Navy. 2016. Green and sustainable remediation best management practices. Technical Memorandum TM-NAVFAC-EXWC-EV-1601. [http://www.environmentalrestoration.wiki/images/7/7d/USNAVY-2016-Tech_Memo_TM-NAVFAC-EXWC-EV-1601.pdf Report pdf]</ref>, and EPA Best Management Practices summaries<ref>U.S. Environmental Protection Agency (USEPA), 2016. Best Management Practices for green remediation focus.</ref>.
+
|-
 +
| colspan="5" style="text-align: left;" | '''Discrete Samples'''
 +
|-
 +
| Artillery FP || 2,4-DNT || <0.04 – 6.4 || 0.65 || 110
 +
|-
 +
| Antitank Rocket || HMX || 5.8 – 1,200 || 200 || 99
 +
|-
 +
| Bombing || TNT || 0.15 – 780 || 6.4 || 274
 +
|-
 +
| Mortar || RDX || <0.04 – 2,400 || 1.7 || 441
 +
|-
 +
| Artillery || RDX || <0.04 – 170 || <0.04 || 454
 +
|-
 +
| colspan="5" style="text-align: left;" | '''Incremental Samples*'''
 +
|-
 +
| Artillery FP || 2,4-DNT || 0.60 – 1.4 || 0.92 || 26
 +
|-
 +
| Bombing || TNT || 13 – 17 || 14 || 17
 +
|-
 +
| Artillery/Bombing || RDX || 3.9 – 9.4 || 4.8 || 38
 +
|-  
 +
| Thermal Treatment || HMX || 3.96 – 4.26 || 4.16 || 4
 +
|-
 +
| colspan="5" style="text-align: left; background-color: white;" | * For incremental samples, 30-100 increments and 3-10 replicate samples were collected.
 +
|}
  
===Footprint Analysis Tools and Life-Cycle Assessment (LCA) Tools===
+
==Incremental Sampling Approach==
Footprint analysis and LCA tools are used to assess the environmental footprint of different remediation alternatives or design configurations by calculating environmental, risk, and sometimes social metrics.
+
ISM is a requisite for representative and reproducible sampling of training ranges, but it is an involved process that is detailed thoroughly elsewhere<ref name= "Hewitt2009"/><ref name= "Taylor2011"/><ref name= "USEPA2006M"/>. In short, ISM involves the collection of many (30 to >100) increments in a systematic pattern within a decision unit (DU). The DU may cover an area where releases are thought to have occurred or may represent an area relevant to ecological receptors (e.g., sensitive species). Figure 3 shows the ISM sampling pattern in a simplified (5x5 square) DU. Increments are collected at a random starting point with systematic distances between increments. Replicate samples can be collected by starting at a different random starting point, often at a different corner of the DU. Practically, this grid pattern can often be followed with flagging or lathe marking DU boundaries and/or sampling lanes and with individual pacing keeping systematic distances between increments. As an example, an artillery firing point might include a 100x100 m DU with 81 increments.
 +
[[File:Beal1w2 Fig3.png|thumb|200 px|left|Figure 3. Example ISM sampling pattern on a square decision unit. Replicates are collected in a systematic pattern from a random starting point at a corner of the DU. Typically more than the 25 increments shown are collected]]
  
Footprint analysis tools are primarily focused on estimating life cycle impacts associated with remediation project elements that contribute greenhouse gas emissions, nitrogen oxides, sulfur oxides, particulate matter, and energy. Some tools include other metrics such as occupational risk and resource service.
+
DUs can vary in shape (Figure 4), size, number of increments, and number of replicates according to a project’s data quality objectives.
  
LCA tools are more comprehensive and consider hundreds of project inputs and outputs, including natural resources, materials, processes, chemicals, transportation, and waste management. The more robust datasets available in LCA software allow impacts to air, soil, and water to be considered and for those impacts to be reported in terms of their environmental impact. Example of impact categories addressed with LCA include global warming potential, smog (negative health and aesthetics), acidification (impacts on soil and water as well as buildings and monuments), eutrophication (nutrients discharged to surface water), fossil fuel depletion (measure of impacts related to using depleting fossil fuel resources), and carcinogens, non-carcinogens, and ecotoxicity (discharged to air, soil, and surface water).
+
[[File:Beal1w2 Fig4.png|thumb|right|250 px|Figure 4: Incremental sampling of a circular DU on snow shows sampling lanes with a two-person team in process of collecting the second replicate in a perpendicular path to the first replicate. (Photo: Matthew Bigl)]]
  
The benefits and differences of footprint analysis and LCA tools is well documented<ref>Favara, P.J., Krieger, T.M., Boughton, B., Fisher, A.S. and Bhargava, M., 2011. Guidance for performing footprint analyses and life‐cycle assessments for the remediation industry. Remediation Journal, 21(3), pp.39-79. [https://doi.org/10.1002/rem.20289 doi: 10.1002/rem.20289]</ref><ref name= "ESTCP2013"/><ref>The Sustainable Remediation Forum (SURF), 2016. Tools and Calculators. Sustainableremediation.org/tools.</ref>.
+
==Sampling Tools==
 +
In many cases, energetic compounds are expected to reside within the soil surface. Figure 5 shows soil depth profiles on some studied impact areas and firing points. Overall, the energetic compound concentrations below 5-cm soil depth are negligible relative to overlying soil concentrations. For conventional munitions, this is to be expected as the energetic particles are relatively insoluble, and any dissolved compounds readily adsorb to most soils<ref>Pennington, J.C., Jenkins, T.F., Ampleman, G., Thiboutot, S., Brannon, J.M., Hewitt, A.D., Lewis, J., Brochu, S., 2006. Distribution and fate of energetics on DoD test and training ranges: Final Report. ERDC TR-06-13, Vicksburg, MS, USA. Also: SERDP/ESTCP Project ER-1155. [[media:Pennington-2006_ERDC-TR-06-13_ESTCP-ER-1155-FR.pdf| Report.pdf]]</ref>. Physical disturbance, as on hand grenade ranges, may require deeper sampling either with a soil profile or a corer/auger.
  
===Best Management Practices (BMPs)===
+
[[File:Beal1w2 Fig5.png|thumb|left|200 px|Figure 5. Depth profiles of high explosive compounds at impact areas (bottom) and of propellant compounds at firing points (top). Data from: Hewitt et al. <ref>Hewitt, A.D., Jenkins, T.F., Ramsey, C.A., Bjella, K.L., Ranney, T.A. and Perron, N.M., 2005. Estimating energetic residue loading on military artillery ranges: Large decision units (No. ERDC/CRREL-TR-05-7). [[media:Hewitt-2005 ERDC-CRREL TR-05-7.pdf| Report.pdf]]</ref> and Jenkins et al. <ref>Jenkins, T.F., Ampleman, G., Thiboutot, S., Bigl, S.R., Taylor, S., Walsh, M.R., Faucher, D., Mantel, R., Poulin, I., Dontsova, K.M. and Walsh, M.E., 2008. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC-TR-08-1). [[media:Jenkins-2008 ERDC TR-08-1.pdf| Report.pdf]]</ref>]]
Best management tools can be easily used by environmental professionals. Most of the tools are organized by topics and categories to allow practitioners to hone in on specific BMPs relevant for their project. BMPs can be integrated into a project faster than footprint analysis and LCA tools since calculations are typically not required. BMPs are typically evaluated through a series of screening steps to select the final BMPs for implementation. ASTM 2016<ref name= "ASTM2016"/> describes the example screening process.
 
  
ASTM (2013)<ref name= "ASTM2013"/> developed a schematic that represents the relationship between the three main elements of sustainability (i.e., the so-called “triple bottom line” of sustainability-social, environmental, and economic domains) (Fig. 3). The standard EPA core elements or impact areas are represented as the “spokes of the wheel,” and example BMPs as the “wheel tread.”
+
Soil sampling with the Cold Regions Research and Engineering Laboratory (CRREL) Multi-Increment Sampling Tool (CMIST) or similar device is an easy way to collect ISM samples rapidly and reproducibly. This tool has an adjustable diameter size corer and adjustable depth to collect surface soil plugs (Figure 6). The CMIST can be used at almost a walking pace (Figure 7) using a two-person sampling team, with one person operating the CMIST and the other carrying the sample container and recording the number of increments collected. The CMIST with a small diameter tip works best in soils with low cohesion, otherwise conventional scoops may be used. Maintaining consistent soil increment dimensions is critical.
[[File:Favara-Article 1-Figure 3.PNG|500px|thumbnail|center|Figure 3. Relationship between the sustainable aspects (center), core elements (spokes), and BMPs (wheel tread)<ref name= "ASTM2013"/>. Reprinted, with permission, from E2876-13 Standard Guide for Integrating Sustainable Objectives into Cleanup, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA  19428. A copy of the complete standard may be obtained from [http://www.astm.org/ ASTM International].]]
 
  
==The State of Sustainable Remediation==
+
The sampling tool should be cleaned between replicates and between DUs to minimize potential for cross-contamination<ref>Walsh, M.R., 2009. User’s manual for the CRREL Multi-Increment Sampling Tool. Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) SR-09-1, Hanover, NH, USA. [[media:Walsh-2009 ERDC-CRREL SR-09-1.pdf | Report.pdf]]</ref>.
The remediation industry initially focused most of its energy into developing tools to help assess and implement sustainability into projects. A number of guidance documents and webinars exist to provide a resource for practitioners to learn more about sustainable remediation. Sustainable remediation is a featured topic in most remediation conferences. Customers also commonly use it as an evaluation criterion in selecting remediation service providers.
 
  
Despite sustainable remediation being a commonly accepted practice, there is still uncertainty within the remediation industry on how to best use it. As sustainable remediation is not a regulatory requirement, there is an inconsistency in how it has been deployed across the remediation industry. Questions from buyers of sustainable remediation services typically include:
+
==Sample Processing==
*How is value demonstrated?
+
While only 10 g of soil is typically used for chemical analysis, incremental sampling generates a sample weighing on the order of 1 kg. Splitting of a sample, either in the field or laboratory, seems like an easy way to reduce sample mass; however this approach has been found to produce high uncertainty for explosives and propellants, with a median RSD of 43.1%<ref name= "Hewitt2009"/>. Even greater error is associated with removing a discrete sub-sample from an unground sample. Appendix A in [https://www.epa.gov/sites/production/files/2015-07/documents/epa-8330b.pdf U.S. EPA Method 8330B]<ref name= "USEPA2006M"/> provides details on recommended ISM sample processing procedures.
*Should metrics (e.g., greenhouse gas emissions and energy use) be tracked? If yes, should this be on a project or portfolio basis?
 
*How much extra will it cost to implement?
 
*How can organizational alignment and consistency be achieved by implementing this “voluntary” practice within a project, portfolio, or program?
 
  
Practitioners are implementing sustainable remediation into many projects, albeit to variable degrees using different approaches. Several of the main approaches used are described below:
+
Incremental soil samples are typically air dried over the course of a few days. Oven drying thermally degrades some energetic compounds and should be avoided<ref>Cragin, J.H., Leggett, D.C., Foley, B.T., and Schumacher, P.W., 1985. TNT, RDX and HMX explosives in soils and sediments: Analysis techniques and drying losses. (CRREL Report 85-15) Hanover, NH, USA. [[media:Cragin-1985 CRREL 85-15.pdf| Report.pdf]]</ref>. Once dry, the samples are sieved with a 2-mm screen, with only the less than 2-mm fraction processed further. This size fraction represents the USDA definition of soil. Aggregate soil particles should be broken up and vegetation shredded to pass through the sieve. Samples from impact or demolition areas may contain explosive particles from low order detonations that are greater than 2 mm and should be identified, given appropriate caution, and potentially weighed.
  
===Minimalist===
+
The <2-mm soil fraction is typically still ≥1 kg and impractical to extract in full for analysis. However, subsampling at this stage is not possible due to compositional heterogeneity, with the energetic compounds generally present as <0.5 mm particles<ref name= "Walsh2017"/><ref name= "Taylor2004"/>. Particle size reduction is required to achieve a representative and precise measure of the sample concentration. Grinding in a puck mill to a soil particle size <75 µm has been found to be required for representative/reproducible sub-sampling (Figure 8). For samples thought to contain propellant particles, a prolonged milling time is required to break down these polymerized particles and achieve acceptable precision (Figure 9). Due to the multi-use nature of some ranges, a 5-minute puck milling period can be used for all soils. Cooling periods between 1-minute milling intervals are recommended to avoid thermal degradation. Similar to field sampling, sub-sampling is done incrementally by spreading the sample out to a thin layer and collecting systematic random increments of consistent volume to a total mass for extraction of 10 g (Figure 10).
Some project teams use a minimalist approach that may involve highlighting a project attribute as sustainable, or including some brainstorming recommendations for BMPs. When sustainable remediation first started, this was sometimes referred to as “green washing”, because it involved business as usual by saying something was sustainable. Minimalist approaches can be sustainable if they provide value and make the most sense for small projects that are repeated a number of times (e.g., small excavation or in situ bioremediation projects).
 
  
===Best Management Practices (BMPs)===
+
<li style="display: inline-block;">[[File:Beal1w2 Fig6.png|thumb|200 px|Figure 6: CMIST soil sampling tool (top) and with ejected increment core using a large diameter tip (bottom).]]</li>
Some project teams complete BMP evaluations. These evaluations involve using BMP tools to identify potentially applicable BMPs that can be implemented in the project phase. This approach can be considered a top-down approach since a project phase is typically developed and then BMPs are screened for applicability. The ASTM Greener Cleanup Standard advocates tracking the implementation of BMPs after the cleanup phase and making the results available to the public. This allows the site owner to make a self-certification that the project was completed with the greener cleanup standard. Some site owners may consider this certification valuable (e.g., similar to LEED for buildings).
+
<li style="display: inline-block;">[[File:Beal1w2 Fig7.png|thumb|200 px|Figure 7: Two person sampling team using CMIST, bag-lined bucket, and increment counter. (Photos: Matthew Bigl)]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig8.png|thumb|200 px|Figure 8: Effect of machine grinding on RDX and TNT concentration and precision in soil from a hand grenade range. Data from Walsh et al.<ref>Walsh, M.E., Ramsey, C.A. and Jenkins, T.F., 2002. The effect of particle size reduction by grinding on subsampling variance for explosives residues in soil. Chemosphere, 49(10), pp.1267-1273. [https://doi.org/10.1016/S0045-6535(02)00528-3 doi: 10.1016/S0045-6535(02)00528-3]</ref> ]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig9.png|thumb|200 px|Figure 9: Effect of puck milling time on 2,4-DNT concentration and precision in soil from a firing point. Data from Walsh et al.<ref>Walsh, M.E., Ramsey, C.A., Collins, C.M., Hewitt, A.D., Walsh, M.R., Bjella, K.L., Lambert, D.J. and Perron, N.M., 2005. Collection methods and laboratory processing of samples from Donnelly Training Area Firing Points, Alaska, 2003 (No. ERDC/CRREL-TR-05-6). [[media:Walsh-2005 ERDC-CRREL TR-05-6.pdf| Report.pdf]]</ref>.]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig10.png|thumb|200 px|center|Figure 10: Incremental sub-sampling of a milled soil sample spread out on aluminum foil.]]</li>
  
===System Thinking===
+
==Analysis==
Some project teams will use sustainable remediation as an opportunity to think about the approach to remediation differently and underpin project planning to consider sustainable remediation throughout the project life cycle. This is sometimes referred to as “system thinking.” This approach involves including sustainability into all project processes. Instead of developing an approach and improving upon it, sustainability is the basis for idea development and the project approaches are built on a sustainability premise. System thinking can be thought of as a bottom-up approach and represents the best opportunity for sustainable remediation to be a game changer in how remediation technology is implemented, since it forces thinking about new ideas rather than simply using traditional approaches. System thinking also applies conservation, optimization, and minimization approaches to make them more sustainable.
+
Soil sub-samples are extracted and analyzed following [[Media: epa-2006-method-8330b.pdf | EPA Method 8330B]]<ref name= "USEPA2006M"/> and [[Media:epa-2007-method-8095.pdf | Method 8095]]<ref name= "USEPA2007M"/> using [[Wikipedia: High-performance liquid chromatography | High Performance Liquid Chromatography (HPLC)]] and [[Wikipedia: Gas chromatography | Gas Chromatography (GC)]], respectively. Common estimated reporting limits for these analysis methods are listed in Table 2.
  
==The Future of Sustainable Remediation==
+
{| class="wikitable" style="float: center; text-align: center; margin-left: auto; margin-right: auto;"
To some practitioners, sustainable remediation is considered an already studied focus area offering limited returns for further investigation. However, there is a network of sustainable remediation organizations such as SURF in the US as well as other countries including Australia/New Zealand, Brazil, Canada, Italy, the Netherlands, Taiwan, and UK, and also the Network of Industrially Contaminated Lands in Europe (NICOLE), that continue to push the boundaries of sustainable remediation and present new ideas and approaches to implementing sustainable remediation. Examples include evaluating greener and more sustainable treatment reagents, focusing more on the social aspect of sustainable remediation, and integrating groundwater conservation into remediation projects.
+
|+ Table 2. Typical Method Reporting Limits for Energetic Compounds in Soil. (Data from Hewitt et al.<ref>Hewitt, A., Bigl, S., Walsh, M., Brochu, S., Bjella, K. and Lambert, D., 2007. Processing of training range soils for the analysis of energetic compounds (No. ERDC/CRREL-TR-07-15). Hanover, NH, USA. [[media:Hewitt-2007 ERDC-CRREL TR-07-15.pdf| Report.pdf]]</ref>)
 +
|-
 +
! rowspan="2" | Compound
 +
! colspan="2" | Soil Reporting Limit (mg/kg)
 +
|-
 +
! HPLC (8330)
 +
! GC (8095)
 +
|-
 +
| HMX || 0.04 || 0.01
 +
|-
 +
| RDX || 0.04 || 0.006
 +
|-
 +
| [[Wikipedia: 1,3,5-Trinitrobenzene | TNB]] || 0.04 || 0.003
 +
|-
 +
| TNT || 0.04 || 0.002
 +
|-
 +
| [[Wikipedia: 2,6-Dinitrotoluene | 2,6-DNT]] || 0.08 || 0.002
 +
|-
 +
| 2,4-DNT || 0.04 || 0.002
 +
|-
 +
| 2-ADNT || 0.08 || 0.002
 +
|-
 +
| 4-ADNT || 0.08 || 0.002
 +
|-
 +
| NG || 0.1 || 0.01
 +
|-
 +
| [[Wikipedia: Dinitrobenzene | DNB ]] || 0.04 || 0.002
 +
|-
 +
| [[Wikipedia: Tetryl | Tetryl ]]  || 0.04 || 0.01
 +
|-
 +
| [[Wikipedia: Pentaerythritol tetranitrate | PETN ]] || 0.2 || 0.016
 +
|}
  
 
==References==
 
==References==
 
 
<references/>
 
<references/>
  
 
==See Also==
 
==See Also==
*[http://www.itrcweb.org/Training/ListEvents?topicID=9&subTopicID=15 ITRC Green and Sustainable Remediation Course Archive, 2016]
+
*[https://itrcweb.org/ Interstate Technology and Regulatory Council]
*[http://www.nicole.org/ Network of Industrially Contaminated Lands in Europe (NICOLE)] 
+
*[http://www.hawaiidoh.org/tgm.aspx Hawaii Department of Health]
*[http://www.sustainableremediation.org Sustainable Remediation Forum (SURF)]
+
*[http://envirostat.org/ Envirostat]
*[http://www.sustainableremediation.org/remediation-resources/ Sustainable Remediation Forum (SURF) Green and Sustainable Remediation Resource Page]
 
*[http://www.sustainableremediation.org/tools Sustainable Remediation Forum (SURF) Tools and Calculators]
 
*[http://www.sustainableremediation.org/library/ Sustainable Remediation Forum (SURF) Library Issue Papers]  
 
*[http://www.sustainableremediation.org/affiliates/ Sustainable Remediation Forum (SURF) Affiliates] 
 
*[https://clu-in.org/greenremediation/ USEPA Green Remediation Focus] 
 
*[https://www.youtube.com/watch?v=fdAo_HwIifY USEPA Green and Sustainable Remediation Youtube Video]
 
*[http://www.navfac.navy.mil/navfac_worldwide/specialty_centers/exwc/products_and_services/ev/erb/gsr.html US Navy Green and Sustainable Remediation]
 

Latest revision as of 18:58, 29 April 2020

The heterogeneous distribution of munitions constituents, released as particles from munitions firing and detonations on military training ranges, presents challenges for representative soil sample collection and for defensible decision making. Military range characterization studies and the development of the incremental sampling methodology (ISM) have enabled the development of recommended methods for soil sampling that produce representative and reproducible concentration data for munitions constituents. This article provides a broad overview of recommended soil sampling and processing practices for analysis of munitions constituents on military ranges.

Related Article(s):


CONTRIBUTOR(S): Dr. Samuel Beal


Key Resource(s):

Introduction

Figure 1: Downrange distance of visible propellant plume on snow from the firing of different munitions. Note deposition behind firing line for the 84-mm rocket. Data from: Walsh et al.[5][6]
Figure 2: A low-order detonation mortar round (top) with surrounding discrete soil samples produced concentrations spanning six orders of magnitude within a 10m by 10m area (bottom). (Photo and data: A.D. Hewitt)

Munitions constituents are released on military testing and training ranges through several common mechanisms. Some are locally dispersed as solid particles from incomplete combustion during firing and detonation. Also, small residual particles containing propellant compounds (e.g., nitroglycerin [NG] and 2,4-dinitrotoluene [2,4-DNT]) are distributed in front of and surrounding target practice firing lines (Figure 1). At impact areas and demolition areas, high order detonations typically yield very small amounts (<1 to 10 mg/round) of residual high explosive compounds (e.g., TNT , RDX and HMX ) that are distributed up to and sometimes greater than) 24 m from the site of detonation[7].

Low-order detonations and duds are thought to be the primary source of munitions constituents on ranges[8][9]. Duds are initially intact but may become perforated or fragmented into micrometer to centimeter;o0i0k-sized particles by nearby detonations[10]. Low-order detonations can scatter micrometer to centimeter-sized particles up to 20 m from the site of detonation[11]

The particulate nature of munitions constituents in the environment presents a distinct challenge to representative soil sampling. Figure 2 shows an array of discrete soil samples collected around the site of a low-order detonation – resultant soil concentrations vary by orders of magnitude within centimeters of each other. The inadequacy of discrete sampling is apparent in characterization studies from actual ranges which show wide-ranging concentrations and poor precision (Table 1).

In comparison to discrete sampling, incremental sampling tends to yield reproducible concentrations (low relative standard deviation [RSD]) that statistically better represent an area of interest[2].

Table 1. Soil Sample Concentrations and Precision from Military Ranges Using Discrete and Incremental Sampling. (Data from Taylor et al. [1] and references therein.)
Military Range Type Analyte Range
(mg/kg)
Median
(mg/kg)
RSD
(%)
Discrete Samples
Artillery FP 2,4-DNT <0.04 – 6.4 0.65 110
Antitank Rocket HMX 5.8 – 1,200 200 99
Bombing TNT 0.15 – 780 6.4 274
Mortar RDX <0.04 – 2,400 1.7 441
Artillery RDX <0.04 – 170 <0.04 454
Incremental Samples*
Artillery FP 2,4-DNT 0.60 – 1.4 0.92 26
Bombing TNT 13 – 17 14 17
Artillery/Bombing RDX 3.9 – 9.4 4.8 38
Thermal Treatment HMX 3.96 – 4.26 4.16 4
* For incremental samples, 30-100 increments and 3-10 replicate samples were collected.

Incremental Sampling Approach

ISM is a requisite for representative and reproducible sampling of training ranges, but it is an involved process that is detailed thoroughly elsewhere[2][1][3]. In short, ISM involves the collection of many (30 to >100) increments in a systematic pattern within a decision unit (DU). The DU may cover an area where releases are thought to have occurred or may represent an area relevant to ecological receptors (e.g., sensitive species). Figure 3 shows the ISM sampling pattern in a simplified (5x5 square) DU. Increments are collected at a random starting point with systematic distances between increments. Replicate samples can be collected by starting at a different random starting point, often at a different corner of the DU. Practically, this grid pattern can often be followed with flagging or lathe marking DU boundaries and/or sampling lanes and with individual pacing keeping systematic distances between increments. As an example, an artillery firing point might include a 100x100 m DU with 81 increments.

Figure 3. Example ISM sampling pattern on a square decision unit. Replicates are collected in a systematic pattern from a random starting point at a corner of the DU. Typically more than the 25 increments shown are collected

DUs can vary in shape (Figure 4), size, number of increments, and number of replicates according to a project’s data quality objectives.

Figure 4: Incremental sampling of a circular DU on snow shows sampling lanes with a two-person team in process of collecting the second replicate in a perpendicular path to the first replicate. (Photo: Matthew Bigl)

Sampling Tools

In many cases, energetic compounds are expected to reside within the soil surface. Figure 5 shows soil depth profiles on some studied impact areas and firing points. Overall, the energetic compound concentrations below 5-cm soil depth are negligible relative to overlying soil concentrations. For conventional munitions, this is to be expected as the energetic particles are relatively insoluble, and any dissolved compounds readily adsorb to most soils[12]. Physical disturbance, as on hand grenade ranges, may require deeper sampling either with a soil profile or a corer/auger.

Figure 5. Depth profiles of high explosive compounds at impact areas (bottom) and of propellant compounds at firing points (top). Data from: Hewitt et al. [13] and Jenkins et al. [14]

Soil sampling with the Cold Regions Research and Engineering Laboratory (CRREL) Multi-Increment Sampling Tool (CMIST) or similar device is an easy way to collect ISM samples rapidly and reproducibly. This tool has an adjustable diameter size corer and adjustable depth to collect surface soil plugs (Figure 6). The CMIST can be used at almost a walking pace (Figure 7) using a two-person sampling team, with one person operating the CMIST and the other carrying the sample container and recording the number of increments collected. The CMIST with a small diameter tip works best in soils with low cohesion, otherwise conventional scoops may be used. Maintaining consistent soil increment dimensions is critical.

The sampling tool should be cleaned between replicates and between DUs to minimize potential for cross-contamination[15].

Sample Processing

While only 10 g of soil is typically used for chemical analysis, incremental sampling generates a sample weighing on the order of 1 kg. Splitting of a sample, either in the field or laboratory, seems like an easy way to reduce sample mass; however this approach has been found to produce high uncertainty for explosives and propellants, with a median RSD of 43.1%[2]. Even greater error is associated with removing a discrete sub-sample from an unground sample. Appendix A in U.S. EPA Method 8330B[3] provides details on recommended ISM sample processing procedures.

Incremental soil samples are typically air dried over the course of a few days. Oven drying thermally degrades some energetic compounds and should be avoided[16]. Once dry, the samples are sieved with a 2-mm screen, with only the less than 2-mm fraction processed further. This size fraction represents the USDA definition of soil. Aggregate soil particles should be broken up and vegetation shredded to pass through the sieve. Samples from impact or demolition areas may contain explosive particles from low order detonations that are greater than 2 mm and should be identified, given appropriate caution, and potentially weighed.

The <2-mm soil fraction is typically still ≥1 kg and impractical to extract in full for analysis. However, subsampling at this stage is not possible due to compositional heterogeneity, with the energetic compounds generally present as <0.5 mm particles[7][11]. Particle size reduction is required to achieve a representative and precise measure of the sample concentration. Grinding in a puck mill to a soil particle size <75 µm has been found to be required for representative/reproducible sub-sampling (Figure 8). For samples thought to contain propellant particles, a prolonged milling time is required to break down these polymerized particles and achieve acceptable precision (Figure 9). Due to the multi-use nature of some ranges, a 5-minute puck milling period can be used for all soils. Cooling periods between 1-minute milling intervals are recommended to avoid thermal degradation. Similar to field sampling, sub-sampling is done incrementally by spreading the sample out to a thin layer and collecting systematic random increments of consistent volume to a total mass for extraction of 10 g (Figure 10).

  • Figure 6: CMIST soil sampling tool (top) and with ejected increment core using a large diameter tip (bottom).
  • Figure 7: Two person sampling team using CMIST, bag-lined bucket, and increment counter. (Photos: Matthew Bigl)
  • Figure 8: Effect of machine grinding on RDX and TNT concentration and precision in soil from a hand grenade range. Data from Walsh et al.[17]
  • Figure 9: Effect of puck milling time on 2,4-DNT concentration and precision in soil from a firing point. Data from Walsh et al.[18].
  • Figure 10: Incremental sub-sampling of a milled soil sample spread out on aluminum foil.
  • Analysis

    Soil sub-samples are extracted and analyzed following EPA Method 8330B[3] and Method 8095[4] using High Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC), respectively. Common estimated reporting limits for these analysis methods are listed in Table 2.

    Table 2. Typical Method Reporting Limits for Energetic Compounds in Soil. (Data from Hewitt et al.[19])
    Compound Soil Reporting Limit (mg/kg)
    HPLC (8330) GC (8095)
    HMX 0.04 0.01
    RDX 0.04 0.006
    TNB 0.04 0.003
    TNT 0.04 0.002
    2,6-DNT 0.08 0.002
    2,4-DNT 0.04 0.002
    2-ADNT 0.08 0.002
    4-ADNT 0.08 0.002
    NG 0.1 0.01
    DNB 0.04 0.002
    Tetryl 0.04 0.01
    PETN 0.2 0.016

    References

    1. ^ 1.0 1.1 1.2 Taylor, S., Jenkins, T.F., Bigl, S., Hewitt, A.D., Walsh, M.E. and Walsh, M.R., 2011. Guidance for Soil Sampling for Energetics and Metals (No. ERDC/CRREL-TR-11-15). Report.pdf
    2. ^ 2.0 2.1 2.2 2.3 Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Bigl, S.R. and Brochu, S., 2009. Validation of sampling protocol and the promulgation of method modifications for the characterization of energetic residues on military testing and training ranges (No. ERDC/CRREL-TR-09-6). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-09-6, Hanover, NH, USA. Report.pdf
    3. ^ 3.0 3.1 3.2 3.3 U.S. Environmental Protection Agency (USEPA), 2006. Method 8330B (SW-846): Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC), Rev. 2. Washington, D.C. Report.pdf
    4. ^ 4.0 4.1 U.S. Environmental Protection Agency (US EPA), 2007. Method 8095 (SW-846): Explosives by Gas Chromatography. Washington, D.C. Report.pdf
    5. ^ Walsh, M.R., Walsh, M.E., Ampleman, G., Thiboutot, S., Brochu, S. and Jenkins, T.F., 2012. Munitions propellants residue deposition rates on military training ranges. Propellants, Explosives, Pyrotechnics, 37(4), pp.393-406. doi: 10.1002/prep.201100105
    6. ^ Walsh, M.R., Walsh, M.E., Hewitt, A.D., Collins, C.M., Bigl, S.R., Gagnon, K., Ampleman, G., Thiboutot, S., Poulin, I. and Brochu, S., 2010. Characterization and Fate of Gun and Rocket Propellant Residues on Testing and Training Ranges: Interim Report 2. (ERDC/CRREL TR-10-13. Also: ESTCP Project ER-1481) Report
    7. ^ 7.0 7.1 Walsh, M.R., Temple, T., Bigl, M.F., Tshabalala, S.F., Mai, N. and Ladyman, M., 2017. Investigation of Energetic Particle Distribution from High‐Order Detonations of Munitions. Propellants, Explosives, Pyrotechnics, 42(8), pp.932-941. doi: 10.1002/prep.201700089 Report.pdf
    8. ^ Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Walsh, M.R. and Taylor, S., 2005. RDX and TNT residues from live-fire and blow-in-place detonations. Chemosphere, 61(6), pp.888-894. doi: 10.1016/j.chemosphere.2005.04.058
    9. ^ Walsh, M.R., Walsh, M.E., Poulin, I., Taylor, S. and Douglas, T.A., 2011. Energetic residues from the detonation of common US ordnance. International Journal of Energetic Materials and Chemical Propulsion, 10(2). doi: 10.1615/IntJEnergeticMaterialsChemProp.2012004956 Report.pdf
    10. ^ Walsh, M.R., Thiboutot, S., Walsh, M.E., Ampleman, G., Martel, R., Poulin, I. and Taylor, S., 2011. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC/CRREL-TR-11-13). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-11-13, Hanover, NH, USA. Report.pdf
    11. ^ 11.0 11.1 Taylor, S., Hewitt, A., Lever, J., Hayes, C., Perovich, L., Thorne, P. and Daghlian, C., 2004. TNT particle size distributions from detonated 155-mm howitzer rounds. Chemosphere, 55(3), pp.357-367. Report.pdf
    12. ^ Pennington, J.C., Jenkins, T.F., Ampleman, G., Thiboutot, S., Brannon, J.M., Hewitt, A.D., Lewis, J., Brochu, S., 2006. Distribution and fate of energetics on DoD test and training ranges: Final Report. ERDC TR-06-13, Vicksburg, MS, USA. Also: SERDP/ESTCP Project ER-1155. Report.pdf
    13. ^ Hewitt, A.D., Jenkins, T.F., Ramsey, C.A., Bjella, K.L., Ranney, T.A. and Perron, N.M., 2005. Estimating energetic residue loading on military artillery ranges: Large decision units (No. ERDC/CRREL-TR-05-7). Report.pdf
    14. ^ Jenkins, T.F., Ampleman, G., Thiboutot, S., Bigl, S.R., Taylor, S., Walsh, M.R., Faucher, D., Mantel, R., Poulin, I., Dontsova, K.M. and Walsh, M.E., 2008. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC-TR-08-1). Report.pdf
    15. ^ Walsh, M.R., 2009. User’s manual for the CRREL Multi-Increment Sampling Tool. Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) SR-09-1, Hanover, NH, USA. Report.pdf
    16. ^ Cragin, J.H., Leggett, D.C., Foley, B.T., and Schumacher, P.W., 1985. TNT, RDX and HMX explosives in soils and sediments: Analysis techniques and drying losses. (CRREL Report 85-15) Hanover, NH, USA. Report.pdf
    17. ^ Walsh, M.E., Ramsey, C.A. and Jenkins, T.F., 2002. The effect of particle size reduction by grinding on subsampling variance for explosives residues in soil. Chemosphere, 49(10), pp.1267-1273. doi: 10.1016/S0045-6535(02)00528-3
    18. ^ Walsh, M.E., Ramsey, C.A., Collins, C.M., Hewitt, A.D., Walsh, M.R., Bjella, K.L., Lambert, D.J. and Perron, N.M., 2005. Collection methods and laboratory processing of samples from Donnelly Training Area Firing Points, Alaska, 2003 (No. ERDC/CRREL-TR-05-6). Report.pdf
    19. ^ Hewitt, A., Bigl, S., Walsh, M., Brochu, S., Bjella, K. and Lambert, D., 2007. Processing of training range soils for the analysis of energetic compounds (No. ERDC/CRREL-TR-07-15). Hanover, NH, USA. Report.pdf

    See Also